首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aa3 oxidases from bacteria form a group of related enzymes that resemble the far more complex mitochondrial cytochrome c oxidase, both functionally and structurally. These enzymes catalyze electron transfer from ferrocytochrome c to oxygen to produce water. This transfer is coupled to proton translocation. Several oxidases of this type have been purified from cytoplasmic membranes of bacteria. This review summarizes the present knowledge on purified bacterial aa3 oxidases and correlates these findings with data available for the eukaryotic cytochrome c-oxidases.  相似文献   

2.
The cytochrome o complex is one of two ubiquinol oxidases in the aerobic respiratory system of Escherichia coli. This enzyme catalyzes the two-electron oxidation of ubiquinol-8 which is located in the cytoplasmic membrane, and the four-electron reduction of molecular oxygen to water. The purified oxidase contains at least four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and has been shown to couple electron flux to the generation of a proton motive force across the membrane. In this paper, the DNA sequence of the cyo operon, containing the structural genes for the oxidase, is reported. This operon is shown to encode five open reading frames, cyoABCDE. The gene products of three of these, cyoA, cyoB, and cyoC, are clearly related to subunits II, I, and III, respectively, of the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. This family of cytochrome c oxidases contain heme a and copper as prosthetic groups, whereas the E. coli enzyme contains heme b (protoheme IX) and copper. The most striking sequence similarities relate the large subunits (I) of both the E. coli quinol oxidase and the cytochrome c oxidases. It is likely that the sequence similarities reflect a common molecular architecture of the two heme binding sites and of a copper binding site in these enzymes. In addition, the cyoE open reading frame is closely related to a gene denoted ORF1 from Paracoccus dentrificans which is located in between the genes encoding subunits II and III of the cytochrome c oxidase of this organism. The function of the ORF1 gene product is not known. These sequence relationships define a superfamily of membrane-bound respiratory oxidases which share structural features but which have different functions. The E. coli cytochrome o complex oxidizes ubiquinol but has no ability to catalyze the oxidation of reduced cytochrome c. Nevertheless, it is clear that the E. coli oxidase and the aa3-type cytochrome c oxidases must have very similar structures, at least in the vicinity of the catalytic centers, and they are very likely to have similar mechanisms for bioenergetic coupling (proton pumping).  相似文献   

3.
Purification and characterization of plant cytochrome c oxidases have been impeded by the difficulty of obtaining enough plant mitochondria. We have found commercial wheat germ to be a rich and convenient source of mitochondrial membranes containing respiratory chain complexes in ratios and amounts similar to mitochondria prepared from etiolated seedlings. Cytochrome c oxidase was purified from these membranes by anion-exchange (MonoQ) fast protein liquid chromatography. The enzyme is highly active (turnover number up to 1000 s-1) and exhibits biphasic cytochrome c reaction kinetics similar to those of beef heart oxidase. As with other plant oxidases, the visible spectrum of wheat germ oxidase in the reduced form is blue-shifted compared to other eukaryotic cytochrome oxidases, with peaks at 441 and 602 nm. The electron paramagnetic resonance spectrum of CuA of the wheat germ enzyme is very similar to that of the maize and beef heart enzymes, suggesting that the copper environment is not altered. Sodium dodecyl sulfate-polyacrylamide gels show a subunit composition in which subunits I-IV resemble those of the yeast enzyme in size and antigenicity, while three to four smaller peptides are dissimilar to yeast and other eukaryotic oxidases. A difference between the subunit composition of the wheat germ and wheat seedling enzymes suggests the existence of a developmental or tissue-specific form of cytochrome oxidase in plants.  相似文献   

