首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The symbiotic associates of hermit crabs (excluding parasites and flora) are reviewed worldwide. The review includes species found on the shells occupied by hermit crabs (epibiotic species), species boring into these shells (endolithic species), species living within the lumen of the shell (either free-living or attached to the shell), species attached to the hermit crabs themselves, and hypersymbionts. In total over 550 invertebrates, from 16 phyla are found associated with over 180 species of hermit crabs. Among these associates, 114 appear to be obligate commensals of hermit crabs, 215 are facultative commensals, and 232 are incidental associates. The taxa exhibiting the highest number of associates are arthropods (126), polychaetes (105), and cnidarians (100). The communities of species associated with Dardanus arrosor, Paguristes eremita, Pagurus bernhardus, Pagurus cuanensis, and Pagurus longicarpus are the best studied and harbor the most diverse assemblages of species. While trends in biodiversity of hermit crab assemblages do not follow predicted patterns (e.g., hermit crabs within the Indo-West Pacific do not harbor more species than those from temperate regions), this is suggested to reflect a lack of sampling rather than a true representation of the number of associates. Hermit crabs date to at least the Cretaceous and provided a niche for a number of groups (e.g., hydractinians, bryozoans, polydorids), which were already associates of living gastropods. Apparently hermit crab shells initially supplied a substrate for settlement and then these symbiotic relationships were reinforced by enhanced feeding of symbionts through the activity of the hosts. Through their use and recycling of gastropods shells, hermit crabs are important allogenic ecosystem engineers in marine habitats from the intertidal to the deep sea. Hermit crabs benefit from some symbionts, particularly cnidarians and bryozoans, through extension of shell apertures (alleviating need to switch into new shells) and by providing protection from predators. However, hermit crabs are also negatively impacted (e.g., decreased reproductive success, increased predation) by some symbionts and a review of egg predators is provided. Thus, the symbiotic relationships between hermit crabs and many associates are difficult to characterize and often exhibit temporal changes depending on environmental and biological factors. Research on the biology of these symbionts and the costs/benefits of their associations with hermit crabs are analyzed. While some associates (e.g., Hydractinia spp.) have been studied in considerable detail, for most associations little is known in terms of the impacts of symbionts on hosts, and future experimental studies on the multitude of relationships are suggested.  相似文献   

2.
Crab shell-crushing predation and gastropod architectural defense   总被引:5,自引:0,他引:5  
The shell-breaking behavior of the crabs Ozius verreauxii Saussure 1853 and Eriphia squamata, Stimpson 1859 from the Bay of Panama is described. The master claws of both these crabs are well designed for breaking shells. Small shells, relative to the size of a crab predator, are crushed by progressively breaking off larger segments of a shell's apex, while larger shells are peeled by inserting a large dactyl molar into the aperture of a shell and progressively chipping away the lip of the shell.

Heavy gastropod shells are shown to be less vulnerable to crab predators than lighter shells, and narrow shell apertures and axial shell sculpture are demonstrated to be architectural features that deter crab predation. The incidence of architectural features which deter crab predation appears to be higher for smaller gastropod species than for larger gastropods which are too large for most crab predators. Large fish predators prey upon both gastropods and shell-crushing crabs. To avoid fish predators, both these prey groups seek refuge under rocks when covered by the tide. Fish predation thus appears to enforce a close sympatry between smaller gastropods and their crab predators.  相似文献   


