首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spawn of five Stylommatophora, one basommatophoran, one prosobranch and one opisthobranch were each desiccated at 25 °C and at various constant relative humidities, and in almost still air. The experimental apparatus incorporated glass fishpole balances and a time-lapse cine-camera. Differences in desiccation rates were found to be due to differences in size of the experimental objects, the larger egg-masses losing water at a relatively slower rate than the smaller.
At equilibrium with the atmosphere the marine spawn retained more water than those from other habitats. Different water-retaining capacities probably reflect interesting biophysical characteristics of the mucus of different species.  相似文献   

2.
Individuals with black skin rarely get skin cancer, and melanomas, tumors arising from pigmented cells, are generally resistant to radiation therapy. The role of melanin in these two phenomena has not been defined, but oxygen-radical species have been implicated in both effects. These studies were undertaken to determine the ability of various melanins to compete for ionizing radiation-produced radicals which destroy nucleic acid bases. The ability of Sigma eumelanin (S-eumelanin) to protect against the radiolysis of thymidine in buffered solutions was compared to the protective ability of seven amino acids, including melanin precursors; bovine serum albumin, as a model protein; ficoll, as a model polysaccharide; and DNA. Both proteins and polysaccharides are known to scavenge hydroxyl radicals in cells. The concentration of thymidine after exposure to gamma radiation was determined by High Performance Liquid Chromatography (HPLC) analysis after removal of insoluble melanin by acid precipitation. S-eumelanin was more effective at competing with thymidine for free radicals than bovine serum albumin, Ficoll, or DNA, but less effective than certain of the small molecules. Several of the above compounds were also examined for ability to protect against thymine radiolysis. In addition, melanins from other sources were compared to S-eumelanin. Of these, enzymatically synthesized phaeomelanin was the most effective. The results indicate that melanins can compete for base- and nucleoside-damaging free radicals more effectively than other cellular macromolecules. Of the small molecules, the phenolic compounds had the greatest scavenging ability. In vivo, melanins are found in melanosomes bound to protein. Therefore, the relevance of these findings to the photo- and radiobiology of melanins in vivo has yet to be determined.  相似文献   

3.
In this paper, we evaluate the extent to which flavonoids in red wine (catechin, epicatechin, quercetin and procyanidins) protect against hydrogen peroxide-induced oxidative stress in Fao cells. When cells were exposed to H(2)O(2), malondialdehyde (MDA) levels, oxidized glutathione (GSSG) levels and lactate dehydrogenase (LDH) release increased, indicating membrane damage and oxidative stress. All the flavonoids studied, and in particular epicatechin and quercetin, protected the plasma membrane. Only procyanidins lowered MDA levels and LDH leakage, maintained a higher reduced/oxidized glutathione ratio, and increased catalase/superoxide dismutase and glutathione peroxidase/superoxide dismutase ratios, and glutathione reductase and glutathione transferase activities. These results show that the procyanidin mixture has a greater antioxidant effect than the individual flavonoids studied, probably due to its oligomer content and/or the additive/synergistic effect of its compounds. This suggests that the mixture of flavonoids found in wine has a greater effect than individual phenols, which may explain many of the healthy effects attributed to wine.  相似文献   

4.
Yeast (Saccharomyces cerevisiae) mutants lacking CuZnSOD have been reported to be hypersensitive to hypertonic media and to show increased oxidative damage. This study demonstrates that hypertonic medium (containing 0.8 M NaCl) increases the generation of superoxide and other reactive species in yeast cells. Other sequelae of exposure to hypertonic medium include oxidation of cellular low-molecular weight thiols and decrease in total antioxidant capacity of cellular extracts. deltasod1 mutant is more sensitive than a wild-type strain to colony growth inhibition on a hypertonic medium. Anaerobic conditions, ascorbate, glutathione, cysteine and dithiothreitol are able to ameliorate this growth inhibition but a range of other antioxidants does not protect. The protective ability of the antioxidants does not correlate with the rate of their reactions with superoxide but seems to be conditioned by low redox potential for one-electron oxidation of free radicals of the antioxidants. It suggests that repair of low-redox potential targets rather than prevention of their damage by superoxide is important in the antioxidant protection against oxidative stress induced by hypertonic conditions.  相似文献   

