首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gametophytes of Macrocystis pyrifera (L.) C. Ag. were cultured under a series of quantum irradiances in three photoperiod regimes. The quantum irradiances in each photoperiod were adjusted to provide equal daily irradiation dosages between photoperiods which allowed a critical examination of the interactions between quantum irradiance and quantum dose in determining gametophyte fertility. The lowest quantum irradiance which stimulated gametogenesis in more than 50% of the female gametophytes was 5 μE·m?2·s?1. The saturating irradiance was ca. 10 μE·m?2·s?1 at photoperiods of 12 h or greater. In terms of daily quantum dose, the lowest dose at which greater than 50% gametogenesis occurred was 0.2 E·m?2·d?1. However, this critical quantum dose was higher (0.4 E·m?2·d?1) when instantaneous irradiances were less than 5 μE·m?2·s?1. The saturation quantum dose was also affected by the rate at which the quantum dose was received and varied from 0.4 to 0.8 E·m?2·d?1. Gametophytes in all three photoperiods reached 100% fertility at quantum irradiances above 5 μE·m?2·s?1. Photoperiod effects were small and could be accounted for by quantum dosage effects.  相似文献   

2.
The population of Undaria pinnatifida in its ecologic niche sustains itself in high temperature summer in the form of vegetative gametophytes, the haploid stage in its heteromorphic life cycle. Gametogenesis initiates when seawater temperature drops below the threshold levels in autumn in the northern hemisphere. Given that the temperature may fall into the appropriate range for gametogenesis, the level of irradiance determines the final destiny of a gametophytic cell, either undergoing vegetative cell division or initiating gametogenesis. In elucidating how vegetatively propagated gametophytes cope with changes of irradiance in gametogenesis, we carried out a series of culture experiments and found that a direct exposure to irradiance as high as 270 μmol photons m?2 s?1 was lethal to dim‐light (7–10 μmol photons m?2 s?1) adapted male and female gametophytes. This lethal effect was linearly corelated with the exposure time. However, dim‐light adapted vegetative gametophytes were shown to be able tolerate as high as 420 μmol photons m?2 s?1 if the irradiance was steadily increased from dim light levels (7–10 μmol photons m?2 s?1) to 90, 180 and finally 420 μmol photons m?2 s?1, respectively, at a minimum of 1–3 h intervals. Percentage of female gametophytic cells that turned into oogonia and were eventually fertilized was significantly higher if cultured at higher but not lethal irradiances. Findings of this investigation help to understand the dynamic changes of population size of sporophytic plants under different light climates at different site‐specific ecologic niches. It may help to establish specific technical details of manipulation of light during mass production of seedlings by use of vegetatively propagated gametophytes.  相似文献   

3.
Gametophytes of three Laminaria species occurring near Helgoland, North Sea, were cultivated 4 wk in a 12:12 LD regime at different temperatures in artificial light fields, and in the sea at different water depths. In the artificial light fields underwater spectral distribution was simulated according to Jerlov water Types 5, 7, 9. Blue light in the simulated light fields amounted to 17, 12 or 4% of total quanta. The rate of vegetative growth did not depend on spectral distribution, was light-saturated at 4–6 W · m?2, and increased with temperature up to 15 C. L. saccharina (L.) Lamour. exhibited the highest tolerance towards temperature, light and UV. Gametophytes survived 1 wk at 21 C ± 0.1, but not 22 C ± 0.1. Gametophytes of L. hyperborea (Gunn.) Fosl. and L. digitata (Huds.) Lamour. survived 1 wk at 20 C ± 0.1, but not at 21 C ± 0.1. In sunlight, and in the light field of a xenon lamp, 50% of L. saccharina gametophytes were killed by a quantum dose of 50 μEin · cm?2, and 100% of the plants by 90 μEin · cm?2. Approximately half of these quantum doses killed the corresponding percent of the other species gametophytes. Appreciably higher quantum doses were survived in visible light, with red being the most detrimental. Fertility depended on a critical quantum dose of blue light which decreased almost exponentially with decreasing temperature. The quantum dose (400–512 nm) required for induction of fertilization of 50% of the female gametophytes (males react similarly) was 90 μEin · cm?2 at 5 C, 110 μEin · cm?2 at 10 C, 230 (560 in L. digitata)μEin · cm?2 at 15 C, and 560 (L. hyperborea) or about 850 (other 2 species) μEin · cm?2 at 18 C. In the sea the gametophytes survived the dark winter months in the unicellular stage, with almost no vegetative growth of the primary cell, due to lack of light. In early spring the female gametophytes matured in the unicellular, and the males in a few-celled stage at the depth of 2 m, as did the laboratory cultures under conditions inducing maximal fertility.  相似文献   