3.
Guillermina Alcaraz  Elsah Arce 《Oikos》2017,126(9):1299-1307
Prey exposed to predators with different hunting and feeding modes are under different selective pressures, therefore it is expected that they should exhibit plastic and adaptive antipredator responses according to current risks. The hermit crab Calcinus californiensis faces two contrasting predators, the shell peeler Arenaeus mexicanus that hunts by active searching and the shell breaker Eriphia squamata that hunts by ambush. In order to discover whether C. californiensis displays plastic responses depending on the type of predatory challenge, we examined the shell size preference, the hiding time, and the escape velocity of hermit crabs in the presence of chemical cues from a shell peeler, a shell breaker, and a control. We also examined the role of shell fit on the escape velocity of the hermit crabs in natural tidal pools. Crabs chose shells with a loose fit (relatively large shells) in the presence of chemical cues from the shell peeler Arenaeus and shells with a tight fit when exposed to cues from the shell breaker Eriphia. The hermit crabs hid for shorter times and moved away faster from Eriphia than from Arenaeus stimulus. The use of a tight shell favours faster movement away from the shell breaker (pre‐capture strategy), but prevents the crab retracting deeper inside the shell, increasing the risk of be eaten by the shell peeler once captured. Hence, the use of loose shells that protect the crab from the shell peeler hinders fast escape. This study shows specific and plastic antipredatory responses to contrasting predators, each bringing adaptive benefits at different levels of the predator sequence.  相似文献   

4.
Blue crabs Callinectes sapidus are voracious predators in Chesapeake Bay and other estuarine habitats. The rapa whelk Rapana venosa is native to Asian waters but was discovered in Chesapeake Bay in 1998. This predatory gastropod grows to large terminal sizes (in excess of 150 mm shell length (SL)) and has a thick shell that may contribute to an ontogenetic predation refuge. However, juvenile rapa whelks in Chesapeake Bay may be vulnerable to predation by the blue crab given probable habitat overlap, relative lack of whelk shell architectural defenses, and the relatively large size of potential crab predators. Feeding experiments using three size classes of blue crab predators in relation to a size range of rapa whelks of two different ages (Age 1 and Age 2) were conducted. Blue crabs of all sizes tested consumed Age 1 rapa whelks; 58% of all Age 1 whelks offered were eaten. Age 2 rapa whelks were consumed by medium (67% of whelks offered were eaten) and large (70% of whelks offered were eaten) blue crabs but not by small crabs. The attack methods of medium and large crabs changed with whelk age and related shell weight. Age 1 whelks were typically crushed by blue crabs while Age 2 whelk shells were chipped or left intact by predators removing prey. Rapa whelks less than approximately 35 mm SL are vulnerable to predation by all sizes of blue crabs tested. Rapa whelk critical size may be greater than 55 mm SL in the presence of large blue crabs indicating that a size refugia from crab predation may not be achieved by rapa whelks in Chesapeake Bay until at least Age 2 or Age 3. Predation by blue crabs on young rapa whelks may offer a natural control strategy for rapa whelks in Chesapeake Bay and other estuarine habitats along the North American Atlantic coast.  相似文献   

5.
Predation on urchins by migratory shorebirds was investigated during tidal exposure of the reef flat at Galeta, Panama. Avian predators, primarily ruddy turnstones Arenaria interpres (Linnaeus) reduced the patchiness of Echinometra lucunter (Linnaeus), the most abundant urchin on the reef flat. No mortality of E. lucunter occurred in quadrats protected from avian predation. No mortality occurred when urchin crowding was increased experimentally in protected areas. Stress-induced mortality could not be determined from the condition of tests alone, since turnstones were capable of removing lantern and internal organs without damage to the test. The importance of shorebird predation in reef communities during aerial exposure can be hard to detect because mortality can occur during brief periods, at night, and without damage to urchin tests.  相似文献   

6.
During the late summer and early fall, juvenile shore crabs (Carcinus maenas L.) occurred in high abundances in mussel clumps scattered on tidal flats of the Wadden Sea. Abundances were much lower on bare tidal flats without mussel clumps and decreased substantially from July to November, whereas numbers in mussel clumps remained high. Large crabs left the tidal flats in early fall, whereas juveniles undertook tidal migrations only in the late fall. In March very few shore crabs were found in the intertidal area. The size of juvenile shore crabs living between mussels did not increase significantly during fall. On the bare tidal flats surrounding the mussels, a size increase was observed. Mussel beds and mussel clumps serve as a spatial refuge for the early benthic phases of juvenile shore crabs. Between mussels they can hide effectively from their epibenthic predators. Juvenile shore crabs do not leave the intertidal area and the mussel habitats before their major predators have left the area. Mussel clumps scattered over the tidal flats may be a critical refuge for juvenile shore crabs settling on tidal flats. Intensified efforts in mussel culturing in the European Wadden Sea during recent decades may have caused an increased abundance of mussel clumps on tidal flats, thus enhancing habitat availability for some mussel-clump inhabitants.  相似文献   

