首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While there was evidence on the relationship between extreme hot weather and the increase in mortality, particularly from ischaemic heart disease (IHD) and cerebrovascular disease (stroke), some researchers suggested that early warning systems might reduce mortality. In this study, the relationship between Very Hot Weather Warning (VHWW) and mortality was examined in the context of Hong Kong, which has a sub-tropical climate. An observational study was conducted on the daily number of deaths due to IHD and stroke in the Hong Kong elderly population (aged 65 or above) during summer (May–September) in 1997–2005. Totals of 4,281 deaths from IHD and 4,764 deaths from stroke occurred on days with maximum temperature reaching/exceeding 30.4°C. Multiple linear regression models were used to study the association between VHWW and the daily mortality rates from IHD and from stroke, respectively. Results showed that absence of VHWW was associated with an increase of about 1.23 (95% CI: 0.32, 2.14) deaths from IHD and 0.97 (95% CI: 0.02, 1.92) deaths from stroke among the elderly per day. Public education is required to inform the elderly to take appropriate preventive measures and to remind the public to pay more care and attention to the elderly on days which are not considered to be stressful to the general public. Warning systems tailored for the elderly could also be considered.  相似文献   

2.
Cardiovascular disease (CVD) is the number one cause of death globally and evidence is steadily increasing on the role of non-traditional risk factors such as meteorology and air pollution. Nevertheless, many research gaps remain, such as the association between these non-traditional risk factors and subtypes of CVD, such as acute myocardial infarction (AMI). The objective of this study was to investigate the association between daily ambient temperature and AMI hospitalisations using a case-crossover design in Gothenburg, Sweden (1985–2010). A secondary analysis was also performed for out-of-hospital ischemic heart disease (IHD) deaths. Susceptible groups by age and sex were explored. The entire year as well as the warm (April−September) and cold periods (October–March) were considered. In total 28 215 AMI hospitalisations (of 22 475 people) and 21 082 out-of-hospital IHD deaths occurred during the 26-year study period. A linear exposure-response corresponding to a 3% and 7% decrease in AMI hospitalisations was observed for an inter-quartile range (IQR) increase in the 2-day cumulative average of temperature during the entire year (11°C) and the warm period (6°C), respectively, with and without adjustment for PM10, NO2, NOx or O3. No heat waves occurred during the warm period. No evidence of an association in the cold period nor any association between temperature and IHD deaths in the entire year, warm or cold periods - with and without adjusting for PM10, NO2, NOx or O3 was found. No susceptible groups, based on age or sex, were identified either. The inverse association between temperature and AMI hospitalisations (entire year and warm period) in Gothenburg is in accordance with the majority of the few other studies that investigated this subtype of CVD.  相似文献   

3.
The study examines the relationship between sudden changes in weather conditions in summer, represented by (1) sudden air temperature changes, (2) sudden atmospheric pressure changes, and (3) passages of strong atmospheric fronts; and variations in daily mortality in the population of the Czech Republic. The events are selected from data covering 1986–2005 and compared with the database of daily excess all-cause mortality for the whole population and persons aged 70 years and above. Relative deviations of mortality, i.e., ratios of the excess mortality to the expected number of deaths, were averaged over the selected events for days D−2 (2 days before a change) up to D+7 (7 days after), and their statistical significance was tested by means of the Monte Carlo method. We find that the periods around weather changes are associated with pronounced patterns in mortality: a significant increase in mortality is found after large temperature increases and on days of large pressure drops; a decrease in mortality (partly due to a harvesting effect) occurs after large temperature drops, pressure increases, and passages of strong cold fronts. The relationship to variations in excess mortality is better expressed for sudden air temperature/pressure changes than for passages of atmospheric fronts. The mortality effects are usually more pronounced in the age group 70 years and above. The impacts associated with large negative changes of pressure are statistically independent of the effects of temperature; the corresponding dummy variable is found to be a significant predictor in the ARIMA model for relative deviations of mortality. This suggests that sudden weather changes should be tested also in time series models for predicting excess mortality as they may enhance their performance.  相似文献   

4.
Winter ischaemic heart disease (IHD) mortality events (ME) were identified in order to establish their degree of meteorological sensitivity. Sensitivity was evaluated using regression of surface meteorological and large-scale atmospheric circulation variables on daily mortality for each mortality event. Critical meteorological variables affecting IHD mortality appear to be local surface dry-bulb and dew-point temperature and large-scale southerly and westerly wind components, atmospheric pressure and vorticity. The rate of change and departure from normal conditions of these variables appear to be especially important for engendering IHD mortality events. Associated with IHD mortality are two broad types of weather conditions: (1) blustery westerly flows and rapidly changing weather from the west and (2) climatologically strong northeasterly to southeasterly flows of cold air, which bring rapidly changing and anomalous thermal conditions to the study area. The general atmospheric circulation patterns that produce these conditions are identified and the implications of results for weather and health studies are discussed. Received: 24 October 2000 / Revised: 16 April 2001 / Accepted: 18 April 2001  相似文献   

