首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pig epidermal cyclic nucleotide phosphodiesterases (EC 3.1.4.16) have been partially purified by DEAE-cellulose column chromatography. At least three different forms of the epidermal phosphodiesterases were identified. They were cyclic GMP-specific, cyclic GMP- and cyclic AMP-hydrolyzing and apparently a cyclic AMP-specific enzyme: the first two forms were soluble and the last was the particulate enzyme. The cyclic GMP-specific soluble fraction had a relatively low Km, the cyclic GMP- and cyclic AMP-hydrolyzing fraction had a high Km for the respective substrates and the third particulate enzyme had both high and low Km values for cyclic AMP. The cyclic GMP-hydrolyzing enzyme was localized almost entirely in the soluble fraction, whereas cyclic AMP-hydrolyzing enzyme was distributed to both soluble and particulate fractions. Thus, our studies show that the multiple forms of pig epidermal enzyme differ distinctly in their substrate affinity, specificity and subcellular distribution.  相似文献   

2.
Peptide mapping of multiple forms of cyclic nucleotide phosphodiesterase   总被引:2,自引:0,他引:2  
Purified multiple forms of 3':5'-cyclic-nucleotide phosphodiesterase (EC 3.1.4.17) were analyzed using two-dimensional tryptic pep]tide mapping of radioiodinated peptides. Comparisons of peptide maps of rat liver insulin-sensitive phosphodiesterase (PDE) with rat brain calmodulin-sensitive PDE suggest that some peptides co-migrate (31-43% co-migration). However, except for a single peptide, bovine retinal rod outer segment PDE, peptide maps appear unrelated to the other two forms (7-12% co-migration). In contrast, peptide maps of a 36,000-dalton proteolysis product of calmodulin-sensitive PDE are highly related to the peptide maps of a rat brain calmodulin-sensitive holoenzyme (73% co-migration). These results suggest that the multiple PDE forms are distinct molecular entities.  相似文献   

3.
4.
5.
6.
The cyclic nucleotide phosphodiesterase (3':5'-cyclic nucleotide 5'-nucleotidohydrolase, EC 3.1.4.17) systems of many tissues show multiple physical and kinetic forms. In contrast, the soluble rat uterine phosphodiesterase exists as a single enzyme form with non-linear Lineweaver-Burk kinetics for cyclic AMP (app. Km of approx. 3 and 20 microM) and linear kinetics for cyclic GMP (app. Km of approx. 3 microM) since the two hydrolytic activities are not separated by a variety of techniques. In uterine cytosolic fractions, cyclic AMP is a non-competitive inhibitor of cyclic GMP hydrolysis (Ki approx. 32 microM). Also, cyclic GMP is a non-competitive inhibitor of cyclic AMP hydrolysis (Ki approx 16 microM) at low cyclic GMP/cyclic AMP substrate ratios. However, cyclic GMP acts as a competitive inhibitor of cyclic AMP phosphodiesterase (Ki approx 34 microM) at high cyclic GMP/cyclic AMP substrate ratios. When a single hydrolytic form of uterine phosphodiesterase, separated initially by DEAE anion-exchange chromatography, is treated with trypsin (0.5 microgram/ml for 2 min) and rechromatographed on DEAE-Sephacel, two major forms of phosphodiesterase are revealed. One form elutes at 0.3 M NaOAc- and displays anomalous kinetics for cyclic AMP hydrolysis (app. Km of 2 and 20 microM) and linear kinetics for cyclic GMP (app. Km approx. 5 microM), kinetic profiles which are similar to those of the uterine cytosolic preparations. A second form of phosphodiesterase elutes at 0.6 M NaOAc- and displays a higher apparent affinity for cyclic AMP (app. Km approx. 1.5 mu) without appreciable cyclic GMP hydrolytic activity. These data provide kinetic and structural evidence that uterine phosphodiesterase contains distinct catalytic sites for cyclic AMP and cyclic GMP. Moreover, they provide further documentation that the multiple forms of cyclic nucleotide phosphodiesterase in mammalian tissues may be conversions from a single enzyme species.  相似文献   