4.
Acetobacter methanolicus is a unique acetic acid bacterium which has a methanol oxidase respiratory chain, as seen in methylotrophs, in addition to its ethanol oxidase respiratory chain. In this study, the relationship between methanol and ethanol oxidase respiratory chains was investigated. The organism is able to grow by oxidizing several carbon sources, including methanol, glycerol, and glucose. Cells grown on methanol exhibited a high methanol-oxidizing activity and contained large amounts of methanol dehydrogenase and soluble cytochromes c. Cells grown on glycerol showed higher oxygen uptake rate and dehydrogenase activity with ethanol but little methanol-oxidizing activity. Furthermore, two different terminal oxidases, cytochrome c and ubiquinol oxidases, have been shown to be involved in the respiratory chain; cytochrome c oxidase predominates in cells grown on methanol while ubiquinol oxidase predominates in cells grown on glycerol. Both terminal oxidases could be solubilized from the membranes and separated from each other. The cytochrome c oxidase and the ubiquinol oxidase have been shown to be a cytochrome co and a cytochrome bo, respectively. Methanol-oxidizing activity was diminished by several treatments that disrupt the integrity of the cells. The activity of the intact cells was inhibited with NaCl and/or EDTA, which disturbed the interaction between methanol dehydrogenase and cytochrome c. Ethanol-oxidizing activity in the membranes was inhibited with 2-heptyl-4-hydroxyquinoline N-oxide, which inhibited ubiquinol oxidase but not cytochrome c oxidase. Alcohol dehydrogenase has been purified from the membranes of glycerol-grown cells and shown to reduce ubiquinone-10 as well as a short side-chain homologue in detergent solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The denitrification pathway has been studied in the hyperthermophilic archaeon Pyrobaculum aerophilum. In contrast with Gram-negative bacteria, all four denitrification enzymes are membrane-bound. P. aerophilum is also the only denitrifyer identified so far in which menaquinol is the electron donor to all four denitrification reductases. The NO reductase (NOR) of P. aerophilum belongs to the superfamily of haem-copper oxidases and is of the qNOR (quinol-dependent) type. Three types of NOR have been purified so far: cNOR (cytochrome c/pseudoazurin-dependent), qNOR and qCu(A)NOR (qNOR that contains Cu(A) at the electron entry site). It is proposed that the NORs and the various cytochrome oxidases have evolved by modular evolution, in view of the structure of their electron donor sites. qNOR is further proposed to be the ancestor of all NORs and cytochrome oxidases belonging to the superfamily of haem-copper oxidases.  相似文献   

6.
The terminal oxidase content of Bacillus firmus OF4, a facultative alkaliphile that grows well over the pH range of 7.5 to 10.5, was studied by difference spectroscopy. Evidence was found for three terminal oxidases under different growth conditions. The growth pH and the stage of growth profoundly affected the expression of one of the oxidases, cytochrome d. The other two oxidases, cytochrome caa3 and cytochrome o, were expressed under all growth conditions tested, although the levels of both, especially cytochrome caa3, were higher at more alkaline pH (P.G. Quirk, A.A. Guffanti, R.J. Plass, S. Clejan, and T.A. Krulwich, Biochim. Biophys. Acta, in press). These latter oxidases were identified in everted membrane vesicles by reduced-versus-oxidized difference spectra (absorption maximum at 600 nm for cytochrome caa3) and CO-reduced-versus-reduced difference spectra (absorption maxima at 574 and 414 nm for cytochrome o). All three terminal oxidases were solubilized from everted membranes and partially purified. The difference spectra of the solubilized, partially purified cytochrome caa3 and cytochrome o complexes were consistent with these assignments. Cytochrome d, which has not been identified in a Bacillus species before, was tentatively assigned on the basis of its absorption maxima at 622 and 630 nm in reduced-versus-oxidized and CO-reduced-versus-reduced difference spectra, respectively, resembling the maxima exhibited by the complex found in Escherichia coli. The B. firmus OF4 cytochrome d was reducible by NADH but not by ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine in everted membrane vesicles. Cytochrome d was expressed under two conditions: in cells growing exponentially at pH 7.5 (but not at pH 10.5) and in cells stationary phase at either pH 7.5 or 10.5. Protein immunoblots with antibodies against subunit I of the E. coli cytochrome d complex reacted only with membrane vesicles that contained spectrally identifiable cytochrome d. Additional evidence that this B. firmus OF4 cytochrome is related to the E. coli complex was obtained with a solubilized, partially purified fraction of cytochrome d that also reacted with antibodies against the subunits of the E. coli cytochrome d.  相似文献   