4.
A dense community of shade adapted microalgae dominated by the diatom Trachyneis aspera is associated with a siliceous sponge spicule mat in McMurdo Sound, Antarctica. Diatoms at a depth of 20 to 30 m were found attached to spicule surfaces and in the interstitial water between spicules. Ambient irradiance was less than 0.6 μE · m?2· s?1 due to light attenuation by surface snow, sea ice, ice algae, and the water column. Photosynthesis-irradiance relationships determined by the uptake of NaH14CO3 revealed that benthic diatoms beneath annual sea ice were light-saturated at only 11 μE·m?2·s?1, putting them among the most shade adapted microalgae reported. Unlike most shade adapted microalgae, however, they were not photoinhibited even at irradiances of 300 μE·m?2·s?1. Although in situ primary production by benthic diatoms was low, it may provide a source of fixed carbon to the abundant benthic invertebrates when phytoplankton or ice algal carbon is unavailable.  相似文献   

5.
The rates of net photosynthesis as a function of irradiance and temperature were determined for gametophytes and embryonic sporophytes of the kelp, Macrocystis pyrifera (L.) C. Ag. Gametophytes exhibited higher net photosynthetic rates based on oxygen and pH measurements than their derived embryonic sporophytes, but reached light saturation at comparable irradiance levels. The net photosynthesis of gametophytes reached a maximum of 66.4 mg O2 g dry wt?1 h?1 (86.5 mg CO2 g dry wt?1 h?1), a value approximately seven times the rate reported previously for the adult sporophyte blades. Gametophytes were light saturated at 70 μE m?2 s?1 and exhibited a significant decline in photosynthetic performance at irradiances 140 μE m?1 s?1. Embryonic sporophytes revealed a maximum photosynthetic capacity of 20.6 mg O2 g dry wt?1 h?1 (25.3 mg CO2 g dry wt?1 h?1), a rate about twice that reported for adult sporophyte blades. Embryonic sporophytes also became light saturated at 70 μE m?2 s?1, but unlike their parental gametophytes, failed to exhibit lesser photosynthetic rates at the highest irradiance levels studied; light compensation occurred at 2.8 μE m?2 s?1. Light-saturated net photosynthetic rates of gametophytes and embryonic sporophytes varied significantly with temperature. Gametophytes exhibited maximal photosynthesis at 15° to 20° C, whereas embryonic sporophytes maintained comparable rates between 10° and 20° C. Both gametophytes and embryonic sporophytes declined in photosynthetic capacity at 30° C. Dark respiration of gametophytes was uniform from 10° to 25° C, but increased six-fold at 30° C; the rates for embryonic sporophytes were comparable over the entire range of temperatures examined. The broader light and temperature tolerances of the embryonic sporophytes suggest that this stage in the life history of M. pyrifera is well suited for the subtidal benthic environment and for the conditions in the upper levels of the water column.  相似文献   