5.
Focusing on 2,2'-pyridoin (1, 1,2-di(2-pyridyl)-1,2-ethenediol) and its synthetic derivatives as the lead compound of the potent antioxidative enediol, their protective effect against oxidative stress was evaluated on the HL-60 cell system. 2,2'-Pyridoins showed no remarkable cytotoxic effect on HL-60 cells. The derivatives 1, 2, 3, 5, and 6 inhibited H(2)O(2)-induced cell death and intracellular oxidative stress more significantly than ascorbic acid. Since 2,2'-pyridoins are oxidized to the diketones, 2,2'-pyridils, in a protic solvent, the antioxidant activity of 2,2'-pyridils was also investigated. 2,2'-Pyridils showed antioxidant activity in the cell; however, the activity was lower than that of 2,2'-pyridoins. These results suggested that 2,2'-pyrdoin derivatives can be good cytoprotective agents against oxidative stress.  相似文献   

6.
Mitochondria are subcellular organelles with an essentially oxidative type of metabolism. The production of reactive oxygen species (ROS) in it increases under stress conditions and causes oxidative damage. In the present study, effects of exogenous sodium nitroprusside (SNP), a nitric oxide (NO) donor, on both the ROS metabolism in mitochondria and functions of plasma membrane (PM) and tonoplast were studied in cucumber seedlings treated with 100mM NaCl. NaCl treatment induced significant accumulation of H(2)O(2) and led to serious lipid peroxidation in cucumber mitochondria, and the application of 50muM SNP stimulated ROS-scavenging enzymes and reduced accumulation of H(2)O(2) in mitochondria of cucumber roots induced by NaCl. As a result, lipid peroxidation of mitochondria decreased. Further investigation showed that application of SNP alleviated the inhibition of H(+)-ATPase and H(+)-PPase in PM and/or tonoplast by NaCl. While application of sodium ferrocyanide (an analog of SNP that does not release NO) did not show the effect of SNP, furthermore, the effects of SNP were reverted by addition of hemoglobin (a NO scavenger).  相似文献   

7.
8.
9.
Salusins are regulatory peptides that affect cardiovascular function. We previously reported that salusin-α and -β protected cultured cardiomyocytes from serum deprivation-induced cell death through upregulating glucose-regulated protein 78 (GRP78), an endoplasmic reticulum (ER) resident protein whose overexpression acts as a marker and suppressor of ER stress. The present study examined whether salusin-α and -β inhibit ER stress in ischemic myocardium. In a rat model of myocardial infarction created by ligating the left anterior descending coronary artery (LAD), salusin-α or -β was intravenously injected at 5 or 15 nmol kg−1 15 min prior to 2 h of LAD occlusion. The high dose of salusin-α and -β significantly improved heart function and hemodynamics in LAD-occluded rats, but had no effects in sham-operated rats. The arrhythmias caused by LAD occlusion were markedly attenuated by salusin-α and -β. The apoptotic rate in ischemic myocardium was reduced from 31.5%±3.7% to 19.8%±2.2% and 12.3%±2.2%, and the infarct size was reduced from 53.4%±4.0% of the risk area to 26.5%±9.7% and 23.7%±8.9% by 15 nmol kg−1 salusin-α and -β, respectively. Furthermore, salusin-α and -β prevented the activation of GRP78 and ER stress-specific apoptotic effectors caspase-12 and CHOP (C/EBP homologous protein), and attenuated the reduction of an ER stress-associated antiapoptotic protein Bcl-2 in ischemic cardiac tissue. The salusins also inhibited the ER stress induced by tunicamycin in cultured rat H9c2 cardiomyocytes. These results indicate that salusins protect myocardium against ischemic injury by inhibiting ER stress and ER stress-associated apoptosis.  相似文献   

10.
Iron chelators such as desferrioxamine have been shown to ameliorate oxidative damage in vivo. The mechanism of this therapeutic action under non-iron-overload conditions is, however, complex, as desferrioxamine has properties that can impact on oxidative damage independent of its capacity to act as an iron chelator. Desferrioxamine can act as a reducing agent to remove cytotoxic ferryl myoglobin and hemoglobin and has recently been shown to prevent the formation of a highly cytotoxic heme-to-protein cross-linked derivative of myoglobin. In this study we have examined the effects of a wide range of iron chelators, including the clinically used hydroxypyridinone CP20 (deferriprone), on the stability of ferryl myoglobin and on the formation of heme-to-protein cross-linking. We show that all hydroxypyridinones, as well as many other iron chelators, are efficient reducing agents of ferryl myoglobin. These compounds are also effective at preventing the formation of cytotoxic derivatives of myoglobin such as heme-to-protein cross-linking. These results show that the use of iron chelators in vivo may ameliorate oxidative damage under conditions of non-iron overload by at least two mechanisms. The antioxidant effects of chelators in vivo cannot, therefore, be attributed solely to iron chelation.  相似文献   

