首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gene flow within and between social groups is contingent on behaviourally mediated patterns of mating and dispersal. To understand how these patterns affect the genetic structure of primate populations, long-term data are required. In this study, we analyse 10 years of demographic and genetic data from a wild lemur population (Propithecus verreauxi verreauxi) at Beza Mahafaly Special Reserve, southwest Madagascar. Our goal is to specify how patterns of mating and dispersal determine kinship and genetic diversity among animals in the population. Specifically, we use microsatellite, parentage, and census data to obtain estimates of genetic subdivision (FST), within group homozygosity (FIS), and relatedness (r) within and among social groups in the population. We analyse different classes of individuals (i.e. adults, offspring, males, females) separately in order to discern which classes most strongly influence aspects of population structure. Microsatellite data reveal that, across years, offspring are consistently more heterozygous than expected within social groups (FIS mean = -0.068) while adults show both positive and negative deviations from expected genotypic frequencies within groups (FIS mean = 0.003). Offspring cohorts are more genetically subdivided than adults (FST mean = 0.108 vs. 0.052) and adult females are more genetically subdivided than adult males (FST mean = 0.098 vs. 0.046). As the proportion of females in social groups increases, the proportion of offspring sired by resident males decreases. Offspring are characterized by a heterozygote excess as resident males (vs. nonresident males) sire the majority of offspring within groups. We link these genetic data to patterns of female philopatry, male dispersal, exogamy, and offspring sex-ratio. Overall, these data reveal how mating and dispersal tactics influence the genetic population structure in this species.  相似文献   

2.
Spatial population structure has important ecological and evolutionary consequences. Little is known about the population structure of snowshoe hares (Lepus americanus), despite their ecological importance in North American boreal forests. We used seven variable microsatellite DNA loci to determine the spatial genetic structure of snowshoe hares near Kluane Lake, Yukon during a cyclic population peak. We sampled 317 hares at 12 sites separated by distances ranging from 3 to 140 km, and used 46 additional samples from Alaska and Montana. The level of genetic variation was high (13.4 alleles/locus, 0.67 expected heterozygosity) and the distribution of alleles and genotypes was not homogeneous across the sites. The degree of differentiation was low among Yukon sites (FST = 0.015) and between Yukon and Alaska (FST = 0.012), but the Montana site was highly differentiated (FST = 0.20). A weak pattern of isolation by distance was found over the Yukon study area, with an indication that local genetic drift may be important in shaping the regional genetic structure. Landscape barriers expected to influence gene flow did not consistently affect genetic structure, although there was evidence for a partial barrier effect of Kluane Lake. The high level of inferred gene flow confirms that snowshoe hare dispersal is widespread, successful and equal between the sexes. A stepping-stone model of gene flow, potentially influenced by the synchronous density cycle, appears to best explain the observed genetic structure. Our results suggest that despite their dramatic fluctuations in density, snowshoe hares in the northern boreal forest have a large evolutionary effective population size and are not strongly subdivided by either physical or social barriers to gene flow.  相似文献   

3.
We examine estimates of dispersal in a broad range of marine species through an analysis of published values, and evaluate how well these values represent global patterns through a comparison with correlates of dispersal. Our analysis indicates a historical focus in dispersal studies on low-dispersal/low-latitude species, and we hypothesize that these studies are not generally applicable and representative of global patterns. Large-scale patterns in dispersal were examined using a database of correlates of dispersal such as planktonic larval duration (PLD, 318 species) and genetic differentiation (FST, 246 species). We observed significant differences in FST (p<0.001) and PLD (p<0.001) between taxonomic groups (e.g. fishes, cnidarians, etc.). Within marine fishes (more than 50% of datasets), the prevalence of demersal eggs was negatively associated with PLD (R2=0.80, p<0.001) and positively associated with genetic structure (R2=0.74, p<0.001). Furthermore, dispersal within marine fishes (i.e. PLD and FST) increased with latitude, adult body size and water depth. Of these variables, multiple regression identified latitude and body size as persistent predictors across taxonomic levels. These global patterns of dispersal represent a first step towards understanding and predicting species-level and regional differences in dispersal, and will be improved as more comprehensive data become available.  相似文献   