6.
Lithophyllum yessoense Foslie is a markedly dominant subtidal, crustose coralline alga in south–western Hokkaido, Japan. In this study, the effects of irradiance, water temperature and nutrients (nitrate and phosphate) on the growth of sporelings of the alga were examined. The relative growth rate (RGR) was saturated at 17.6% d?1 at a high irradiance (240 umol photon m2s?1). Even at a low irradiance (10.7–49.9 umol photon m?2s?1), RGR was 7.1–12.7% d?1 The survival rate of sporelings was greater than 80% at irradiance above 10.7 μmol photon m?2s?1 throughout the culture period. The growth of L. yessoense sporelings was promoted at 15°C and 20°C, but inhibited at 5°C. The half‐saturation constants (Ks) for growth were about 0.5 umol L?1 and 0.14 umol L?1 for nitrate and phosphate, respectively. Saturated nitrate and phosphate concentrations for the growth were about 4.0 μmol L?1 and 0.4 μmol L?1, respectively, suggesting that L. yessoense is adaptable to a relatively high water temperature, a wide range of irradiance, and low ambient nitrate and phosphate concentrations. The results provide a possible explanation of why L. yessoense is dominant in the environments of south‐western Hokkaido.  相似文献   

7.
Tetraspores of Sarcothalia crispata from San Juan Bay, Strait of Magellan, Chile, were cultivated under different combinations of photon flux densities and agricultural fertilizers in the laboratory. In the experiment, the S. crispata specimens were cultured in combinations of different photon flux densities (50, 100, 150 μmol photons m-2 s-1) and enriched seawater solutions (sodium nitrate + monocalcium phosphate, urea + monocalcium phosphate, ammonium nitrate + monocalcium phosphate), always adjusting the N and P concentrations to 10 and 3 mg L-1, and in sea water as control. After 45 days, the tetrasporeling plants were found to be larger at photon flux densities of 50 and 100 μmol photons m-2 s-1 in the nutrient enrichment experiments; growth was greatest in the sea water enriched with ammonium nitrate and urea. An analysis of the combined effect of the photon flux density and nutrients revealed that the best combination for sporeling growth was the ammonium nitrate and urea solution at 50–100 μmol photons m-2 s-1.  相似文献   

8.

The kelp Lessonia corrugata (Ochrophyta, Laminariales) is being developed for integrated multi-trophic aquaculture (IMTA) trials in the vicinity of salmon cages in Tasmania, Australia. Gametophytes are vegetally maintained before seeding on hatchery twine; however, the optimal temperature and light conditions for growth and sexual development are unknown. We measured vegetative size of female and male gametophytes and sexual development of females over a range of temperatures and irradiances using a temperature gradient table and neutral density light filters. Over a 4-week experiment, gametophytes were exposed to a combination of thermal (5.7–24.9 °C) and irradiance (10–100 μmol photons m?2 s?1) gradients, to assess biological performance. At the temperature extremes (hottest = 24.9 °C, coldest = 5.7 °C), we observed the critical thermal limits for this species and the results reveal a narrow optimal temperature range for growth and sexual development between 15.7 and 17.9 °C, with irradiances between 40 and 100 μmol photons m?2 s?1 resulting in fertile female gametophytes. Lessonia corrugata inhabits a small geographic range, found only around Tasmania, south of the Australian mainland, hence oceanic changes such as ongoing increases in sea surface temperatures (SSTs), and altered irradiance regimes may limit recruitment of the early microscopic life stages in the future. Our findings provide optimised culture conditions for aquaculture and information to predict the future geographic range of L. corrugata under ocean global change.

  相似文献   

9.
The relative importance of respiration and organic carbon release to the efficiency of carbon specific growth of Skeletonema costatum (Grev.) Clave was evaluated over a light range from 1500–15 μE · m?2· s?1. Net growth efficiency ranged from 0.45–0.69 with a maximum at 130 μE · m?2· s?1. Respiration was 93% or more of the variations in growth efficiency. Organic carbon release ranged from 0–7% of gross production and increased with light intensity. Carbon specific particulate production was a hyperbolic function of incident light intensity and was related exponentially to particulate carbon production per unit chlorophyll a. Full sunlight conditions, 1500 μE · m?2· s?1, did not induce photoinhibition of gross production. Variations in the efficiency of growth of S. costatum were minimized over a wide range of light intensities mainly because of variations in cellular pigments which permitted the efficient utilization of available light energy, and a reduction in the losses of carbon which increases the growth rate, possibly as a consequence of the recycling of respired carbon within the cell.  相似文献   