7.
DEAE-cellulose chromatography, in the presence and absence of Ca2+, of the 16,000g supernatant from bovine carotid artery smooth muscle has been used to separate four different types of cyclic nucleotide phosphodiesterase (3′:5′-cyclic-nucleotide 5′-nucleotidohydrolase, EC 3.1.4.17) activity, designated types A, B, C, and D. Type A is a high affinity, cyclic AMP-specific form of phosphodiesterase (Km = 1.6 μM) and elutes at relatively high ionic strength. Type B is a high affinity (Km = 2 μM), cyclic GMP-specific form which elutes at low ionic strength. Type C is a mixed substrate form, displaying anomalous kinetics for the hydrolysis of both cyclic AMP and cyclic GMP. It elutes from DEAE-cellulose at an ionic strength intermediate to that of types A and B. Type D is also a mixed substrate form of phosphodiesterase. However, its elution pattern from DEAE-cellulose differs, depending on whether Ca2+ is present or not, suggesting a Ca2+-dependent interaction between this enzyme form and the acidic Ca2+-dependent regulator protein (CDR). The hydrolytic activity of type D is stimulated by CDR, and activation requires the simultaneous presence of Ca2+ and CDR. Kinetic analysis of cyclic AMP hydrolysis by type D gives a linear double reciprocal plot; activation has no effect on the Km but increases the velocity approximately sixfold. Activation of cyclic GMP hydrolysis apparently affects both the Km and V. At all concentrations tested, the degree of activation is higher with cyclic AMP than with cyclic GMP. It is suggested that while the activable form of phosphodiesterase may play a relatively minor role in the overall hydrolysis of cyclic nucleotides, Ca2+-dependent activation may have a more important role in regulating the level of cyclic AMP than that of cyclic GMP in vascular smooth muscle.  相似文献   

8.
In rabbit skeletal muscle extracts the activity of phosphodiesterase practically insensitive to the increase of Ca2+ concentration from 10(-8) M up to 10(-5) M. The Ca2+-dependent protein regulator is separated from phosphodiesterase at the stage of isolation and purification. The activity of phosphodiesterase devoid of the protein regulator is inhibited by Ca2+ (10(-5)--10(-3) M). An addition of Ca2+-dependent regulator protects the enzyme against inhibition by Ca2+. The Km values for 3',5'-AMP (5 mkM) and 3',5'-GMP (13 mkM) appear to be close; however, the maximal hydrolysis rates for these nucleotides differ considerably (14,0 and 0,25--0,50 nmoles/min/mg of protein). The hydrolysis of 3',5'-AMP is increased 1,6--3,2-fold under the effect of 3',5'-GMP and that of 3',5'-GMP is increased 1,8--2,7-fold under the effect of 3',5'-AMP. Using ion-exchange chromatography it was shown that only 1% of the total activity of skeletal muscle phosphodieterase belongs to the phosphodiesterase sensitive to the activating effect of Ca2+-dependent regulator the activity of this enzymic form is increased 4--5 fold. The Ca2+-dependent regulator of skeletal muscles is inactivated under the effects of trypsin and during gel-filtration is eluted together with the Ca2+-dependent regulator from the heart. The amount of Ca2+-dependent regulator in skeletal muscles is 30 times as low as that in brain and 3 times as low as that in the heart of the rabbit.  相似文献   

9.
The soluble supernatant fraction of bovine heart homogenates may be fractionated on a DEAE cellulose column into two cyclic nucleotide phosphodiesterases (EC 3.1.4.-):PI and PII phosphodiesterases, in the order of emergence from the column. In the presence of free Ca2+, the PI enzyme may be activated several fold by the protein activator which was discovered by Cheung((1971) J. Biol. Chem. 246, 2859-2869). The PII enzyme is refractory to this activator, and is not inhibited by the Ca2+ chelating agent, ethylene glycol bis (beta-aminoethyl ether)-N, N'-tetraacetate (EGTA). The activated activity of PI phosphodiesterase may be further stimulated by imidazole or NH+4, and inhibited by high concentrations of Mg2+. These reagents have no significant effect on either the PII enzyme or the basal activity of PI phosphodiesterase. Although both forms of phosphodiesterase can hydrolyze either cyclic AMP or cyclic GMP, they exhibit different relative affinities towards these two cyclic nucleotides. The PI enzyme appears to have much higher affinities toward cyclic GMP than cyclic AMP. Km values for cyclic AMP and cyclic GMP are respectively 1.7 and 0.33 mM for the non-activated PI phosphodiesterase; and 0.2 and 0.007 mM for the activated enzyme. Each cyclic nucleotide acts as a competitive inhibitor for the other with Ki values similar to the respective Km values. In contrast with PI phosphodiesterase, PII phosphodiesterase exhibits similar affinity toward cyclic AMP and cyclic GMP. The apparent Km values of cyclic AMP and cyclic GMP for the PII enzyme are approx. 0.05 and 0.03 mM, respectively. The kinetic plot with respect to cyclic GMP shows positive cooperativity. Each cyclic nucleotide acts as a non-competitive inhibitor for the other nucleotide. These kinetic properties of PI and PII phosphodiesterase of bovine heart are very similar to those of rat liver cyclic GMP and high Km cyclic AMP phosphodiesterases, respectively (Russel, Terasaki and Appleman, (1973) J. Biol. Chem. 248, 1334).  相似文献   