7.
The cytochrome o complex is a bo-type ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli. This complex has a close structural and functional relationship with the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. The specific activity, subunit composition, and metal content of the purified cytochrome o complex are not consistent for different preparative protocols reported in the literature. This paper presents a relatively simple preparation of the enzyme starting with a strain of Escherichia coli which overproduces the oxidase. The pure enzyme contains four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Partial amino acid sequence data confirm the identities of subunit I, II, and III from the SDS-PAGE analysis as the cyoB, cyoA, and cyoC gene products, respectively. A slight modification of the purification protocol yields an oxidase preparation that contains a possible fifth subunit which may be the cyoE gene product. The pure four-subunit enzyme contains 2 equivs of iron but only 1 equiv of copper. There is no electron paramagnetic resonance detectable copper in the purified enzyme. Hence, the equivalent of CuA of the aa3-type cytochrome c oxidases is absent in this quinol oxidase. There is also no zinc in the purified quinol oxidase. Finally, monoclonal antibodies are reported that interact with subunit II. One of these monoclonals inhibits the quinol oxidase activity of the detergent-solubilized, purified oxidase. Hence, although subunit II does not contain CuA and does not interact with cytochrome c, it still must have an important function in the bo-type ubiquinol oxidase.  相似文献   

8.
The terminal component of the electron transport chain, cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase) was purified from Bacillus subtilis W23. The enzyme was solubilized with alkyglucosides and purified to homogeneity by cytochrome c affinity chromatography. The enzyme showed absorption maxima at 414 nm and 598 nm in the oxidized form and at 443 nm and 601 nm in the reduced form. Upon reaction with carbon monoxide of the reduced purified enzyme the absorption maxima shifted to 431 nm and 598 nm. Sodium dodecylsulfate polyacrylamide gel electrophoresis indicated that the purified enzyme is composed out of three subunits with apparent molecular weights of 57 000, 37 000 and 21 000. This is the first report on a bacterial aa3-type oxidase containing three subunits. The functional properties of the enzyme are comparable with those of the other bacterial cytochrome c oxidases. The reaction catalyzed by this oxidase was strongly inhibited by cyanide, azide and monovalent salts. Furthermore a strong dependence of cytochrome c oxidase activity on negatively charged phospholipids was observed. Crossed immunoelectrophoresis experiments strongly indicated a transmembranal localization of cytochrome c oxidase.  相似文献   

9.
We constructed expression plasmids containing cbaAB, the structural genes for the two-subunit cytochrome bo(3)-type cytochrome c oxidase (SoxB type) recently isolated from a Gram-positive thermophile Bacillus stearothermophilus. B. stearothermophilus cells transformed with the plasmids over-expressed an enzymatically active bo(3)-type cytochrome c oxidase protein composed of the two subunits, while the transformed Escherichia coli cells produced an inactive protein composed of subunit I without subunit II. The oxidase over-expressed in B. stearothermophilus was solubilized and purified. The oxidase contained protoheme IX and heme O, as the main low-spin heme and the high-spin heme, respectively. Analysis of the substrate specificity indicated that the high-affinity site is very specific for cytochrome c-551, a cytochrome c that is a membrane-bound lipoprotein of thermophilic Bacillus. The purified enzyme reconstituted into liposomal vesicles with cytochrome c-551 showed H(+) pumping activity, although the efficiency was lower than those of cytochrome aa(3)-type oxidases belonging to the SoxM-type.  相似文献   