7.
The epifauna on gastropod shells occupied by the hermit crabs Pagurus pollicaris (Say) and P. longicarpus (Say) was examined, as was the utilization of shells by these two hermit crabs. In the study area in Tampa Bay, Florida, shells were not a limiting factor to the hermit crab population, and there apparently was little competition for shells. Interspecific competition for shells was limited because the two hermit crab species differed in size and hence occupied shells of different sizes. The total number and density of most epifaunal species were higher on shells occupied by hermit crabs than on unoccupied shells, possibly because hermit crabs prevent their shells from being buried and hence lengthen the time the epifaunal community can grow and develop. The hermit crab species also appeared to affect the epifaunal community, for the total number and density of most epifaunal species were larger on shells occupied by P. pollicaris than P. longicarpus. With increasing shell size, the populations of most epifaunal species, also were larger but not their density. Least influential in affecting the epifaunal community was the species of shells.  相似文献   

8.
Hermit crabs are critically dependent upon gastropod shells for their survival and reproductive fitness. While anecdotal reports have suggested that hermit crabs may be capable of removing live gastropods from their shells to access the essential shell resource, no systematic experiments have been conducted to investigate this possibility. This paper reports experiments on both marine (Pagurus bernhardus) and terrestrial (Coenobita compressus) hermit crabs in which crabs were paired in the laboratory with the gastropods whose shells they inhabit in the field. Pairings included both shelled and naked crabs and spanned the full range of the gastropod life cycle. Neither marine nor terrestrial hermit crabs were successful at removing live gastropods from their shells. Furthermore, only a small fraction of the crabs (5.7%) were capable of accessing shells in which the gastropod had been killed in advance, with its body left intact inside the shell. Finally, although hermit crabs readily entered empty shells positioned on the surface, few crabs (14.3%) were able to access empty shells that were buried just centimeters beneath them. These results suggest that hermit crabs are constrained consumers, with the shells they seek only being accessible during a narrow time window, which begins following natural gastropod death and bodily decomposition and which typically ends when the gastropod's remnant shell has been buried by tidal forces. Further experiments are needed on more species of hermit crabs as well as fine-grained measurements of (i) the mechanical force required to pull a gastropod body from its shell and (ii) the maximum corresponding force that can be generated by different hermit crab species' chelipeds.  相似文献   

9.
The interaction between the hermit crab, Pagurus longicarpus, and the shell epibiont, Hydractinia symbiolongicarpus, varies from mutualism to parasitism based on the environmental context. We tested the hypothesis that this interaction also varies as a function of hermit crab sex. Given that recent work showed a negative effect of Hydractinia on female reproduction, we predicted a greater frequency of males in Hydractinia shells in the field and a stronger preference by males than females for shells with Hydractinia. Field collections documented a significantly greater proportion of males than females occupying shells with Hydractinia, and a significantly greater proportion of ovigerous females than non-ovigerous females in shells with Hydractinia. In laboratory shell-switching experiments, a greater proportion of males than females chose to enter shells with Hydractinia, but there was no difference in the proportions of males and females that vacated shells with Hydractinia.We examined whether the presence of Hydractinia influenced predation rates. Blue crabs fed on more than twice as many hermit crabs in shells with Hydractinia as compared to bare shells, but there was no significant difference for stone crabs. Laboratory experiments showed that the force required to crush shells was significantly greater for shells without Hydractinia. Thus, the lower occupancy and preference exhibited by females than males for shells with Hydractinia appears to result both from the decreased reproduction shown in past studies and an increase in predation risk.  相似文献   