10.
A rapid reduction of cyclic nucleotide phosphodiesterase activity occurs after the replating of confluent cultures of BHK 21 c/13 fibroblasts into fresh medium. This reduction in activity depends on the density to which the cultures are reseeded and the concentration of serum in the medium. Enzyme activity in BHK cells is restored after 24 to 48 hours if cells are diluted into medium containing 10% fetal calf serum or 0.5% fetal calf serum supplemented with insulin (10(-6)M), but not into 0.5% serum alone. The restoration in enzyme activity is blocked by cycloheximide or Actinomycin D. When BHK cells become quiescent by maintanance in 0.5% serum conditions for 48 hours, a rapid (15--60 minutes) increase in cyclic AMP phosphodiesterase activity occurs when 10% serum is added to the cultures. Enzyme activity is increased even further after 24 to 48 hours in the 10% serum. Cycloheximide or Actinomycin D do not affect the rapid increase in enzyme activity in response to serum, but completely inhibit the long term increase. In contrast to serum, insulin (10(-8) to 10(-6)M) has no short term effect, but does increase enzyme activity after 24 to 48 hours to levels comparable to those seen with addition of 10% serum. As is the case with serum, this long term effect of insulin on enzyme activity is prevented by inhibitors of protein and RNA synthesis. Kinetic analyses of cyclic AMP phosphodiesterase activity in homogenates of quiescent BHK cells indicate the presence of only high Km (congruent to 20 muM) enzyme activity. Addition of serum or insulin to quiescent cells results in the appearance of apparent low Km enzyme activity in homogenates. Sucrose gradient analysis of BHK cells displays two forms of cyclic AMP phosphodiesterase enzyme activity: a 3--4 S form and 5--6 S form. In quiescent cells, the 5--6 S form greatly predominates relative to the 3--4 S form. Addition of serum to quiescent cells results in a rapid appearance of increased 3--4 S form enzyme activity. Insulin also increases the activity of this higher affinity 3--4 S enzyme form after 24 to 48 hours in culture. The functional significance of short and long term regulation of cyclic nucleotide phosphodiesterase(s) in cells is discussed.  相似文献   

11.
Soluble cyclic nucleotide phosphodiesterase of rat uterus displays distinct structural and regulatory properties. Like phosphodiesterases from many mammalian sources the soluble uterine enzyme system exhibits nonlinear Lineweaver--Burk kinetics with cyclic adenosine 3':5'-monophosphate (cAMP) as substrate (apparent Kms congruent to 3 and 20 micron) and linear kinetics with cyclic guanosine 3':5'-monophosphate (cGMP) as substrate (apparent Km congruent to 3 micron). Unlike most other mammalian phosphodiesterases, however, numerous separation procedures reveal only a single form of uterine phosphodiesterase which catalyzes the hydrolysis of both cAMP and cGMP. A single form of the enzyme is observed upon sucrose gradient centrifugation (7.9 S), agarose gel filtration, and DEAE-cellulose chromatography at either pH 8.0 OR 6.0. Heat denaturation (50 degrees C) of soluble uterine phosphodiesterase causes the loss of both cAMP and cGMP hydrolytic activities at the same rate. Isoelectric focusing reveals major (pI = 5.2) and minor forms (pI = 5.8) of phosphodiesterase which both catalyze the hydrolysis of the two cyclic nucleotide substrates. In vivo administration of estradiol produces identical decreases in the activities of cAMP and cGMP phosphodiesterase. These results raise the possibility that the uterus contains a single form of soluble phosphodiesterase which catalyzes the hydrolysis of both cAMP and cGMP.  相似文献   

12.
We have purified the glycoprotein inhibitor of the extracellular cyclic nucleotide phosphodiesterase of Dictyostelium discoideum to apparent homogeneity. The inhibitor has a molecular weight of 47,000 measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The interaction of the inhibitor and the cyclic nucleotide phosphodiesterase occurs with 1:1 stoichiometry and with a dissociation constant of about 10(-10) M. Periodate oxidation of the inhibitor or of the enzyme destroys concanavalin A binding ability but does not affect the formation of the enzyme-inhibitor complex. Inhibitor is not produced by cells during logarithmic growth but appears in quantity during stationary phase and after transfer from growth medium to phosphate buffer.  相似文献   

