首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fractal properties of human muscle sympathetic nerve activity   总被引:1,自引:0,他引:1  
Muscle sympathetic nerve activity (MSNA) in resting humans is characterized by cardiac-related bursts of variable amplitude that occur sporadically or in clusters. The present study was designed to characterize the fluctuations in the number of MSNA bursts, interburst interval, and burst amplitude recorded from the peroneal nerve of 15 awake, healthy human subjects. For this purpose, we used the Allan and Fano factor analysis and dispersional analysis to test whether the fluctuations were time-scale invariant (i.e., fractal) or random in occurrence. Specifically, we measured the slopes of the power laws in the Allan factor, Fano factor, and dispersional analysis curves. In addition, the Hurst exponent was calculated from the slope of the power law in the Allan factor curve. Whether the original time series contained fractal fluctuations was decided on the basis of a comparison of the values of these parameters with those for surrogate data blocks. The results can be summarized as follows. Fluctuations in the number of MSNA bursts and interburst interval were fractal in each of the subjects, and fluctuations in burst amplitude were fractal in four of the subjects. We also found that fluctuations in the number of heartbeats and heart period (R-R interval) were fractal in each of the subjects. These results demonstrate for the first time that apparently random fluctuations in human MSNA are, in fact, dictated by a time-scale-invariant process that imparts "long-term memory" to the sequence of cardiac-related bursts. Whether sympathetic outflow to the heart also is fractal and contributes to the fractal component of heart rate variability remains an open question.  相似文献   

2.
Because pleural pressure (Ppl) has important effects on venous return and left ventricular function, it is possible that the magnitude of respiratory fluctuations in Ppl importantly influences cardiac output (pulmonary blood flow, QL) during exercise. To examine this question, we increased (+15 cmH2O) and decreased (-11 cmH2O) the amplitude of fluctuations in Ppl by elastic loading and unloading, respectively, during steady-state exercise (50 W) and estimated the corresponding changes in QL from measurement of breath-by-breath alveolar O2 consumption [(Vo2)A] by a modification of the technique of Beaver et al. (J. Appl. Physiol. 51: 1662-1675, 1981). Load changes were applied for three breaths. Using oscilloscopic volume feedback, subjects maintained constant breathing pattern and end-expiratory volume during control and experimental breaths. This procedure minimized errors in computing (Vo2)A. Furthermore, because over the brief period of load change (especially the first 1 or 2 breaths) mixed venous and arterial O2 contents were not likely to have changed, changes in (Vo2)A reflected changes in QL according to the Fick principle. In six normal subjects, neither loading nor unloading had any effect on (Vo2)A in the first, second, or third breath (P greater than 0.5). Additional studies at rest produced equally negative results. We conclude that the magnitude of respiratory fluctuations in Ppl has no short-term effect on pulmonary blood flow at rest or during mild exercise.  相似文献   