4.
To examine the effects of seed dispersal on spatial genetic structure, we compare three sympatric species of forest herbs in the family Apiaceae whose fruits differ widely in morphological adaptations for animal-attached dispersal. Cryptotaenia canadensis has smooth fruits that are gravity dispersed, whereas Osmorhiza claytonii and Sanicula odorata fruits have appendages that facilitate their attachment to animals. The relative seed-dispersal ability among species, measured as their ability to remain attached to mammal fur, is ranked Sanicula > Osmorhiza > Cryptotaenia. We use a nested hierarchical sampling design to analyze genetic structure at spatial scales ranging from a few meters to hundreds of kilometers. Genetic differentiation among population subdivisions, estimated by average genetic distance and hierarchical F-statistics, has an inverse relationship with dispersal ability such that Cryptotaenia > Osmorhiza > Sanicula. In each species, genetic differentiation increases with distance among population subdivisions. Stochastic variation in gene flow, arising from seed dispersal by attachment to animals, may partly explain the weak relationship between pairwise spatial and genetic distance among populations and heterogeneity in estimates of single locus F-statistics. A hierarchical island model of gene flow is invoked to describe the effects of seed dispersal on population genetic structure. Seed dispersal is the predominant factor affecting variation in gene flow among these ecologically similar, taxonomically related species.  相似文献   

5.
Elucidation of genetic variability and genetic relationship among breeds has direct relevance with the issues of sustainable use of domestic animal genetic resources. In the present study, genetic polymorphism was evaluated using 22 microsatellite loci in unrelated samples of Red Kandhari and Deoni cattle breeds inhabiting the same geographical area of Marathwada region in Maharashtra state (western India). This work was mainly aimed at assessing the current genetic diversity to understand whether the two zebu populations in question are genetically differentiated. A total of 164 alleles were detected with an average of 5.82 and 5.86 alleles per locus (MNA) in Red Kandhari and Deoni breeds, respectively. The estimated mean observed (Ho) and expected (He) heterozygosity were 0.47 and 0.64 in Red Kandhari vs. 0.57 and 0.69 in Deoni cattle, respectively, demonstrating considerable level of genetic variation in both the populations. Mean estimates of F statistics were: F (FIT) = 0.315 +/- 0.035, f(FIS) = 0.231 +/- 0.031, theta(FST) = 0.110 +/- 0.022, with both the breeds exhibiting significant deficit of heterozygotes (FIS = 0.179 in Deoni; 0.278 in Red Kandhari). The multilocus FST values implied that 11.0% of the total genetic variation corresponds to breed and were statistically greater than zero for the two populations, suggesting population division. The evaluation of exact test also indicated that allele frequencies across all the loci differed significantly (P < 0.001) between two zebu breeds, further supporting population differentiation. Different genetic distance measures showed considerable levels of distances between the two cattle breeds (0.318 = Nei's standard DS; 0.250 = Nei's DA; 0.416 = Cavalli-Sforza and Edwards's Dc; 0.164 = Reynold's, and 2.64 = Delta mu square (dmicro)2. Bayesian statistical approach to assign each individual to the population also supported considerable differentiation between the two cattle breeds, possibly reflecting the limited gene flow between the two Marthwada cattle populations. The existence of cohesive breeding structure of both the breeds was further substantiated by allele-sharing distance measures (DAS) among individual animals. The results of this study thus revealed that the two Bos indicus breeds sharing the common breeding tracts are genetically differentiated enough as separate breeds.  相似文献   

6.
Eryngium alpinum L. is an endangered species found across the European Alps. In order to obtain base-line data for the conservation of this species, we investigated levels of genetic diversity within and among 14 populations from the French Alps. We used the amplified fragment length polymorphism (AFLP) technique with three primer pairs and scored a total of 62 unambiguous, polymorphic markers in 327 individuals. Because AFLP markers are dominant, within-population genetic structure (e.g. FIS) could not be assessed. Analyses based either on the assumption of random-mating or on complete selfing lead to very similar results. Diversity levels within populations were relatively high (mean Nei's expected heterozygosity = 0.198; mean Shannon index = 0.283), and a positive correlation was detected between both genetic diversity measurements and population size (Spearman rank correlation: P = 0. 005 and P = 0.002, respectively). Moreover, FST values and exact tests of differentiation revealed high differentiation among populations (mean pairwise FST = 0.40), which appeared to be independent of geographical distance (nonsignificant Mantel test). Founder events during postglacial colonizations and/or bottlenecks are proposed to explain this high but random genetic differentiation. By contrast, we detected a pattern of isolation by distance within populations and valleys. Predominant local gene flow by pollen or seed is probably responsible for this pattern. Concerning the management of E. alpinum, the high genetic differentiation leads us to recommend the conservation of a maximum number of populations. This study demonstrates that AFLP markers enable a quick and reliable assessment of intraspecific genetic variability in conservation genetics.  相似文献   