10.
Sulfite is produced as a toxic intermediate during Acidithiobacillus ferrooxidans sulfur oxidation. A. ferrooxidans D3-2, which posseses the highest copper bioleaching activity, is more resistant to sulfite than other A. ferrooxidans strains, including ATCC 23270. When sulfite oxidase was purified homogeneously from strain D3-2, the oxidized and reduced forms of the purified sulfite oxidase absorption spectra corresponded to those of A. ferrooxidans aa(3)-type cytochrome c oxidase. The confirmed molecular weights of the α-subunit (52.5 kDa), the β-subunit (25 kDa), and the γ-subunit (20 kDa) of the purified sulfite oxidase and the N-terminal amino acid sequences of the γ-subunit of sulfite oxidase (AAKKG) corresponded to those of A. ferrooxidans ATCC 23270 cytochrome c oxidase. The sulfite oxidase activities of the iron- and sulfur-grown A. ferrooxidans D3-2 were much higher than those cytochrome c oxidases purified from A. ferrooxidans strains ATCC 23270, MON-1 and AP19-3. The activities of sulfite oxidase purified from iron- and sulfur-grown strain D3-2 were completely inhibited by an antibody raised against a purified A. ferrooxidans MON-1 aa(3)-type cytochrome c oxidase. This is the first report to indicate that aa(3)-type cytochrome c oxidase catalyzed sulfite oxidation in A. ferrooxidans.  相似文献   

11.
Acetobacter aceti produces two different terminal oxidases dependent on the culture conditions, shaking and static cultures. Cells grown on shaking culture contain cytochrome a1, while cytochrome o is present in cells grown on static culture. Cytochrome a1 and cytochrome o of A. aceti were compared especially with respect to the protein structure and the prosthetic groups. Cytochrome a1 exhibited lower CN sensitivity and higher affinity for O2 than cytochrome o. Both terminal oxidases consisted of four nonidentical polypeptides of which the molecular sizes were identical between both enzymes. Cytochrome a1 cross-reacted with an antibody raised against cytochrome o at the same level as cytochrome o did, and an antibody elicited against cytochrome a1 cross-reacted with both cytochrome o and cytochrome a1 at the same intensity, which indicates that both oxidases are indistinguishable immunochemically. Furthermore, almost the same peptide mapping pattern with chymotrypsin was observed in subunit I and in subunit II between both terminal oxidases, and the amino-terminal sequences in the subunit II of both oxidases were identical at least in their 10 amino acids. As for the prosthetic groups, both oxidases were shown to contain two heme-irons and one copper atom. Further, high performance liquid chromatography analysis of the heme moieties extracted from both the purified enzymes indicated that cytochrome a1 contains hemes b and a at a ratio of 1 to 1, whereas cytochrome o contains the same amounts of hemes b and o. Thus, data indicate that cytochrome a1 and cytochrome o of A. aceti are cytochrome ba and cytochrome bo ubiquinol oxidases, respectively, and that both oxidases have a closely similar protein structure and prosthetic groups, in which only heme a in the heme/copper binuclear center of cytochrome a1 is replaced by heme o in that of cytochrome o.  相似文献   

12.
Respiratory heme-copper oxidases are integral membrane proteins that catalyze the reduction of molecular oxygen to water using electrons donated by either quinol (quinol oxidases) or cytochrome c (cytochrome c oxidases, CcOs). Even though the X-ray crystal structures of several heme-copper oxidases and results from functional studies have provided significant insights into the mechanisms of O2 -reduction and, electron and proton transfer, the design of the proton-pumping machinery is not known. Here, we summarize the current knowledge on the identity of the structural elements involved in proton transfer in CcO. Furthermore, we discuss the order and timing of electron-transfer reactions in CcO during O2 reduction and how these reactions might be energetically coupled to proton pumping across the membrane.  相似文献   

13.
Cell respiration is catalyzed by the heme-copper oxidase superfamily of enzymes, which comprises cytochrome c and ubiquinol oxidases. These membrane proteins utilize different electron donors through dissimilar access mechanisms. We report here the first structure of a ubiquinol oxidase, cytochrome bo3, from Escherichia coli. The overall structure of the enzyme is similar to those of cytochrome c oxidases; however, the membrane-spanning region of subunit I contains a cluster of polar residues exposed to the interior of the lipid bilayer that is not present in the cytochrome c oxidase. Mutagenesis studies on these residues strongly suggest that this region forms a quinone binding site. A sequence comparison of this region with known quinone binding sites in other membrane proteins shows remarkable similarities. In light of these findings we suggest specific roles for these polar residues in electron and proton transfer in ubiquinol oxidase.  相似文献   