3.
Control of activity of the diaphragm in rapid-eye-movement sleep   总被引:2,自引:0,他引:2  
Respiration in rapid-eye-movement sleep (REMS) is known to be highly variable. The purpose of this study was to investigate the source of this variability and to determine which ordering principles remained operative in REM sleep. In unrestrained, naturally sleeping cats we recorded the electroencephalogram, electrooculogram, neck electromyogram, and diaphragmatic electromyogram (EMG) and computed its moving average (MAdi). As a reference, we first examined MAdi during "tonic" REMS, since breathing is fairly regular in this state. "Control" ranges for peak amplitude (PEMG), inspiratory time (TI), duration of postinspiratory inspiratory activity, expiratory time, and the calculated inspiratory slope (PEMG/TI) were determined by overlaying individual breath traces of the time course of MAdi during tonic REMS to form a composite tracing. Next, the time course of the EMG during individual breaths in slow-wave sleep (SWS) and a complete period of consecutive breaths in REMS (both tonic and phasic) were compared with this tonic REMS composite. The number of eye movements per breath was tabulated as an index of phasic activity. The inspiratory slopes during SWS and tonic REMS were similar. However, during phasic REMS, many breaths displayed either increases (excitation) or decreases (inhibition) in slope compared with the "typical" breaths seen in tonic REMS. The occurrence of these altered slopes increased with the frequency of phasic events. TI was inversely related to the slope of the EMG, which tended to minimize changes in PEMG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Ventilation is unstable during drowsiness before sleep onset. We have studied the effects of transitory changes in cerebral state during drowsiness on breath duration and lung volume in eight healthy subjects in the absence of changes in airway resistance and fluctuations of ventilation and CO2 tension, characteristic of the onset of non-rapid eye movement sleep. A volume-cycled ventilator in the assist control mode was used to maintain CO2 tension close to that when awake. Changes in cerebral state were determined by the EEG on a breath-by-breath basis and classified as alpha or theta breaths. Breath duration and the pause in gas flow between the end of expiratory airflow and the next breath were computed for two alpha breaths which preceded a theta breath and for the theta breath itself. The group mean (SD) results for this alpha-to-theta transition was associated with a prolongation in breath duration from 5.2 (SD 1.3) to 13.0 s (SD 2.1) and expiratory pause from 0.7 (SD 0.4) to 7.5 s (SD 2.2). Because the changes in arterial CO2 tension (PaCO2) are unknown during the theta breaths, we made in two subjects a continuous record of PaCO2 in the radial artery. PaCO2 remained constant from the alpha breaths through to the expiratory period of the theta breath by which time the duration of breath was already prolonged, representing an immediate and altered ventilatory response to the prevailing PaCO2. In the eight subjects, the CO2 tension awake was 39.6 Torr (SD 2.3) and on assisted ventilation 38.0 Torr (1.4). We conclude that the ventilatory instability recorded in the present experiments is due to the apneic threshold for CO2 being at or just below that when awake.  相似文献   

5.
To investigate the interindividual differences in respiratory sinus arrhythmia (RSA), recordings of ventilation and electrocardiogram were obtained from 12 healthy subjects for five imposed breathing periods (T(TOT)) surrounding each individual's spontaneous breathing period. In addition to the spectral analysis of the R-R interval signal at each breathing period, RSA characteristics were quantified by using a breath-by-breath analysis where a sinusoid was fitted to the changes in instantaneous heart rate in each breath. The amplitude and phase (or delay = phase x T(TOT)) of this sinusoid were taken as the RSA characteristics for each breath. It was found that for each subject the RSA amplitude-T(TOT) relationship was linear, whereas the delay-T(TOT) relationship was parabolic. However, the parameters of these relationships differed between individuals. Linear correlation between the slopes of RSA amplitude versus T(TOT) regression lines and 1) mean breathing period and 2) mean R-R interval during spontaneous breathing were calculated. Only the correlation coefficient with breathing period was significantly different from zero, indicating that the longer the spontaneous breathing period the lesser the increase in RSA amplitude with increasing breathing period. Similarly, only the correlation coefficient between the curvature of the RSA delay-T(TOT) parabola and mean breathing period was significantly different from zero; the longer the spontaneous breathing period the larger the curvature of RSA delay. These results suggest that the changes in RSA characteristics induced by changing the breathing period may be explained partly by the spontaneous breathing period of each individual. Furthermore, a transfer function analysis performed on these data suggested interindividual differences in the autonomic modulation of the heart rate.  相似文献   

6.
We analyzed breath-to-breath inspiratory time (TI), expiratory time (TE), inspiratory volume (VI), and minute ventilation (Vm) from 11 normal subjects during stage 2 sleep. The analysis consisted of 1) fitting first- and second-order autoregressive models (AR1 and AR2) and 2) obtaining the power spectra of the data by fast-Fourier transform. For the AR2 model, the only coefficients that were statistically different from zero were the average alpha 1 (a1) for TI, VI, and Vm (a1 = 0.19, 0.29, and 0.15, respectively). However, the power spectra of all parameters often exhibited peaks at low frequency (less than 0.2 cycles/breath) and/or at high frequency (greater than 0.2 cycles/breath), indicative of periodic oscillations. After accounting for the corrupting effects of added oscillations on the a1 estimates, we conclude that 1) breath-to-breath fluctuations of VI, and to a lesser extent TI and Vm, exhibit a first-order autoregressive structure such that fluctuations of each breath are positively correlated with those of immediately preceding breaths and 2) the correlated components of variability in TE are mostly due to discrete high- and/or low-frequency oscillations with no underlying autoregressive structure. We propose that the autoregressive structure of VI, TI, and Vm during spontaneous breathing in stage 2 sleep may reflect either a central neural mechanism or the effects of noise in respiratory chemical feedback loops; the presence of low-frequency oscillations, seen more often in Vm, suggests possible instability in the chemical feedback loops. Mechanisms of high-frequency periodicities, seen more often in TE, are unknown.  相似文献   