13.
14.
Brain adenylate cyclase (EC 4.6.1.1) and cyclic nucleotide phosphodiesterase (EC 3.1.4.17) require an endogenous Ca2+-dependent activator protein for full activity (Cheung et al. (1975) Biochem. Biophys. Res. Commun. 66, 1055–1062). We now describe another brain factor which inhibited both brain adenylate cyclase and phosphodiesterase in vitro. The factor appeared to be a protein; it was inactivated by incubation with trypsin, but not with ribonuclease or deoxyribonuclease. Gel filtration with a calibrated column indicated a molecular weight of 80,000 and a Stokes' radius of 3.85 nm. In the presence of Ca2+, the inhibitor interacted with the activator protein to form an inhibitor activator complex. This makes the activator unavailable to adenylate cyclase or phosphodiesterase, resulting in a decrease of enzyme activity.  相似文献   

15.
The crystal structure of the semireduced form of cyclic nucleotide phosphodiesterase (CPDase) from Arabidopsis thaliana has been solved by molecular replacement and refined at the resolution of 1.8 A. We have previously reported the crystal structure of the native form of this enzyme, whose main target is ADP-ribose 1",2"-cyclic phosphate, a product of the tRNA splicing reaction. CPDase possesses six cysteine residues, four of which are involved in forming two intra-molecular disulfide bridges. One of these bridges, between Cys-104 and Cys-110, is opened in the semireduced CPDase, whereas the other remains intact. This change of the redox state leads to a conformational rearrangement in the loop covering the active site of the protein. While the native structure shows this partially disordered loop in a coil conformation, in the semireduced enzyme the N-terminal lobe of this loop winds up and elongates the preceding alpha-helix. The semireduced state of CPDase also enabled co-crystallization with a putative inhibitor of its enzymatic activity, 2',3'-cyclic uridine vanadate. The ligand is bound within the active site, and the mode of binding is in agreement with the previously proposed enzymatic mechanism. Selected biophysical properties of the oxidized and the semireduced CPDase are also discussed.  相似文献   

16.
The cytosol fraction of an extract of Xenopus laevis ovaries contains a protein inhibitor that can specifically block the activation of calmodulin-sensitive cyclic nucleotide phosphodiesterase (PDE I) found in that tissue. This inhibitor was purified by DEAE-cellulose chromatography, gel filtration on Sephacryl S-200, and affinity chromatography on calmodulin-Sepharose. It has a molecular weight of approximately 90,000, and is heat-labile and susceptible to inactivation by chymotrypsin. The inhibitor blocks calmodulin activation of cyclic nucleotide phosphodiesterases from amphibian ovary and bovine brain and of the myosin light chain kinase from rabbit smooth muscle, but does not affect the activity of a calmodulin-insensitive cyclic nucleotide phosphodiesterase. The inhibitor not only affects the activation of Xenopus PDE I and of the bovine brain phosphodiesterase by calmodulin, but also inhibits the stimulation of these enzymes by lysophosphatidylcholine. The inhibitor also acts on PDE I activated by partial tryptic proteolysis, but the enzyme fully activated by trypsin is only slightly susceptible to inhibition by this protein. The inhibition of PDE I activation caused by this ovarian factor can be reversed by adding excess amounts of calmodulin or lysophosphatidylcholine. The presence of this inhibitor provides a possible explanation for the previously observed inactivity of PDE I in vivo.  相似文献   

17.
An inhibitor of procine brain calmodulin-dependent cyclic nucleotide phosphodiesterase was purified about 940-fold from rat testis. This inhibitor inhibited the calmodulin-induced activation of the enzyme without affecting its basal activity. The inhibitor activity was counteracted by a high concentration of calmodulin, but was not by a high concentration of Ca2+. The analysis on polyacrylamide disc gel electrophoresis demonstrated that the inhibitor and calmodulin form a complex in the presence of Ca2+ but not in the presence of excess amount of EGTA. This inhibitor also inhibited the calmodulin-induced activation of Ca2+, Mg2+ -ATPase of human erythrocytes. The inhibitor appeared to be a heat-stable protein, since the inhibitor activity was not attenuated by boiling up to 9 min but was completely abolished by tryptic or chymotryptic digestion. The molecular weights of the inhibitor determined by linear polyacrylamide gradient gel electrophoresis under nondenaturing conditions and sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 40,000 and 32,000, respectively. Thus, the inhibitor is suggested to be a calmodulin-binding protein composed of a monomer which has unique properties different from those of other tissues.  相似文献   