10.
Shell utilization patterns of three sympatric hermit crab species from the Bay of Panama are examined. Shell preferences, as shown by laboratory choice experiments and the selective use of empty shells experimentally added to hermit crab populations, are shown to be important determinants of shell utilization under natural conditions.Factors which influence the types and sizes of shells occupied by hermit crabs in separate populations include: (1) the presence and relative abundance of different gastropod species; (2) the specific shell preferences of different hermit crab species; and (3) the presence and relative abundance of sympatric hermit crab competitors for the limited supply of empty shells. Since the size and type of shell occupied by a hermit crab influences its growth rate and reproductive output, these factors appear to have a direct effect on hermit crab fitness and the demographic structure of separate hermit crab populations.  相似文献   

11.
Specific chemicals in the environment evoke significant changes in the behavior of many aquatic organisms. We studied in the laboratory whether satiated individuals of the hermit crab, Pagurus longicarpus Say 1817, adjust their investigatory behavior towards an empty, optimal gastropod shell according to differences of chemical context. We also explored to what extent shell investigation by a crab in the same hunger state was affected by occupying an inadequately sized shell. Our results confirmed in part previous findings that crabs can discriminate the odor of freshly dead snails from the odor of freshly dead conspecifics. In the presence of the former odor, crabs inhabiting shells of inadequate size were more responsive and active than those in better-fitting shells. To the contrary, regardless of the quality of the inhabited shell, P. longicarpus remained practically motionless when presented with the odor of freshly dead conspecifics, possibly because the risks of incurring in predators would outweigh the benefits of acquiring a new shell. Unexpectedly, we found that crabs in both types of shell quality exhibited nearly the same behavior in control water, while crabs in adequate shells were more responsive in the presence of food odor. Individuals appeared insensitive to the odor of live snails; indeed, only one hermit crab species has been seen removing living snails from their shells. An intriguing result was that water conditioned by the odors of live conspecifics exerted a strong effect on all the individuals by inducing an intense shell investigation. Our study underlines the central role exerted by chemical detection in hermit crabs' behavior and demonstrates the existence of a complex interplay among chemical context, the physiological state of the animal, and the ecological pressures of the habitat.  相似文献   

12.
The suspension-feeding slippersnail Crepidula convexa is commonly associated with hermit crabs (Pagurus longicarpus) living in periwinkle shells (Littorina littorea) at our study site in Nahant, MA, USA. In 15 field surveys conducted at Nahant in 2000, 2001 and 2003, we found that (1) more than 61.8% of individuals of C. convexa resided on shells occupied by hermit crabs, as opposed to the shells of live periwinkles, empty periwinkle shells or other solid substrates; (2) an average of 8.3% of hermit crabs carried at least one individual of C. convexa; and (3) 39.1-75.0% of hermit crabs carrying C. convexa were carrying “large” individuals (snails with wet weight >10% of the weight of the periwinkle shells they occupied). However, it is unlikely that individuals of C. convexa seek out shells occupied by hermit crabs to colonize, and they showed no preference for empty periwinkle shells over other solid substrates in the laboratory. Moreover, in the laboratory the hermit crabs preferentially occupied intact shells bearing individuals of C. convexa only when the alternatives were shells that had been drilled by naticid snails. Thus, neither party preferentially associates with the other: rather, extensive predation by naticid snails on periwinkles at Nahant appears to limit the availability of suitable shells for the hermit crabs, forcing them to inhabit shells bearing “large” individuals of C. convexa. Individuals of C. convexa may benefit from this inadvertent association with hermit crabs: by facilitating snail dispersal, transport by hermit crabs should reduce the potential for inbreeding, an important consideration for a species that lacks free-living larvae in its life history.  相似文献   

13.
A new spionid polychaete, Polydora robi, is described from intertidal and shallow subtidal areas in the Philippine Islands and Bali, Indonesia. Polydora robi belongs to the Polydora ciliata/ websteri species group and is characterized by a rounded prostomium, triangular occipital tentacle, needlelike posterior notosetae, and a pygidium with digitiform composite cirri surrounding the anus. Adults burrow into empty gastropod shells inhabited by hermit crabs. The burrows of the worms typically extend from an external opening in the apex of the shells to an opening in the central body whorls along the columella. The species was found to ingest the fertilized eggs and developing embryos attached to the pleopods of host hermit crabs. The occurrence of egg predation and the symbiotic relationship between polydorids and hermit crabs is discussed. Known egg predators of hermit crabs are reviewed.  相似文献   