7.
8.
Multiple-breath washouts were performed on 30 Wistar rats postmortem in a study in which breaths of 90% O2-5% He-5% SF6 were given. Preliminary comparison of alveolar plateau slopes obtained from anesthetized rats in vivo and postmortem showed that ventilation distribution remains the same within 1 h after the animals were killed. For maneuvers with different preinspiratory lung volumes and end-inspiratory breathholding, we computed the normalized N2 slope (Sn) and Fowler and Bohr dead spaces [VDF(n) and VDB(n), respectively] as a function of breath number (n). For all maneuvers analyzed, Sn of all gases increased in the first two or three breaths and reached a horizontal asymptote thereafter. The value of Sn decreased, both with increasing preinspiratory lung volume and breath hold of 4 s. The fact that the horizontal Sn asymptote is reached after only two or three breaths suggests the absence of convection-dependent inhomogeneities (CDI) in rat lungs. This contrasts with multiple-breath washout experiments in humans, where interregional (gravity-dependent CDI) and intraregional CDI generate a marked increase in Sn throughout the entire washout. Also, in contrast with results in humans, VDF and VDB were independent of n. The present work suggests that rats may be used to study diffusion- and convection-dependent inhomogeneities without the influence of CDI or gas exchange.  相似文献   

9.
Individual neurons in the suprachiasmatic nucleus (SCN), the master biological clock in mammals, autonomously produce highly complex patterns of spikes. We have shown that most (~90%) SCN neurons exhibit truly stochastic interspike interval (ISI) patterns. The aim of this study was to understand the stochastic nature of the firing patterns in SCN neurons by analyzing the ISI sequences of 150 SCN neurons in hypothalamic slices. Fractal analysis, using the periodogram, Fano factor, and Allan factor, revealed the presence of a 1/f-type power-law (fractal) behavior in the ISI sequences. This fractal nature was persistent after the application of the GABAA receptor antagonist bicuculline, suggesting that the fractal stochastic activity is an intrinsic property of individual SCN neurons. Based on these physiological findings, we developed a computational model for the stochastic SCN neurons to find that their stochastic spiking activity was best described by a gamma point process whose mean firing rate was modulated by a fractal binomial noise. Taken together, we suggest that SCN neurons generate temporal spiking patterns using the fractal stochastic point process.Action Editor: Carson C. Chow  相似文献   

10.
The behavior of lateral-superior-olive (LSO) auditory neurons over large time scales was investigated. Of particular interest was the determination as to whether LSO neurons exhibit the same type of fractal behavior as that observed in primary VIII-nerve auditory neurons. It has been suggested that this fractal behavior, apparent on long time scales, may play a role in optimally coding natural sounds. We found that a nonfractal model, the nonstationary dead-time-modified Poisson point process (DTMP), describes the LSO firing patterns well for time scales greater than a few tens of milliseconds, a region where the specific details of refractoriness are unimportant. The rate is given by the sum of two decaying exponential functions. The process is completely specified by the initial values and time constants of the two exponentials and by the dead-time relation. Specific measures of the firing patterns investigated were the interspike-interval (ISI) histogram, the Fano-factor time curve (FFC), and the serial count correlation coefficient (SCC) with the number of action potentials in successive counting times serving as the random variable. For all the data sets we examined, the latter portion of the recording was well approximated by a single exponential rate function since the initial exponential portion rapidly decreases to a negligible value. Analytical expressions available for the statistics of a DTMP with a single exponential rate function can therefore be used for this portion of the data. Good agreement was obtained among the analytical results, the computer simulation, and the experimental data on time scales where the details of refractoriness are insignificant. For counting times that are sufficiently large, yet much smaller than the largest time constant in the rate function, the Fano factor is directly proportional to the counting time. The nonstationarity may thus mask fractal fluctuations, for which the Fano factor increases as a fractional power (less than unity) of the counting time.  相似文献   