18.
The calmodulin-dependent cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase (EC 3.1.4.17) activity of rat pancreas was purified 280-fold by affinity chromatography on calmodulin-Sepharose 4B. It then accounted for 15% of the total cytosol cyclic GMP nucleotide phosphodiesterase activity, in the presence of Ca2+, and represented a minor component of proteins specifically adsorbed by the column. This activity was resolved on a DEAE-Sephacel column into two fractions, termed PI and PII, on the basis of their order of emergence. After this step, PI and PII were purified 5650- and 3700-fold respectively. The molecular weight of PI was 175 000 and that of PII was 116 000, by polyacrylamide-gradient-gel electrophoresis. Both forms of phosphodiesterase could hydrolyse cyclic AMP and cyclic GMP, although PII displayed a higher affinity toward cyclic GMP than toward cyclic AMP. PI and PII exhibited negative homotropic kinetics in the absence of calmodulin. Upon addition of calmodulin, both enzymes displayed Michaelis-Menten kinetics and a 5-9-fold increase in maximal velocity, at physiological concentrations of cyclic GMP and cyclic AMP. When a pancreatic extract freshly purified by affinity chromatography was immediately analysed by high-performance gel-permeation chromatography on a TSK gel G3000 SW column, PII represented as much as 78% of the eluted activity. This percentage decreased to 52% when the sample was stored at 0 degrees C for 20 h before analysis, suggesting that PII, possibly predominant in vivo, was converted into the heavier PI form upon storage.  相似文献   

19.
1. Supernatant fluids from rat cerebral cortex, cerebellum, kidney, heart and liver contained more phosphodiesterase activity hydrolysing cyclic GMP than that hydrolysing cyclic AMP when assayed with sub-saturating concentrations of substrate. 2. These activities were resolved into several fractions by Sephadex G-200 gel filtration; no two tissues had similar activity profiles. 3. With every tissue examined, a fraction (fraction II) with a molecular weight of about 150,000 was obtained which hydrolysed cyclic GMP preferentially at sub-saturating substrate concentrations in the presence of micromolar concentration of Ca2+, millimolar concentration of Mg2+ and a protein activator. 4. The activity of fraction II accounted for about 60 percent in liver, more than 80 percent in heart and cerebellum, and almost 100 percent in cerebral cortex of the total activity for cyclic GMP hydrolysis, calculated from the activity profiles. 5. Km values of fraction II samples from kidney, heart and liver for cyclic GMP were 1.3, 1.7 and 5 muM respectively. 6. 3-Isobutyl-1-methylxanthine inhibited hydrolysis of cyclic GMP by fraction II with an I50 value of 3muM for heart and liver and 50 muM for cerebrum. 7. The activator protein, with an estimated molecular weight of about 30,000 was isolated from all the tissues listed in 1.8. The concentrations of activator protein and of the isolated enzyme, fraction II, did not correspond exactly.  相似文献   

20.
Purified calmodulin-stimulated cyclic nucleotide phosphodiesterase from brain, a homodimer of 59-kDa subunits, was activated by limited proteolysis with trypsin, alpha-chymotrypsin, Pronase, or papain and could not be further stimulated by addition of Ca2+ and calmodulin. Proteolysis increased Vmax and had little effect on the Km for cGMP. Treatment with alpha-chymotrypsin in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) produced, sequentially, 57- and 45-kDa peptides from the bovine and 55-, 53-, and 38-kDa peptides from the ovine enzyme. This protease-treated phosphodiesterase exhibited a Stokes radius of 3.9 nm and an S20,w value of 4.55; comparison with the hydrodynamic properties observed for native enzyme (4.3 nm, 5.95 S) strongly suggests a dimeric protein of Mr approximately 80,000-90,000. The proteolyzed species does not interact significantly with calmodulin immobilized on agarose, nor does it show complex formation with 2-dimethylaminonaphthalene-1-sulfonyl-calmodulin even at micromolar concentrations of protein. Proteolysis, in the presence of calmodulin plus Ca2+, fully activated phosphodiesterase, producing the same intermediate peptides; however, final peptides from the bovine and ovine enzymes were 47 and 42 kDa, respectively, indicating a new, specific conformation of the enzyme. When EGTA was added to such incubations, these peptides were cleaved to those of the size seen when proteolysis was carried out entirely in the presence of EGTA. The initial rate of activation was increased by the presence of Ca2+ and calmodulin, suggesting that, in complex, phosphodiesterase exhibits a site with increased susceptibility to proteolysis. Since calmodulin can still interact with a fully activated form of the enzyme, it appears that retention of calmodulin binding can occur concomitantly with damage to that portion of the phosphodiesterase molecule responsible for suppression of its basal catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号