14.
The binding of rat liver cytochrome c oxidase to phenyl-Sepharose and various alkyl and omega-aminoalkyl agarose gels has been studied. Deoxycholate-solubilized cytochrome c oxidase was tightly bound to hexyl, octyl, omega-aminohexyl, omega-aminooctyl agarose as well as to phenyl-Sepharose. This hydrophobic interaction was used for the purification of cytochrome c oxidase. The enzyme which was eluted from phenyl-Sepharose was devoid of NADH (NADPH)-acceptor reductase activities. The heme a content was 15.4 nmol per mg of protein. The purified enzyme was resolved into seven polypeptides upon polyacrylamide gel electrophoresis in sodium dodecylsulfate with molecular weights of 40,000, 23,200, 21,500, 14,500, 12,600, 8900, and 4900. Antibodies raised in rabbits against the pure enzyme did not cross-react with cytochrome c oxidases from either beef heart or yeast mitochondria. Cytochrome c oxidase bound to octyl-Sepharose or phenyl-Sepharose exhibited a very low catalytic activity. The possible modes of interaction of cytochrome c oxidase with the hydrophobic ligands are discussed.  相似文献   

15.
Cytochrome c oxidase has been purified from rat liver mitochondria using affinity chromatography. The preparation contains 10.5 to 13.4 nmol of heme a + a3 per mg of protein and migrates as a single band during polyacrylamide gel electrophoresis under nondissociating conditions. It has a heme a/a3 ratio of 1.12 and is free of cytochromes b, c, and c1 as well as the enzymes, NADH dehydrogenase, succinic dehydrogenase, coenzyme Q-cytochrome c reductase, and ATPase. The enzyme preparation consists of six polypeptides having apparent Mr of 66,000, 39,000, 23,000, 14,000, 12,500 and 10,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The peptide composition is similar to those found for cytochrome c oxidases from other systems. The enzymatic activity of the purified enzyme is completely inhibited by carbon monoxide or cyanide, partially inhibited by Triton X-100 and dramatically enhanced by Tween 80 or phospholipids.  相似文献   

16.
The cytochrome o complex of Escherichia coli is a ubiquinol oxidase which is the predominant respiratory terminal oxidase when the bacteria are grown under high oxygen tension. The amino acid sequences of three of the subunits of this quinol oxidase reveal a substantial relationship to the aa3-type cytochrome c oxidases. The two cytochrome components (b563.5 and o) and the single copper (CuB) present in the E. coli quinol oxidase appear to be equivalent to cytochrome a, cytochrome a3, and CuB of the aa3-type cytochrome c oxidases, respectively. These three prosthetic groups are all located within subunit I of the oxidase. Sequence alignments indicate only six totally conserved histidine residues among all known sequences of subunit I of the cytochrome c oxidases of various species plus the E. coli quinol oxidase. Site-directed mutagenesis has been used to change each of these totally conserved histidines with the presumption that two of these six must ligate to the low spin cytochrome center of the E. coli oxidase. The presence of the low spin cytochrome b563.5 component of the oxidase can be evaluated both by visible absorbance properties and by its EPR spectrum. The results unambiguously indicate that His-106 and His-421 are the ligands of the six-coordinate low spin cytochrome b563.5. Although the data are not definitive in making additional metal ligation assignments of the remaining four totally conserved histidines, a reasonable model is suggested for the structure of the catalytic core of the cytochrome o complex and, by extrapolation, of cytochrome c oxidase.  相似文献   