11.
Imperceptible levels of proportional assist ventilation applied throughout inspiration reduced inspiratory time (TI) in awake humans. More recently, the reduction in TI was associated with flow assist, but flow assist also reaches a maximum value early during inspiration. To test the separate effects of flow assist and timing of assist, we applied a pseudorandom binary sequence of flow-assisted breaths during early, late, or throughout inspiration in eight normal subjects. We hypothesized that imperceptible flow assist would shorten TI most effectively when applied during early inspiration. Tidal volume, integrated respiratory muscle pressure per breath, TI, and TE were recorded. All stimuli (early, late, or flow assist applied throughout inspiration) resulted in a significant increase in inspiratory flow; however, only when the flow assist was applied during early inspiration was there a significant reduction in TI and the integrated respiratory muscle pressure per breath. These results provide further evidence that vagal feedback modulates breathing on a breath-by-breath basis in conscious humans within a physiological range of breath sizes.  相似文献   

12.
We performed multiple-breath N2 washouts (MBNW) with tidal volumes of 1 liter at 8-16 breaths/min and constant flow rates in six normal subjects. For each breath we computed the slope of the alveolar plateau, normalized by the mean expired N2 concentration (Sn), the Bohr dead space (VDB), an index analogous to the Fowler dead space (V50), and the normalized slope of phase II (S2). In four subjects helium (He) and sulfur hexafluoride (SF6) were washed out after equilibration with a 5% gas mixture of each tracer. The Sn for He and SF6 increased in consecutive breaths, but the difference (delta Sn) increased only over the first five breaths, remaining constant thereafter. In all six subjects Sn, VDB, and V50 increased progressively in consecutive breaths of the MBNW, the increase in Sn being the greatest, approximately 290% from the first to the 23-25th breath. In contrast, S2 was unchanged initially and decreased after the sixth breath. The results indicate that after the fifth breath the increase in Sn during a MBNW is diffusion independent and may constitute a sensitive index of convection-dependent inhomogeneity (CDI). Subtraction of this component from the first breath suggests that Sn in a single-breath washout is largely due to a diffusion-dependent mechanism. The latter may reflect an interaction of convection and diffusion within the lung periphery, whereas CDI may comprise ventilation inequality among larger units, subtended by more centrally located branch points.  相似文献   

13.
We studied the effect of hypoxia-induced unstable and periodic breathing on the incidence of obstructed breaths in nine subjects who varied widely in their increase in total pulmonary resistance (RL) during non-rapid-eye-movement (NREM) sleep. During normoxic NREM sleep, all subjects showed hypoventilation, augmented diaphragmatic electromyogram (EMGdi), and increased RL. This response varied: two subjects doubled their mean RL (range 6-9 cmH2O X l-1 X s); four moderate snorers increased RL four- to eightfold (RL = 16-48 cmH2O X l-1 X s); three heavy snorers showed high RL (31-89 cmH2O X l-1 X s) plus cyclical obstructive hypopnea as their predominant breathing pattern. In seven of nine subjects, hypoxia and coincident hypocapnia initially caused an irregular cyclical breathing pattern with obstructed breaths (RL greater than 50 cmH2O X l-1 X s). The incidence of obstructed breaths induced by unstable breathing was closely correlated with the level of RL experienced in the control condition of normoxic sleep (r = 0.91). The obstructed breaths had relatively high O2 saturation (90-96%) and markedly reduced EMGdi activity and peak flow rate (less than 0.2 l/s) compared with breaths immediately after the obstructed breaths, which showed lower O2 saturation (81-93%) and markedly augmented EMGdi and flow rates. After 3-6 cycles of obstructive hypopnea, periodic breathing occurred in most subjects. During periodic breathing in six of seven subjects, the incidence of obstructed or high-resistance breaths was decreased or eliminated since each central apneic period was followed by breath clusters characterized by very high EMGdi, very low RL, and high flow rates. The remaining subject showed a high incidence of obstructed breaths during all phases of normoxic and hypoxic sleep. These data show that hypoxia-induced instability in breathing pattern can cause obstructed breaths during sleep coincident with reduced motor output to inspiratory muscles. However, this obstruction is only manifested in subjects susceptible to upper airway atonicity and narrowing (such as snorers) and can be prevented in most cases if respiratory drive is permitted to reach sufficiently high levels (as during central apnea).  相似文献   