11.
Chen Z  Li J  Zhao TJ  Li XH  Meng FG  Mu H  Yan YB  Zhou HM 《The Biochemical journal》2012,441(2):623-632
The formation of intracellular nitrogen-based oxidants has important physiological and pathological consequences. CK (creatine kinase), which plays a key role in intracellular energy metabolism, is a main target of low concentrations of oxidative and nitrative stresses. In the present study, the interaction between cytosolic CKs [MM-CK (muscle-type CK) and BB-CK (brain-type CK)] and MTs [metallothioneins; hMT2A (human MT-IIA) and hMT3 (human MT-III)] were characterized by both in vitro and intact-cell assays. MTs could successfully protect the cytosolic CKs against inactivation induced by low concentrations of PN (peroxynitrite) and NO both in vitro and in hMT2A-overexpressing H9c2 cells and hMT3-knockdown U-87 MG cells. Under high PN concentrations, CK formed granule-like structures, and MTs were well co-localized in these aggregated granules. Further analysis indicated that the number of cells containing the CK aggregates negatively correlated with the expression levels of MTs. In vitro experiments indicated that MTs could effectively protect CKs against aggregation during refolding, suggesting that MT might function as a chaperone to assist CK re-activation. The findings of the present study provide direct evidence of the connection between the two well-characterized intracellular systems: the precisely balanced energy homoeostasis by CKs and the oxidative-stress response system using MTs.  相似文献   

12.
Frataxin is a mitochondrial protein that is conserved throughout evolution. In yeast and mammals, frataxin is essential for cellular iron (Fe) homeostasis and survival during oxidative stress. In plants, frataxin deficiency causes increased reactive oxygen species (ROS) production and high sensitivity to oxidative stress. In this work we show that a knock-down T-DNA frataxin-deficient mutant of Arabidopsis thaliana (atfh-1) contains increased total and organellar Fe levels. Frataxin deficiency leads also to nitric oxide (NO) accumulation in both, atfh-1 roots and frataxin null mutant yeast. Abnormally high NO production might be part of the defence mechanism against Fe-mediated oxidative stress.  相似文献   

13.
14.
An experiment was conducted to evaluate the role of different lipotropes in modulating immunity and biochemical plasticity under conditions of sublethal low-dose pesticide-induced stress in fish. Labeo rohita fish fingerlings were divided in two sets with one set of fish continuously exposed to low-dose endosulfan (1/10th of 96-h LC50) for 21 days, the other was unexposed, and both sets of fish were fed with practical diets supplemented with either 2 % lecithin, 0.5 % betaine, or 0.1 % choline and compared against unsupplemented diet. Low-dose endosulfan exposure had adverse effects (P < 0.05/P < 0.01) on hematological profile (erythrocyte count, hemoglobin, and hematocrit), serum protein (total protein, albumin, and globulin) and lipid profile (cholesterol and triglyceride), anti-oxidative status (ascorbic acid content of muscle, liver, brain, and kidney and activity of anti-oxidative enzymes: catalase and superoxide dismutase), neurotransmission (acetylcholinesterase activity in muscle and brain), immunological attributes (WBC count, albumin to globulin ratio, phagocytic activity, and serum cortisol), and metabolic plasticity as revealed from enzyme activities (muscle lactate dehydrogenase, liver and kidney glucose-6-phosphatase dehydrogenase-G6PDH activity). Dietary lipotropes prevented these effects completely or partially and the effects were lipotrope dependent. Kinetics (maximum velocity value Vmax, catalytic efficiency and Michaelis constant Km) of G6PDH enzyme from crude extracts of liver and kidney indicated inhibition due to endosulfan but lipotropes could protect enzyme and showed a stabilizing effect. The supplements also helped maintain integrity of histoarchitecture of the hepatocytes in endosulfan-exposed fish to a great extent. Feeding lipotropes to fish reared in endosulfan-free water also improved hematological and serum protein and lipid profiles and were immunostimulatory. In conclusion, dietary lipotropes, especially betaine and lecithin at the levels used, improve erythropoiesis, serum protein and lipid profile, anti-oxidant status, immunocompetence, neurotransmission, and protect the livers of L. rohita fingerlings even when continuously exposed to low-dose endosulfan.  相似文献   

15.
Water stress is one of the major stresses experienced by cellular systems and can take a number of distinct forms. In response to turgor-related osmotic stress, cells produce compatible solutes that are macromolecule protectants and also counteract the outflow of water from stressed cells. In this report we show that the germination of conidia of Aspergillus nidulans, a sensitive indicator of water stress, in the presence of ethanol is correlated with the intracellular concentration of the compatible solutes glycerol and erythritol, which protect against both osmotic and nonturgor forms of water stress.  相似文献   