14.
Most hermit crabs depend on empty gastropod shells for shelter; competition for appropriate shells is often severe. This study determined whether shells that have been drilled by naticid gastropods are suitable for occupancy by the hermit crab Pagurus longicarpus. Differences in the characteristics of empty shells and those occupied by hermit crabs were assessed at two adjacent field sites in Nahant, Massachusetts. Drilling damage was far more frequent in empty gastropod shells than in shells occupied by hermit crabs, suggesting that individuals of P. longicarpus avoid drilled shells. They did not appear to avoid shells with other forms of damage. Laboratory experiments confirmed that these hermit crabs preferentially chose intact shells over drilled shells, even when the intact shells offered were most suitable for crabs half the weight of those tested. Final shell choices were generally made within 1 h. The hermit crabs apparently discriminated between intact and drilled shells based on tactile cues, since crabs kept in the dark showed the same preference for intact shells. The hermit crabs strongly avoided, to nearly the same extent, artificially drilled shells, naturally drilled shells, and shells with holes artificially drilled on the opposite side of the shell from where they would normally be located. Possible selective forces causing P. longicarpus to show such strong behavioral avoidance of drilled shells include increased vulnerability of crabs in drilled shells to osmotic stress, predation, and eviction by conspecifics.  相似文献   

15.
Studies on the interaction between the hermit crab Pagurus longicarpus and its symbiotic hydroid Hydractinia symbiolongicarpus have focused on positive effects of hydroids on their host hermit crabs (e.g., protection from predators). Yet, these benefits may be balanced with reproductive costs, which are rarely studied. Results from field observations, laboratory trials, and a mesocosm experiment indicate that female hermit crabs in hydroid-colonized shells exhibit depressed ovigery, smaller clutch sizes, and increased clutch failure relative to females in bare shells. Frequent switching between bare and hydroid-colonized shells may alleviate negative effects when the density of hydroids in the environment is low, but at high densities Hydractinia may significantly impact hermit crab reproduction.  相似文献   

16.
The rate of changing shells in the hermit crabPagurus geminus was investigated to determine how many hermit crabs are satisfied with their shells. Animal collected from the coast of Oya, Tanabe, Wakayama Prefecture, were presented with fresh gastropod shells newly made by removing the soft parts. Approximately 80% of the hermit crabs changed from their original shells acquired in the natural habitat into fresh shells experimentally given to them and, thus, were regarded as dissatisfied with the shells possessed in the natural habitat. This condition was thought to lead to the fact that hermit crabs occasionally attempted to exchange shells between 2 individuals and even to attack living snails in the natural habitat.  相似文献   

17.
Gastropod shells are vital for the majority of hermit crab species, being essential for their survival, growth, protection, and reproduction. Given their importance, shells are acquired and transferred between crabs through several modalities. We conducted observations and experiments at the Asinara Island (Sardinia, Italy) to investigate the efficacy of the different behavioral tactics adopted by the hermit crab Clibanarius erythropus to acquire shells, such as: (1) locomotion and activity at different tidal phases; (2) attendance at shell-supplying sites (simulated predation sites with five different odors: live and dead gastropods, live and dead crabs, predator); and (3) interactions with conspecifics in aggregations on simulated gastropod predation sites. In each tidal phase, locomotion was slow (0.7 cm min− 1) and, as a consequence, the probability of encountering empty shells and conspecifics was low. Simulated gastropod predation sites quickly attracted a larger number of hermit crabs than the other sites tested. Aggregations seemed to function as shell exchange markets, as previously suggested for other species: the first attendant took the experimental shell and a chain of shell exchanges among conspecifics followed. Our results show that, in C. erythropus, aggregation is the most efficient tactic for the acquisition of new shells, whereas in other species, such as Pagurus longicarpus, it is associated with exploitation ability due to the intense locomotion. The interspecific plasticity in hermit crabs' behavior is confirmed.  相似文献   