7.
Cymbidium goeringii is a diploid and nonrewarding,bumblebee-pollinated species,which is distributed in China,Japan and Korea Peninsula.This species is now highly endangered due to the mass collection and forest clearance in China.In the present study,we investigated the distribution of genetic variation within and between eleven populations of Cymbidium goeringii in central China by using Inter-simple sequence repeats (ISSR) markers.Eleven primers produced a total of 127 clear and reproducible bands of which 112 were polymorphic.High genetic diversity was detected in Cymbidium goeringii for both population level (P = 63.1%;He = 0.194 5) and species level (P = 88.2%;He = 0.262 8).A higher level of genetic differentiation was detected among populations (GST = 0.244 0,FST = 0.220 7)with Nei's Gsr analysis and analysis of molecular variance (AMOVA),and no correlation was found between geographical and genetic distance.Genetic drift rather than gene flow played an important role in forming the present population structure of Cymbidium goeringii.Limited gene flow among populations and gene drift increase the extinction risk of local populations.Some conservation concerns are therefore discussed together with possible strategies for implementing in situ and ex situ conservation.  相似文献   

8.
In heterogeneous landscapes, physical barriers and loss of structural connectivity have been shown to reduce gene flow and therefore lead to population structuring. In this study, we assessed the influence of landscape features on population genetic structure and gene flow of a semiaquatic species, the muskrat. A total of 97 muskrats were sampled from three watersheds near Sudbury, Ontario, Canada. We estimated population genetic structure using 11 microsatellite loci and identified a single genetic cluster and no genetic differences were found among the watersheds as a result of high levels of gene flow. At finer scales, we assessed the correlation between individual pairwise genetic distances and Euclidean distance as well as different models of least cost path (LCP). We used a range of cost values for the landscape types in order to build our LCP models. We found a positive relationship between genetic distance and least cost distance when we considered roads as corridors for movements. Open landscapes and urban areas seemed to restrict but not prevent gene flow within the study area. Our study underlines the high‐dispersal ability of generalist species in their use of landscape and highlights how landscape features often considered barriers to animal movements are corridors for other species.  相似文献   

9.
The relationship between gene flow and geographic proximity has been assessed for many insect species, but dispersal distances are poorly known for most of these. Thus, we are able to assess the concordance between vagility and gene flow for only a few species. In this study, I documented variation at six allozyme loci among Washington and Oregon populations of the sedentary, patchily distributed, lycaenid butterfly, Euphilotes enoptes (Boisduval) to assess whether the relationship between gene flow and geographic distance is consistent with the dispersal biology of this species. Both a phenogram based on genetic distances between populations and a regression analysis of gene flow estimates on geographic distances showed a pattern consistent with genetic isolation by distance. Many estimates of gene flow among pairs of populations separated by more than 100 km exceeded the equivalent of 10 individuals exchanged per generation, a value much greater than would be predicted from the limited dispersal ability of this species. However, based on the allozyme data, genetic neighborhood size was estimated to be approximately 39 individuals, a value that is consistent with poor vagility. The results of this study speak to the power of stepping-stone gene flow among populations and are compared to the results of other studies that have examined the relationship between dispersal and gene flow in sedentary insects.  相似文献   

10.
Recent habitat loss and fragmentation superimposed upon ancient patterns of population subdivision are likely to have produced low levels of neutral genetic diversity and marked genetic structure in many plant species. The genetic effects of habitat fragmentation may be most pronounced in species that form small populations, are fully self-compatible and have limited seed dispersal. However, long-lived seed banks, mobile pollinators and long adult lifespans may prevent or delay the accumulation of genetic effects. We studied a rare Australian shrub species, Grevillea macleayana (Proteaceae), that occurs in many small populations, is self-compatible and has restricted seed dispersal. However, it has a relatively long adult lifespan (c. 30 years), a long-lived seed bank that germinates after fire and is pollinated by birds that are numerous and highly mobile. These latter characteristics raise the possibility that populations in the past may have been effectively large and genetically homogeneous. Using six microsatellites, we found that G. macleayana may have relatively low within-population diversity (3.2-4.2 alleles/locus; Hexp = 0.420-0.530), significant population differentiation and moderate genetic structure (FST = 0.218) showing isolation by distance, consistent with historically low gene flow. The frequency distribution of allele sizes suggest that this geographical differentiation is being driven by mutation. We found a lack mutation-drift equilibrium in some populations that is indicative of population bottlenecks. Combined with evidence for large spatiotemporal variation of selfing rates, this suggests that fluctuating population sizes characterize the demography in this species, promoting genetic drift. We argue that natural patterns of pollen and seed dispersal, coupled with the patchy, fire-shaped distribution, may have restricted long-distance gene flow in the past.  相似文献   