10.
淡水驯化对桐花树光合生理特性的影响   总被引:5,自引:0,他引:5  
刁俊明  孙卿  陈桂珠 《植物研究》2010,30(4):416-423
以实验地全光照条件下淡水和人工海水培养种植的桐花树(Aegiceras corniculatum)幼苗为材料,采用Li 6400光合测定仪对不同月份桐花树幼苗的光合生理生态特性日动态进行测定,研究了桐花树的光合生理生态特性。结果表明:在7、10月份桐花树的净光合速率日变化呈双峰型,均出现“光合午休”现象。在7月份人工海水组和淡水组的最大净光合速率(Pmax)分别为9.97和11.95 μmol·m-2·s-1;而10月份的Pmax分别为12.2和12.9 μmol·m-2·s-1。而且淡水驯化下,桐花树的净光合速率较人工海水组高。由光响应曲线可知,桐花树人工海水组的最大净光合速率(Pmax)、光饱和点(LSP)、光补偿点(LCP)和表观量子效率(AQY)分别为7 μmol·m-2·s-1,1 477 μmol·m-2·s-1,30 μmol·m-2·s-1,0.031 3;而淡水组为8.69 μmol·m-2·s-1,980 μmol·m-2·s-1,40 μmol·m-2·s-1,0.011。在所测的生理生态因子中,光合有效辐射和气孔导度是影响桐花树光合作用最为强烈的因子,与桐花树的净光合速率和蒸腾速率均有极显著的相关关系(p<0.01)。试验说明淡水驯化的桐花树对光强的利用范围变窄,但有较高的净光合速率,表明桐花树对淡水环境具有较强的适应性。  相似文献   

11.
The dry matter production in Polytrichum commune protonemata was increased when the light intensity was increased from 0 to 160 μE m?2 s?1, and at 160 μE m?2 s?1 production was about 200% of that found at 17 μE m?2 s?1. Production of chlorophyll (Chl) was increased by increasing light intensity from 0 to 17 μE m?2 s?1, but decreasing at light intensities above 17 μE m?2 s?1. At 160 μE m?2 s?1 the production of Chl was only about 50% of that at 17 μE m?2 s?1. The rate of CO2 fixation was low (0.31 μg CO2/mg Chi × h) at the light intensity of 17 μE m?2 s?1 as compared with that at 160 μE m?2 s?1 (0.83 μg CO2/mg Chi × h). Production of mono- (MGDG) and diglycosyl diglycerides (DGDG) was closely associated with that of chlorophylls. At the higher light intensity (160 μE m?2 s?1) production of glycolipids was about 60% of that at 17 μE m?2 s?1. Production of more polar lipids was less affected by light intensity. Light intensity also affected the fatty acid pattern of the lipid fractions. The effect was most pronounced in the MGDG fraction, where the proportion of C 18: 3ω3 + C 16: 3ω3 was higher at the higher light intensity.  相似文献   

12.
The internal lipid, carotenoid, and toxin concentrations of Karenia brevis (C. C. Davis) Gert Hansen and Moestrup are influenced by its ability to use ambient light and nutrients for growth and reproduction. This study investigated changes in K. brevis toxicity, lipid class, and carotenoid concentrations in low‐light, nitrate‐replete (250 μmol quanta · m?2 · s?1, 80 μM NO3); high‐light, nitrate‐replete (960 μmol quanta · m?2 · s?1, 80 μM NO3); and high‐light, nitrate‐reduced (960 μmol quanta · m?2 · s?1, <5 μM NO3) mesocosms. Reverse‐phase HPLC quantified the epoxidation state (EPS) of the xanthophyll‐cycle pigments diadinoxanthin and diatoxanthin, and a Chromarod Iatroscan thin layer chromatography/flame ionization detection (TLC/FID) system quantified changes in lipid class concentrations. EPS did not exceed 0.20 in the low‐light mesocosm, but increased to 0.65 in the high‐light mesocosms. Triacylglycerol and monogalactosyldiacylglycerol (MGDG) were the largest lipid classes consisting of 9.3% to 48.7% and 37.3% to 69.7% of total lipid, respectively. Both lipid classes also experienced the greatest concentration changes in high‐light experiments. K. brevis increased EPS and toxin concentrations while decreasing its lipid concentrations under high light. K. brevis may mobilize its toxins into the surrounding environment by reducing lipid concentrations, such as sterols, limiting competition, or toxins are released because lipids are decreased in high light, reducing any protective mechanism against their own toxins.  相似文献   