16.
Fullerene derivatives have often been used as effective scavengers for reactive oxygen species (ROS). This study was designed to test whether polyhydroxylated fullerene derivatives [C(60)(OH)(7+/-2)] protect against oxidative stress in cultured RAW 264.7 cells and ischemia-reperfused (IR) lungs. In RAW 264.7 cells, sodium nitroprusside (SNP, 1 mM) and H(2)O(2) (400 microM) caused a marked (90%) decrease in cell viability, and this decrease was dose dependently reversed by pretreatment with C(60)(OH)(7+/-2) (10-50 microM). The increase in ROS production induced by SNP and H(2)O(2) was significantly suppressed by C(60)(OH)(7+/-2). Also, the decrease in mitochondrial membrane potential induced by SNP and H(2)O(2) was significantly reversed by C(60)(OH)(7+/-2). However, high concentration of C(60)(OH)(7+/-2) (1 and 1.5 mM) lead to cell death (apoptosis or necrosis). In the isolated rat lung, the increases in pulmonary artery pressure and capillary filtration pressure induced by SNP during IR were reversed significantly by C(60)(OH)(7+/-2) (10 mg/kg). These results indicate that polyhydroxylated fullerene derivatives C(60)(OH)(7+/-2) at low concentrations protect against oxidative stress in RAW 264.7 cells and IR lungs.  相似文献   

17.
18.
Wood ants use resin to protect themselves against pathogens   总被引:2,自引:0,他引:2  
Social life is generally associated with an increased exposure to pathogens and parasites, due to factors such as high population density, frequent physical contact and the use of perennial nest sites. However, sociality also permits the evolution of new collective behavioural defences. Wood ants, Formica paralugubris, commonly bring back pieces of solidified coniferous resin to their nest. Many birds and a few mammals also incorporate green plant material into their nests. Collecting plant material rich in volatile compounds might be an efficient way to fight bacteria and fungi. However, no study has demonstrated that this behaviour has a positive effect on survival. Here, we provide the first experimental evidence that animals using plant compounds with antibacterial and antifungal properties survive better when exposed to detrimental micro-organisms. The presence of resin strongly improves the survival of F. paralugubris adults and larvae exposed to the bacteria Pseudomonas fluorescens, and the survival of larvae exposed to the entomopathogenic fungus Metarhizium anisopliae. These results show that wood ants capitalize on the chemical defences which have evolved in plants to collectively protect themselves against pathogens.  相似文献   

19.
Defining criteria for anti-mannan antibodies to protect against candidiasis   总被引:5,自引:0,他引:5  
Prevention of hematogenously disseminated candidiasis and mucocutaneous disease, including Candida vaginitis, through immunological approaches is appealing for the following reason. A long-acting and safe vaccine that protects against both serotypes of Candida albicans and other important species, such as C. tropicalis and C. glabrata, should significantly reduce the incidence of various forms of candidiasis by these etiologic agents. Through extensive experimentation on protective responses in experimental animals against Candida mannan components, others and we have evidence that antibodies specific for short-chain beta-linked oligomannosides are protective against candidiasis. Although the mechanism of protection against vaginal infection requires further investigation, experimentally the ability of antibody to rapidly deposit high amounts of complement factor C3 onto the yeast cell wall is requisite for enhancing resistance against disseminated candidiasis.  相似文献   

20.
Bcl-2 family proteins protect against a variety of forms of cell death, including acute oxidative stress. Previous studies have shown that overexpression of the antiapoptotic protein Bcl-2 increases cellular redox capacity. Here we report that cell lines transfected with Bcl-2 paradoxically exhibit increased rates of mitochondrial H(2)O(2) generation. Using isolated mitochondria, we determined that increased H(2)O(2) release results from the oxidation of reduced nicotinamide adenine dinucleotide-linked substrates. Antiapoptotic Bcl-2 family proteins Bcl-xL and Mcl-1 also increase mitochondrial H(2)O(2) release when overexpressed. Chronic exposure of cells to low levels of the mitochondrial uncoupler carbonyl cyanide 4-(triflouromethoxy)phenylhydrazone reduced the rate of H(2)O(2) production by Bcl-xL overexpressing cells, resulting in a decreased ability to remove exogenous H(2)O(2) and enhanced cell death under conditions of acute oxidative stress. Our results indicate that chronic and mild elevations in H(2)O(2) release from Bcl-2, Bcl-xL, and Mcl-1 overexpressing mitochondria lead to enhanced cellular antioxidant defense and protection against death caused by acute oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号