11.
Genetic isolation by distance (IBD) has rarely been described in marine species with high potential for dispersal at both the larval and adult life-history stages. Here, we report significant relationships between inferred levels of gene flow and geographic distance in the Atlantic cod, Gadus morhua, at 10 nuclear restriction-fragment-length-polymorphism (RFLP) loci at small regional scales in the western north Atlantic region (< 1,600 km) that mirror those previously detected over its entire geographic range (up to 7,300 km). Highly significant allele frequency differences were observed among eight northwestern Atlantic populations, although the mean FST for all 10 loci was only 0.014. Despite this weak population structuring, the distance separating populations explained between 54% and 62% of the variation in gene flow depending on whether nine or 10 loci were used to estimate Nm. Across the species' entire geographic range, highly significant differences were observed among six regional populations at nine of the 10 loci (mean FST = 0.068) and seven loci exhibited significant negative relationships between gene flow and distance. At this large geographic scale, natural selection acting in the vicinity of one RFLP locus (GM798) had a significant effect on the correlation between gene flow and distance, and eliminating it from the analysis caused the coefficient of determination to increase from 17% to 62%. The role of vicariance was assessed by sequentially removing populations from the analysis and was found to play a minor role in contributing to the relationship between gene flow and distance at either geographic scale. The correlation between gene flow and distance detected in G. morhua at small and large spatial scales suggests that dispersal distances and effective population sizes are much smaller than predicted for the species and that the recent age of populations, rather than extensive gene flow, may be responsible for its weak population structure. Our results suggest that interpreting limited genetic differences among populations as reflecting high levels of ongoing gene flow should be made with caution.  相似文献   

12.
13.
Human-induced habitat fragmentation might seriously affect behavioural patterns and the survival of species whose ecological requirements strongly depend on specific environmental conditions. We compared the genetic structure and dispersal patterns of 2 populations of Alouatta caraya (Plathyrrhini, Atelidae) to understand how habitat reduction and fragmentation affect gene flow in this species. We sampled individuals from 7 groups living in continuous forest (CF, n = 46, 22 males and 24 females), and 11 groups that inhabit a fragmented forest (FF, n = 50, 24 males and 26 females). FST values based on 11 microsatellite loci showed a recent genetic differentiation among groups in the FF. In contrast, the CF showed no differentiation among groups. Further, FST values between sexes, as well as kinship relationships, also exhibited differences between habitats. In the CF, both males and females disperse, leading to nondifferentiated groups composed of adults that are not close relatives. Conversely, in the FF, some groups are differentiated, males disperse more than females, and groups are composed of closely related adult females. Our results suggest that habitat fragmentation modifies the dispersal patterns of black-and-gold howlers. These differences between habitats may reflect a reduced gene flow, providing genetic evidence that suggests that habitat fragmentation severely limits the howler’s ability to disperse. An increasing level of isolation due to uncontrolled deforestation may cause similar loss of genetic diversity on other arboreal primates, and nonprimates that depend on forest continuity to disperse, reducing their abilities to cope with environmental changes.  相似文献   

14.
Spawning, copulation and inbreeding coefficients in marine invertebrates   总被引:3,自引:0,他引:3  
Patterns of population genetic variation have frequently been understood as consequences of life history covariates such as dispersal ability and breeding systems (e.g. selfing). For example, marine invertebrates show enormous variation in life history traits that are correlated with the extent of gene flow between populations and the magnitude of differentiation among populations at neutral genetic markers (FST). Here we document an unexpected correlation between marine invertebrate life histories and deviation from Hardy-Weinberg equilibrium (non-zero values of FIS, the inbreeding coefficient). FIS values were significantly higher in studies of species with free-spawned planktonic sperm than in studies of species that copulate or have some form of direct sperm transfer to females or benthic egg masses. This result was robust to several different analytical approaches. We note several mechanisms that might contribute to this pattern, and appeal for more studies and ideas that might help to explain our observations.  相似文献   

15.
Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population‐level data for large numbers of species, ecologists seek to identify proximate organismal traits—such as dispersal ability, habitat preference and life history—that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape‐based metrics of resistance. We found that the moderate‐disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation‐by‐distance pattern, suggesting migration–drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong‐flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best‐fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale‐dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities.  相似文献   