13.
The perennially ice-covered lakes of Antarctica have hydrodynamically stable water columns with a number of vertically distinct phytoplankton populations. We examined the photosynthesis-irradiance characteristics of phytoplankton from four depths of Lake Bonney to determine their physiological condition relative to vertical gradients in irradiance and temperature. All populations studied showed evidence of extreme shade adaptation, including low Ik values (15–45 μE · m?2· s?1) and extremely low maximal photosynthetic rates (PBm less than 0.3 μg C ·μg chl a?1· h?1). Photosynthetic rates were controlled by temperature as well as light variations with depth. Lake Bonney has an inverted temperature profile within the trophogenic zone that increased from 0° C at the ice-water interface to 6° C from 10 to 18 m. Deeper phytoplankton (10 m and 17 m) were found to have photosynthetic capacities (PBm) and efficiences (α) three to five times higher than those at the ice-water interface. However, Q10 values were only ca. 2 for PBm (no temperature dependence was evident for α), suggesting that a simple temperature response cannot explain all the differences between populations. Lake Bonney phytoplankton (primarily cryptophytes and chlorophytes) had photosynthetic characteristics similar to diatoms from other physically stable environments (e.g. sea ice, benthos) and may be ecologically analogous to multiple deep chlorophyll maxima.  相似文献   

14.
Microalgae growing within brine channels (85 psu salinity) of the surface ice layers of Antarctic pack ice showed considerable photosynthetic tolerance to the extreme environmental condition. Brine microalgae exposed to temperatures above ?5°C and at irradiances up to 350 μmol photons·m?2·s?1 showed no photosynthetic damage or limitations. Photosynthesis was limited (but not photoinhibited) when brine microalgae were exposed to ?10°C, provided the irradiance remained under 50 μmol photons·m?2·s?1. The highest level of photosynthetic activity (maximum relative electron transport rate [rETRmax]) in brine microalgae growing within the surface layer of sea ice was at approximately 18 μmol electrons·m?2·s?1, which occurred at ?1.8°C. Effective quantum yield of PSII and rETRmax of the halotolerant brine microalgae exhibited a temperature‐dependent pattern, where both parameters were higher at ?1.8°C and lower at ?10°C. Relative ETRmax at temperatures above ?5°C were stable across a wide range of irradiance.  相似文献   

15.
The effects of irradiance on the biochemical composition of the prymnesiophyte microalga, Isochrysis sp. (Parke; clone T-ISO), a popular species for mariculture, were examined. Cultures were grown under a 12:12 h light: dark (L:D) regime at five irradiances ranging from 50 to 1000 μE·m 2·s?1 and harvested at late-logarithmic phase for analysis of biochemical composition. Gross composition varied aver the range of irradiances. The highest levels of protein were present in cells from cultures grown at 100 and 250 μE·m 3·s1, and minimum levels of carbohydrate and lipid occurred at 50 μE·m?2·s?1. Because the cell dry weight was reduced at lower irradiances, different trends were evident when results were expressed as percentage of dry weights. Protein percentages were highest at Wand 100 μE·m?2·s?1 and carbohydrate at 100 μE·m?2·s?1. The composition of amino acids did not differ over the range of irradiances. Glutamate and aspartate were always present in high proportions (9.0–13.5%); histidine. methionine, tryptophan, cystine, and hydroxy-proline were minor constituents (0.0–2.6%). Glucose was the predominant sugar in all cultures, ranging from 23.0% (50 μE·m?2·s?1) to 45.0% (100 μE·m?2·s?1) of total polysaccharide. No correlation was found between the proportion of any of the sugars and irradiance. The proportions of the lipid class components and fatty acids showed little change with irradiance. The main fatty acids were 14:0, 16:0, 16:1(n-7), 18:1(n-9), 18:3(n-3). 18:4(n-3), 18:5(n-3), and 22:6(n-3). Proportions of 22: 6(n-3) increased, whereas l8:3(n-3). 18:3(n-6). and 18:4(n-3) decreased, with increasing irradiance. Pigment concentrations were highest in cultures grown at 50 μE·m?2·s?1, except for fucoxanthin and diadinoxanthin (100 μE·m?2·s?1). The concentrations of accessory pigments correlated with chlorophyll a, which decreased in concentration with increasing irradiance. On the basts of biochemical composition, an irradiance of 100 μE·m?1·s?1 (12:12 h L:D cycle)for the culture of Isochrysis sp. (clone T-ISO) may provide optimal nutritional value for maricultured animals, although feeding trials are now necessary to substantiate this.  相似文献   