14.
To ensure respiratory stability and flexibility, healthy breathing shows balanced variability consisting of considerable correlated variability (parameters of each breath are correlated to parameters of adjoining breaths) and some random variability. Sighing resets this balance when respiration lacks variability or becomes excessively irregular. The present study aimed to investigate the effect of imposed patterns of breathing variability on sighing and self-reported (dis)comfort. Spontaneous breathing was compared to imposed non-variable, correlated and random breathing. Results show that executing imposed breathing is difficult, demanding, and induces tension. Sigh occurrence following spontaneous and imposed breathing patterns could be predicted by self-reported discomfort and increased random variability. However, including non-variable, correlated and random breathing patterns only, the effects of self-reported discomfort on sigh occurrence override the effects of altered breathing variability.  相似文献   

15.
Respiratory sinus arrhythmia (RSA) may serve an inherent function in optimizing pulmonary gas exchange efficiency via clustering and scattering of heart beats during the inspiratory and expiratory phases of the respiratory cycle. This study sought to determine whether physiological levels of RSA, enhanced by slow paced breathing, caused more heart beats to cluster in inspiration. In 12 human subjects, we analyzed the histogram distribution of heart beats throughout the respiratory cycle during paced breathing at 12, 9, and 6 breaths/min (br/min). The inspiratory period-to-respiratory period ratio was fixed at approximately 0.5. RSA and its relationship with respiration was characterized in the phase domain by average cubic-spline interpolation of electrocardiographic R wave-to-R wave interval fluctuations throughout all respiratory cycles. Although 6 br/min breathing was associated with a significant increase in RSA amplitude (P < 0.01), we observed no significant increase in the proportion of heart beats in inspiration (P = 0.34). Contrary to assumptions in the literature, we observed no significant clustering of heart beats even with high levels of RSA enhanced by slow breathing. The results of this study do not support the hypothesis that RSA optimizes pulmonary gas exchange efficiency via clustering of heart beats in inspiration.  相似文献   

16.
The instantaneous heart rate and respiratory pattern were recorded immediately after brief periods of exercise in 41 healthy male students. Recordings were taken with the subjects both supine and standing. More than half of these subjects showed oscillatory heart changes when recovering supine but not when standing. During these oscillations the heart rate slowed suddenly by more than 30 beats/min; the oscillations had a period of 4 to 8 seconds, and they continued for half to two minutes. The P waves of the electrocardiogram were decreased during the slowing, consistent with increased vagal activity. When these oscillations occurred they each followed the start of an inspiration with the same latency as in respiratory sinus arrhythmia; unlike respiratory sinus arrhythmia, however, they did not occur after every inspiration but varied from 1:1 to 1:3 oscillations:breaths. They were not usually stopped by breath holding but were reduced or abolished by procedures which reduced venous return. This pattern of oscillations--"vagushalt"--seems to be different from respiratory sinus arrhythmias, and central venous pressure may contribute to the phenomenon. Although it is not widely recognised, vagushalt is probably very common and possibly its occurrence may change in disease.  相似文献   