5.
Mortality and displaced mortality during heat waves in the Czech Republic   总被引:2,自引:0,他引:2  
The aims of this study were to assess impacts of hot summer periods on mortality in the Czech Republic and to quantify the size of the short-term displacement effect which resulted in lower than expected mortality after heat waves. The analysis covered the period 1982–2000 when several extraordinarily hot summers occurred in central Europe. Daily total all-cause mortality and mortality due to cardiovascular diseases (CVD) in the entire population of the Czech Republic (approximately 10 million inhabitants) were examined. The daily death counts were standardized to account for the long-term decline in mortality and the seasonal and weekly cycles. Heat-related mortality is better expressed if 1-day lag after temperature is considered compared to the unlagged relationship. With the 1-day lag, both excess total mortality and excess CVD mortality were positive during all 17 heat waves, and in 14 (12) heat waves the increase in total (CVD) mortality was statistically significant (P=0.05). The mean relative rise in total mortality during heat waves was 13%. The response was greater in females than males and similar regardless of whether total or CVD mortality was used. The largest relative increases, exceeding 20% in both total and CVD mortality, were associated with heat waves which occurred in early summer (the first half of July 1984 and June 1994). The mortality displacement effect played an important role since mortality tended to be lower than expected after hot periods. The mean net mortality change due to heat waves was estimated to be about a 1% increase in the number of deaths. The large relative increases during some heat waves were particularly noteworthy since the study (in contrast to most analyses of the heat stress/mortality relationship) was not restricted to an urban area and/or an elderly population.  相似文献   

6.
This study investigated the effect of temperature and air pollutants on total mortality in summers in Sydney, Australia. Daily data on weather variables, mortality and air pollution for the Sydney metropolitan area from 1 January 1994 to 31 December 2004 were supplied by Australian Bureau of Meteorology, Australian Bureau of Statistics, and Environment Protection Agency of New South Wales, respectively. We examined the association of total mortality with weather indicators and air pollution using generalised additive models (GAMs). A time-series classification and regression tree (CART) model was developed to explore the interaction effects of temperature and air pollution that impacted on mortality. Our results show that the average increase in total daily mortality was 0.9% [95% confidence interval (CI): 0.6-1.3%] and 22% (95% CI: 6.4-40.5%) for a 1 degrees C increase in daily maximum temperature and 1 part per hundred million (pphm) increase in daily average concentration of sulphur dioxide (SO(2)), respectively. Time-series CART results show that maximum temperature and SO(2) on the current day had significant interaction effects on total mortality. There were 7.3% and 12.1% increases in daily average mortality when maximum temperature was over 32 degrees C and mean SO(2) exceeded 0.315 pphm, respectively. Daily maximum temperature was statistically significantly associated with daily deaths in Sydney during summers between 1994 and 2004. Elevated daily maximum temperature combined with high SO(2) concentrations appeared to have contributed to the increased mortality observed in Sydney during this period.  相似文献   

7.
Mortality and morbidity indices are known to depend on changes in meteorological conditions. In Athens, severe adverse health effects following extreme heat conditions have been reported. The usefulness has been investigated of the complex thermohygrometric index (THI), a simple index based on maximum daily temperature and relative humidity, in predicting the health effects of specific meteorological conditions. The values of THI were found to correlate well with more complex bioclimatic indices; the THI could successfully replace temperature and humidity in predicting the daily number of deaths through multiple linear regression modelling. Thus the introduction of THI levels more than 28.5° C and between 26.5 and 28.5° C, through dummy variables, in a regression model explained 40% of the variability in the number of deaths during the months of July and August. During days with THI values less than 26.5° C the mean number of deaths was 33.5, compared to 41.8 when THI was between 26.5 and 28.5° C. The daily number of deaths increased to 108.2 when THI exceeded 28.5° C. From this study, the exact level of THI at which public health measures must be taken was not clear and more work is needed to identify it. However, given its simplicity, the use of THI for predicting meteorological conditions which are adverse to health would appear to be promising in preventive medicine and in health services planning.  相似文献   