16.
A literature review of data on nitrate uptake by phytoplankton suggests that nitrate levels above 20 μmol N·L?1 generally stimulated uptake rates in cultured unicellular algae and natural phytoplankton communities. This phenomenon indicates that phytoplankton cells acclimate to elevated nitrate levels by increasing their uptake capacity in a range of concentrations previously considered to be saturating. Cyanobacteria and flagellates were found to present a considerable capacity for acclimation, with low (0.1–2 μmol N·L?1) half‐saturation values (Ks) at low (5–20 μmol N·L?1) substrate levels and high (1–80 μmol N·L?1) Ks values at high (30–100 μmol N·L?1) substrate levels. However, some diatom genera (Rhizosolenia, Skeletonema, Thalassiosira) also appeared to possess a low affinity nitrate uptake system (Ks between 18 and 120 μmol N·L?1), which can help resolve the paradox of their presence in enriched seas. It follows that present models of nitrate uptake can severely underestimate the effects of high nitrate concentrations on phytoplankton dynamics and development. A more adequate approach would be to consider the possibility of multiphasic uptake involving several phase transitions as nitrate concentrations increased. Because it is a nonlinear phenomenon featuring strong thresholds, this effect appears to override that of other variables, such as irradiance, temperature, and cell size. Within the present context of eutrophication and for a range of concentrations that is becoming more and more ecologically relevant, equations are tentatively presented as a first approach to estimate Ks from ambient nitrate concentrations.  相似文献   

17.
The effects of diurnal variations in light intensity on the biomass characteristics and the efficiency of daily growth of Skeletonema costatum (Grev.) Cleve were evaluated. The relative importance of changes in carbon specific rates of respiration and organic release to the efficiency of growth was determined. Light intensity was either constant at 130 μE · m?2 · s?1 during the light period or fluctuated throughout the light period from 500 to 10 μE · m?2 · s?1 at rates of either 1 or 12 cycles · day?1. Total daily light was equivalent for all light regimes at 5.6 E · m?2 · day?1.Daily rates of growth remained comparable at ≈ 1 · day?1 under constant and fluctuating light regimes. Cell size as daily mean carbon · cell?1, nitrogen · cell?1 and cellular volume was decreased under diurnally varying light whereas daily mean chlorophyll a · cell?1 was unaffected.Rates of respiration, organic release and gross production were elevated several fold under diurnally varying light in comparison to constant light. Net growth efficiency decreased from 0.69 under constant light to values of 0.50 and 0.38 under 1 and 12 cycles · day?1, respectively. Decreased efficiency of growth under diurnally fluctuating light resulted mostly from greater respiratory activity while organic release remained < 10% of gross production. Increased rates of gross production reflected enhancement in the efficiency of carbon fixation with fluctuating light.  相似文献   