17.
The respiratory pattern of gasping has been characterized on the phrenic nerve as rapidonset, rapid-rise, large-amplitude bursts of neural activity. Furthermore, medullary sites critical for the neurogenesis of gasping have been identified and are not the sites of identified respiratory neurons, such as the dorsal and ventral respiratory groups. I classified envelopes of phrenic nerve activity as eupneic breaths, or gasps based on the time-domain features of duration, shape, and amplitude. Gasps were elicited by hypoxia and low blood pressure in 9 of 12 decerebrate cats. Inspiratory times were 1.15 +/- 0.43 (SD) for eupneic breaths and 0.55 +/- 0.18s for gasps. The high-frequency peaks in the power spectra of phrenic nerve activity were at 80 +/- 13 Hz for eupneic breaths and at 120 +/- 21 Hz for gasps. Three of the 12 cats developed a breathing pattern that began as a normal breath and terminated in a gasp. Power spectra of the normal portion had eupneic spectral peaks (75 +/- 24 Hz); power spectra of the gasp portion had the high peaks at 110 +/- 23 Hz, a value 1.5 times higher than that for the normal peaks. Although this analysis of peripheral nerve activity cannot distinguish between two central pattern generators at two distinct anatomical sites or one pattern generator operating in two distinct modes, the fact that gasps were much shorter in duration and had markedly higher spectral peaks than control breaths supports the idea that the central pattern generator for gasping is not the central pattern generator for eupnea.  相似文献   

18.
In this study respiratory rates of 3, 4, 6, 8, 10, 12, and 14 breaths per minute were employed to investigate the effects of these rates on heart rate variability (HRV). Data were collected 16 times at each respiratory rate on 3 female volunteers, and 12 times on 2 female volunteers. Although mean heart rates did not differ among these respiratory rates, respiratory-induced trough heart rates at 4 and 6 breaths per minute were significantly lower than those at 14 breaths per minute. Slower respiratory rates usually produced higher amplitudes of HRV than did faster respiratory rates. However, the highest amplitudes were at 4 breaths per minute. HRV amplitude decreased at 3 breaths per minute. The results are interpreted as reflecting the possible effects of the slow rate of acetylcholine metabolism and the effect of negative resonance at 3 cycles per minute.  相似文献   

19.
The addition to the respiratory system of a resistive load results in breathing pattern changes and in negative intrathoracic pressure increases. The aim of this study was to use resistive load breathing as a stimulus to the cardiorespiratory interaction and to examine the extent of the changes in heart rate variability (HRV) and respiratory sinus arrhythmia (RSA) in relation to the breathing pattern changes. HRV and RSA were studied in seven healthy subjects where four resistive loads were applied in a random order during the breath and 8-min recording made in each condition. The HRV spectral power components were computed from the R-R interval sequences, and the RSA amplitude and phase were computed from the sinusoid fitting the instantaneous heart rate within each breath. Adding resistive loads resulted in 1) increasing respiratory period, 2) unchanging heart rate, and 3) increasing HRV and changing RSA characteristics. HRV and RSA characteristics are linearly correlated to the respiratory period. These modifications appear to be linked to load-induced changes in the respiratory period in each individual, because HRV and RSA characteristics are similar at a respiratory period obtained either by loading or by imposed frequency breathing. The present results are discussed with regard to the importance of the breathing cycle duration in these cardiorespiratory interactions, suggesting that these interactions may depend on the time necessary for activation and dissipation of neurotransmitters involved in RSA.  相似文献   

20.
Respiratory flow profiles have been of interest as an output of the respiratory controller. In determining average flow profiles, however, previous methods that align individual breaths in the time domain are susceptible to distortions caused by the great variability, both between breaths and within breaths. We aimed to develop a method for determining typical flow profiles that circumvents such distortions. Our method aligns different breaths by phase of respiratory cycle, which is defined as the angle associated with the point on the normalized flow-volume diagram (a phase-plane plot). Over a number of breaths, median values for flow, volume, and elapsed time from the start of the breath at each phase angle are determined. Because these estimates are mutually semi-independent and in general violate the laws of mass balance, an adjustment was performed such that the volume was precisely the time integral of the flow. The method produced typical flow profiles with characteristics that were significantly closer to the mean values obtained from the individual cycles than those obtained by the technique of Benchetrit and co-workers (Benchetrit G, Shea SA, Dinh TP, Bodocco S, Baconnier P, and Guz A, Respir Physiol 75: 199-210, 1989), which reconstructs the typical flow profile from Fourier coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号