18.
The bivalve Macoma balthica is a common species in the Wadden Sea and North Sea. Juveniles temporarily use nurseries in the high intertidal. To explain this nursery use, predation pressure was examined for both juvenile and adult Macoma at low and high tidal flats. The study was carried out in the eastern Dutch Wadden Sea.Shrimps Crangon crangon, adult crabs Carcinus maenas, gobies Pomatoschistus and juvenile flatfish were more abundant and larger on low than on high tidal flats, but 0-group Carcinus was more abundant on the high tidal flats. Crangon and 0-group Carcinus stomachs frequently contained Macoma remains. These predators selectively preyed on small 0-group Macoma, both in the field and in laboratory experiments. The effect of predation by epibenthic animals and birds, on the low and high tidal flats, was examined in exclosure experiments (2 mm mesh). There was no effect of epibenthos exclosure on adult Macoma. For 0-group Macoma, densities were higher in exclosures than in the controls where predators had normal access. The density reduction by epibenthic predators was much larger in the low than in the high intertidal. We found no effect of bird predation on densities of 0- and 1+group Macoma.Thus, 0-group Macoma is under high predation pressure by epibenthos in the low intertidal, especially by shrimps, while they are relatively safe in the high intertidal. However, most of the shellfish outgrow their epibenthic predators during their first summer. Therefore, it becomes safe for the bivalves to redistribute to locations where epibenthic predators are abundant, during their first winter. On the other hand, it did not become clear from this study why many of the larger Macoma leave the high intertidal. Concluding, the nursery use of Macoma-spat in the high intertidal is probably, at least partly, an adaptation to avoid epibenthic predation.  相似文献   

19.
This study examined the influence of shell shape on the distribution and movement patterns of three species of Hawaiian hermit crabs: Calcinus elegans, C. laevimanus, and C. latens. Field surveys showed strong differences in shell use depending on habitat. Individuals of C.elegans and C. latens were more frequently in unusual shapes of shells (the cowrie Cypraea caputserpentis and the variable worm shell Serpulorbis variabilis) when in tide pools and in more standard gastropod shells, such as the dog whelk Nassarius papillosus, when found in the subtidal. In addition, for both C.elegans and C. latens in tide pools, most crabs in unusual shaped shells were out on top of rocks, whereas most crabs in shells that were standard shapes were under rocks.In the laboratory, individuals of C.elegans and C. laevimanus in unusual shells initiated more shell exchanges and when given empty shells crabs readily occupied the standard shaped shells, but crabs did not move into the unusual shaped shells. Mark-recapture experiments in the field showed that C. elegans in standard shaped shells moved out of tide pools and stayed longer when placed on subtidal coral heads, whereas crabs in unusual shaped shells stayed in tide pools and did not stay on subtidal coral heads (in part due to predation). Laboratory tests showed that C. elegans in unusual shaped shells were more readily dislodged by surge than crabs in standard shaped shells. Thus, the difference in movement patterns in preferred vs. unpreferred shell shapes is an important factor influencing the microhabitat distribution of these hermit crabs.  相似文献   

20.
Hermit crabs have two antipredator tactics: taking refuge in its shell and fleeing. We examined the following two hypotheses using the hermit crab Pagurus filholi : (1) hermit crabs change their preference for shell types that they take refuge in and/or change the timing of fleeing (i.e. the duration of refuge in the shell) when they perceive a predator threat; (2) the type of shell that a hermit crab occupies affects the fleeing tactic of the individual. Under the stimulus of a crushed conspecific, hermit crabs changed neither their preference for shell species nor their refuge duration. On the other hand, under the stimulus of the predatory crab Gaetice depressus , hermit crabs increased their preference for Batillaria cumingi shells, which provide superior protection against predators, and shortened their refuge duration in the shells even when they occupied those effective against predation. Refuge duration was longer in B. cumingi shells than in the more vulnerable shells of Homalopoma sangarense . These results suggest that both antipredator defences (changing shell and timing of fleeing) are induced by the stimulus of a predator, and the timing of fleeing is affected by the shell type occupied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号