18.
Optimum light, temperature, and pH conditions for growth, photosynthetic, and respiratory activities of Peridinium cinctum fa. westii (Lemm.) Lef were investigated by using axenic clones in batch cultures. The results are discussed and compared with data from Lake Kinneret (Israel) where it produces heavy blooms in spring. Highest biomass development and growth rates occurred at ca. 23° C and ≥50 μE· m?2·s1 of fluorescent light with energy peaks at 440–575 and 665 nm. Photosynthetic oxygen release was more efficient in filtered light of blue (BG 12) and red (RG 2) than in green (VG 9) qualities. Photosynthetic oxygen production occurred at temperatures ranging from 5° to 32° C in white fluorescent light from 10 to 105 μE·m?2·s?1 with a gross maximum value of 1500 × 10?12 g·cell?1·h?1 at the highest irradiance. The average respiration amounted to ca. 12% of the gross production and reached a maximum value of ca. 270·10?12 g·cell?1·h?1 at 31° C. A comparison of photosynthetic and respiratory Q10-values showed that in the upper temperature range the increase in gross production was only a third of the corresponding increase in respiration, although the gross production was at maximum. Short intermittent periods of dark (>7 min) before high light exposures from a halogen lamp greatly increased oxygen production. Depending on the physiological status of the alga, light saturation values were reached at 500–1000 μE·m?2·s?1 of halogen light with compensation points at 20–40 μE·m?2·s?1 and Ik-values at 100–200 μE·m?2·s?1. The corresponding values in fluorescent light in which it was cultured and adapted, were 25 to 75% lower indicating the ability of the alga to efficiently utilize varying light conditions, if the adaptation time is sufficient. Carbon fixation was most efficient at ca. pH 7, but the growth rates and biomass development were highest at pH 8.3.  相似文献   

19.
Photosynthesis of marine benthic diatom mats was examined before and after sea ice breakout at a coastal site in eastern Antarctica (Casey). Before ice breakout the maximum under‐ice irradiance was between 2.5 and 8.2 μmol photons·m?2·s?1 and the benthic microalgal community was characterized by low Ek (12.1–32.3 μmol photons·m?2·s?1), low relETRmax (9.2–32.9), and high alpha (0.69–1.1). After breakout, 20 days later, the maximum irradiance had increased to between 293 and 840 μmol photons·m?2·s?1, Ek had increased by more than an order of magnitude (to 301–395 μmol photons·m?2·s?1), relETRmax had increased by more than five times (to 104–251), and alpha decreased by approximately 50% (to 0.42–0.68). During the same time interval the species composition of the mats changed, with a decline in the abundance of Trachyneis aspera (Karsten) Hustedt, Gyrosigma subsalsum Van Heurck, and Thalassiosira gracilis (Karsten) Hustedt and an increase in the abundance of Navicula glaciei Van Heurck. The benthic microalgal mats at Casey showed that species composition and photophysiology changed in response to the sudden natural increase in irradiance. This occurred through both succession shifts in the species composition of the mats and also an ability of individual cells to photoacclimate to the higher irradiances.  相似文献   

20.
Growth, blade shape and blade thickness of young gametophytes of Porphyra abbottae Krishnamurthy cultured from conchospores were determined at various combinations of temperature (8, 10, 12° C), photon flux density (17.5, 70, 140 μmol·m-?2·S?1), nutrient concentration (5, 25, 50, 100% f medium) and water motion (0, 50, 100, 150 rpm). Growth (as surface area) was light-saturated at 70 μmol· m?2· S?1, light-inhabited at 140 μmol·m?2· S?1, and nutrient-saturated an 25% f medium. Temperature had no significant effect on growth. Water motion and nutrients had an interactive effect on growth, with water motion having the greatest effect at the lowest nutrient concentrations. Water motion enhanced growth even at saturating nutrient concentrations. Blade length / width ratio was greater in low light (2.5) than in saturating light (1.9); with increasing water motion the ratio increased from 1.2 to 2.4. Blade thickness (53-88 μm) was greatest at the highest nutrient concentrations and at the lowest water motion levels. Temperature and light did not have a consistent effect on blade thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号