16.
Four microsatellite DNA markers were developed which were used to examine the relationship between landscape and population genetic structure among a set of populations of the butterfly Parnassius smintheus located in the foothills of the Canadian Rockies. Detailed information on the dispersal of adult butterflies among this same set of populations was available. Simple and partial Mantel tests were used to examine the relationships between genetic distances, predicted rates of dispersal, and a number of landscape variables, all measured pairwise for 17 sample sites. Nei's standard genetic distance was negatively correlated with predicted dispersal. We observed a significant pattern of isolation by distance at a very small spatial scale. The distance between sites that was through forest was a stronger predictor of genetic distance than the distance through open meadow, indicating a significant effect of landscape on population genetic structure beyond that of simple isolation by distance. Our results suggest that rises in the tree-line in alpine areas, caused by global warming, will lead to reduced gene flow among populations of P. smintheus.  相似文献   

17.
Natal dispersal in a vagile carnivore, the American marten (Martes americana), was studied by comparing radio-tracking data and microsatellite genetic structure in two populations occupying contrasting habitats. The genetic differentiation determined among groups of individuals using F(ST) indices appeared to be weak in both landscapes, and showed no increase with geographical distance. Genetic structure investigated using pairwise genetic distances between individuals conversely showed a pattern of isolation by distance (IBD), but only in the population occurring in a homogeneous high-quality habitat, therefore showing the advantage of individual-based analyses in detecting within-population processes and local landscape effects. The telemetry study of juveniles revealed a leptokurtic distribution of dispersal distances in both populations, and estimates of the mean squared parent-offspring axial distance (sigma2) inferred both from the genetic pattern of IBD and from the radio-tracking survey showed that most juveniles make little contribution to gene flow.  相似文献   

18.
Pollination and seed dispersal determine the spatial pattern of gene flow in plant populations and, for those species relying on pollinators and frugivores as dispersal vectors, animal activity plays a key role in determining this spatial pattern. For these plant species, reported dispersal patterns are dominated by short-distance movements with a significant amount of immigration. However, the contribution of seed and pollen to the overall contemporary gene immigration is still poorly documented for most plant populations. In this study we investigated pollination and seed dispersal at two spatial scales in a local population of Prunus mahaleb (L.), a species pollinated by insects and dispersed by frugivorous vertebrates. First, we dissected the relative contribution of pollen and seed dispersal to gene immigration from other parts of the metapopulation. We found high levels of gene immigration (18.50%), due to frequent long distance seed dispersal events. Second, we assessed the distance and directionality for pollen and seed dispersal events within the local population. Pollen and seed movement patterns were non-random, with skewed distance distributions: pollen tended moved up to 548 m along an axis approaching the N-S direction, and seeds were dispersed up to 990 m, frequently along the SW and SE axes. Animal-mediated dispersal contributed significantly towards gene immigration into the local population and had a markedly nonrandom pattern within the local population. Our data suggest that animals can impose distinct spatial signatures in contemporary gene flow, with the potential to induce significant genetic structure at a local level.  相似文献   

19.
The delimitation of populations, defined as groups of individuals linked by gene flow, is possible by the analysis of genetic markers and also by spatial models based on dispersal probabilities across a landscape. We combined these two complimentary methods to define the spatial pattern of genetic structure among remaining populations of the threatened Florida scrub-jay, a species for which dispersal ability is unusually well-characterized. The range-wide population was intensively censused in the 1990s, and a metapopulation model defined population boundaries based on predicted dispersal-mediated demographic connectivity. We subjected genotypes from more than 1000 individual jays screened at 20 microsatellite loci to two Bayesian clustering methods. We describe a consensus method for identifying common features across many replicated clustering runs. Ten genetically differentiated groups exist across the present-day range of the Florida scrub-jay. These groups are largely consistent with the dispersal-defined metapopulations, which assume very limited dispersal ability. Some genetic groups comprise more than one metapopulation, likely because these genetically similar metapopulations were sundered only recently by habitat alteration. The combined reconstructions of population structure based on genetics and dispersal-mediated demographic connectivity provide a robust depiction of the current genetic and demographic organization of this species, reflecting past and present levels of dispersal among occupied habitat patches. The differentiation of populations into 10 genetic groups adds urgency to management efforts aimed at preserving what remains of genetic variation in this dwindling species, by maintaining viable populations of all genetically differentiated and geographically isolated populations.  相似文献   

20.
Eleven microsatellites were isolated in the freshwater snail Bulinus forskalii, intermediate host for the medically important trematode Schistosoma intercalatum. Characterization in 60 snails from three populations of B. forskalii from Cameroon revealed 4 to 18 alleles per locus. Low observed heterozygosity but higher expected heterozygosity, high FIS estimates, significant departures from Hardy–Weinberg equilibrium and genotypic linkage disequilibria all indicate that B. forskalii is a preferential selfer. High FST estimates suggest that effective dispersal is limited and genetic drift is an important determinant of genetic structure. The potential utility of the microsatellite primers in other closely related Bulinus species was explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号