17.
Two cytochrome oxidases, cytochrome aa3 (EC 1.9.3.1) and cytochrome o, have been purified from the membranes of a thermophilic bacterium, PS3. The enzymes were solubilized with Triton X-100 and purified to apparent homogeneity on anion-exchange columns. The properties of the three-subunit cytochrome oxidase complex caa3 obtained here are compared with the same enzyme isolated by Sone, N. and Yanagita, Y. (1982) (Biochim. Biophys. Acta 682, 216-226). On storage, the purified caa3 enzyme undergoes denaturation; a shoulder at 432 nm seen in (CO-reduced)-minus-reduced difference spectra may be due in part to denaturation products of the enzyme. The purified cytochrome o is more stable. At room temperature, the reduced-minus-oxidized difference spectrum shows absorbance maxima at 427 and 559 nm; at 77 K, its alpha-band is split into 554 and 557 nm components. At room temperature, the CO-reduced-minus-reduced spectrum shows troughs at 430 nm and 560 nm. Dissociating polyacrylamide gel electrophoresis suggests that the purified cytochrome o is composed of one type of subunit with an apparent molecular mass of 47 000-48 000. Metal analysis of the purified enzyme demonstrated the lack of copper. Both oxidases, purified in the presence of Triton X-100, exist in highly polydisperse forms.  相似文献   

18.
A two-dimensional electrophoretic method which takes advantage of the "migration anomalies" experienced by some polypeptides on gels of different porosities has been successfully used to resolve the seven subunit polypeptides of yeast cytochrome c oxidase and the nine polypeptides associated with bovine cytochrome c oxidase. The two-dimensional maps provided by this method reveal clear differences between these two cytochrome c oxidases.  相似文献   

19.
Prokaryotic systems provide excellent experimental opportunities for exploring structure/function relationships for the complex, membrane-bound, multisubunit enzymes responsible for the reduction and subsequent oxidation of c-type cytochromes in respiratory or photosynthetic electron transport chains. Two points are made in this mini-review: (1) The eukaryotic and prokaryotic aa3-type cytochrome c oxidases are members of an apparently large superfamily of structurally related respiratory oxidases. This superfamily displays considerable variation in terms of the heme prosthetic groups (a or b) as well as the substrate oxidized (quinol or cytochrome c). The relationships among these enzymes help to facilitate explorations of how they work. (2) Molecular biology techniques can be used to generate intact, redox-active, water-soluble domains of membrane-bound subunits. These soluble domains can be used for detailed examination, including obtaining high resolution structure by NMR techniques or by X-ray crystallography. This approach is being used to study the soluble heme-binding domain of cytochrome c1 from the bc1 complex of Rhodobacter sphaeroides.  相似文献   

20.
The molecular biology and biochemistry of denitrification in gram-negative bacteria has been studied extensively. However, little is known about this process in gram-positive bacteria. We have purified the NO reductase from the cytoplasmic membrane of the gram-positive bacterium Bacillus azotoformans. The purified enzyme consists of two subunits with apparent molecular masses of 16 and 40 kDa based on SDS-PAGE. Analytical and spectroscopic determinations revealed the presence of one non-heme iron, two copper atoms and of two b-type hemes per enzyme complex. Heme c was absent. Using EPR and UV-visible spectroscopy, it was determined that one of the hemes is a low-spin heme b, in which the two axial histidine imidazole planes are positioned at an angle of 60-70 degrees. The second heme b is high-spin binding CO in the reduced state. The high-spin heme center and the non-heme iron are EPR silent. They are proposed to form a binuclear center where reduction of NO occurs. There are two novel features of this enzyme that distinguish it from other NO reductases. First, the enzyme contains copper in form of copper A, an electron carrier up to now only detected in cytochrome oxidases and nitrous oxide reductases. Second, the enzyme uses menaquinol as electron donor, whereas cytochrome c, which is the substrate of other NO reductases, is not used. Copper A and both hemes are reducible by menaquinol. This new NO reductase is thus a menaquinol:NO oxidoreductase. With respect to its prosthetic groups the B. azotoformans NO reductase is a true hybrid between copper A containing cytochrome oxidases and NO reductases present in gram-negative bacteria. It may represent the most ancient "omnipotent" progenitor of the family of heme-copper oxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号