8.
Mortality from acute myocardial infarction (MI) over the 5 year period 1982–1987 in Brown County, Wisconsin, was analyzed to assess the relationship with environmental temperature. Deaths occurrring on the day of and the day following a significant snowfall as well as deaths occuring in health care facilities were eliminated from consideration because the focus was upon temperature, not snowfall or events within a hospital. These criteria resulted in the inclusion of 1,802 days and 926 cases of acute MI. The mean temperature on the day of death was obtained from climatological data and were grouped into six categories covering a range of temperatures from<–17.8°C (0°F) to 16.1°C (61°F). The number of deaths in each category was tabulated. The effect of temperature, sex, and age were analyzed by regression analysis. The results indicated a linear increase in mortality as mean daily temperature decreased over the temperature range. The inverse temperature effect was most pronounced in males over the age of 60. These results indicate that cold temperatures appear to be associated with an increased mortality from myocardial infarction.  相似文献   

9.
Deaths from heat-stroke in Japan: 1968–1994   总被引:5,自引:0,他引:5  
Global warming is increasingly recognized as a threat to the survival of human beings, because it could cause a serious increase in the occurrence of diseases due to environmental heat during intermittent hot weather. To assess the direct impact of extremely hot weather on human health, we investigated heat-related deaths in Japan from 1968 through 1994, analyzing the data to determine the distribution of the deaths by age and their correlation to the incidence of hot days in summer. Vital Statistics of Japan, published by the Ministry of Health and Welfare of Japan, was the source of the heat-related mortality data employed in this study. Meteorological data were obtained from the District Meteorological Observatories in Tokyo and Osaka, the two largest cities in Japan. Heat-related deaths were most prone to occur on days with a peak daily temperature above 38°C, and the incidence of these deaths showed an exponential dependence on the number of hot days. Thus, even a small rise in atmospheric temperature may lead to a considerable increase in heat-related mortality, indicating the importance of combating global warming. Furthermore, half (50.1%) of the above-noted deaths occurred in children (4 years and under) and the elderly (70 years and over) irrespective of gender, indicating the vulnerability of these specific age groups to heat. Since a warmer climate is predicted in the future, the incidence of heat waves will increase, and more comprehensive measures, both medical and social, should be adopted for children of 4 years and younger the elderly to prevent heat-related deaths in these age groups. Received: 20 January 1999 / Accepted: 15 June 1999  相似文献   

10.
As cold weather is an ischaemic heart disease (IHD) risk factor, year-to-year variations of the level of IHD mortality may be partly determined by inter-annual variations in winter climate. This paper investigates whether there is any association between the level of IHD mortality for three English counties and the winter North Atlantic Oscillation (NAO), which exerts a fundamental control on the nature of the winter climate over Western Europe. Correlation and regression analysis was used to explore the nature of the association between IHD mortality and a climate index (CI) that represents the interaction between the NAO and temperature across England for the winters 1974–1975 to 1989–1999. Statistically significant inverse associations between the CI and the level of IHD mortality were found. Generally, high levels of winter IHD mortality are associated with a negative CI, which represents winters with a strong negative phase of the NAO and anomalously low temperatures across England. Moreover, the nature of the CI in the early stages of winter appears to exert a fundamental control on the general level of winter IHD mortality. Because winter climate is able to explain a good proportion of the inter-annual variability of winter mortality, long-lead forecasting of winter IHD mortality appears to be a possibility. The integration of climate-based health forecasts into decision support tools for advanced general winter emergency service and capacity planning could form the basis of an effective adaptive strategy for coping with the health effects of harsh winters.  相似文献   

11.
Excess deaths during the 2004 heatwave in Brisbane, Australia   总被引:1,自引:0,他引:1  
The paper examines whether there was an excess of deaths and the relative role of temperature and ozone in a heatwave during 7–26 February 2004 in Brisbane, Australia, a subtropical city accustomed to warm weather. The data on daily counts of deaths from cardiovascular disease and non-external causes, meteorological conditions, and air pollution in Brisbane from 1 January 2001 to 31 October 2004 were supplied by the Australian Bureau of Statistics, Australian Bureau of Meteorology, and Queensland Environmental Protection Agency, respectively. The relationship between temperature and mortality was analysed using a Poisson time series regression model with smoothing splines to control for nonlinear effects of confounding factors. The highest temperature recorded in the 2004 heatwave was 42°C compared with the highest recorded temperature of 34°C during the same periods of 2001–2003. There was a significant relationship between exposure to heat and excess deaths in the 2004 heatwave [estimated increase in non-external deaths: 75 ([95% confidence interval, CI: 11–138; cardiovascular deaths: 41 (95% CI: −2 to 84)]. There was no apparent evidence of substantial short-term mortality displacement. The excess deaths were mainly attributed to temperature but exposure to ozone also contributed to these deaths.  相似文献   

12.
Abstract

Disclosures that this decade has had the five hottest years ever recorded globally raise concern that extreme temperatures might be associated with higher mortality. An analysis of fluctuations in annual cause‐specific deaths, seasonal temperatures, and annual income per capita in Massachusetts, Michigan, Washington, Utah, North Carolina, and Mississippi, 1930 to 1985, suggests that, on the contrary, a temperature increase throughout the year was associated with fewer deaths from all causes combined, including deaths from infectious diseases, heart diseases, cerebrovascular diseases, pneumonia, and influenza. An average temperature increase of one degree Fahrenheit was associated with a more than 2 per cent decline in deaths from pneumonia and influenza. The only category of deaths showing no significant association was death from malignant neoplasms. Compared to spring, summer, and fall temperature fluctuations, unusually cold winter temperatures had the strongest fatal effects, but only in North Carolina and Mississippi. The greatest cumulative temperature effects on mortality were found in the same two states. Controlling for annual fluctuations in income per capita did not influence the relationship between temperature and mortality. There was evidence suggesting that the level of wealth ameliorated the fatal effects of extreme temperatures. In conclusion, unusually warm weather was followed by fewer deaths; unusually cold weather, by more deaths.  相似文献   

13.
We assessed the influence of control for air pollution and respiratory epidemics on associations between apparent temperature (AT) and daily mortality in Mexico City and Monterrey. Poisson regressions were fit to mortality among all ages, children (ages 0–14 years) and the elderly (ages 65 years). Predictors included mean daily AT, season, day of week and public holidays for the base model. Respiratory epidemics and air pollution (particulate matter <10 m in aerodynamic diameter and O3) were added singly and then jointly for a fully adjusted model. Percent changes in mortality were calculated for days of relatively extreme temperatures [cold (10–11°C) for both cities and heat (35–36°C) for Monterrey], compared to days at the overall mean temperature in each city (15°C in Mexico City, 25°C in Monterrey). In Mexico City, total mortality increased 12.4% [95% confidence interval (CI) 10.5%, 14.5%] on cold days (fully adjusted). Among children, the adjusted association was similar [10.9% (95% CI: 5.4%, 16.7%)], but without control for pollution and epidemics, was nearly twice as large [19.7% (95% CI: 13.9%, 25.9)]. In Monterrey, the fully adjusted heat effect for all deaths was 18.7% (95% CI: 11.7%, 26.1%), a third lower than the unadjusted estimate; the heat effect was lower among children [5.5% (95% CI: –10.1%, 23.8%)]. Cold had a similar effect on all-age mortality as in Mexico City [11.7% (95% CI: 3.7%, 20.3%)]. Responses of the elderly differed little from all-ages responses in both cities. Associations between weather and health persisted even with control for air pollution and respiratory epidemics in two Mexican cities, but risk assessments and climate change adaptation programs are best informed by analyses that account for these potential confounders.  相似文献   

14.
The study is focused on patterns of daily deaths in Shanghai for the period from 1 May 1979 to 30 April 1980. From May to September the deaths in all age groups are lower, but increase gradually from October and reach to a peak in February. This confirms results found in other countries, namely the death rate is increased in winter. The peak for the population aged over 70 is the highest of the three different age groups. Correlation analyses were carried out on three temperature parameters (daily minimum, maximum and mean temperatures) and six categories of death (heart disease, coronary heart disease, cerebrovascular disease, cancer, respiratory disease and total deaths). The results reveal that the average daily temperature is very significant for the six categories of death. There are three correlations: straight line relationship, parabolic relationship and exponential relationship. These different types arise from the different morbidity rates. Death from the different disease is also increased during days when the daily maximum temperature is over 35° C or the daily minimum temperature is below 0°C. This shows, in general, that days of extreme temperature lead to an increase in the death rate.  相似文献   

15.
We have investigated the association between tropical weather condition and age-sex adjusted death rates (ADR) in Thailand over a 10-year period from 1999 to 2008. Population, mortality, weather and air pollution data were obtained from four national databases. Alternating multivariable fractional polynomial (MFP) regression and stepwise multivariable linear regression analysis were used to sequentially build models of the associations between temperature variable and deaths, adjusted for the effects and interactions of age, sex, weather (6 variables), and air pollution (10 variables). The associations are explored and compared among three seasons (cold, hot and wet months) and four weather zones of Thailand (the North, Northeast, Central, and South regions). We found statistically significant associations between temperature and mortality in Thailand. The maximum temperature is the most important variable in predicting mortality. Overall, the association is nonlinear U-shape and 31 °C is the minimum-mortality temperature in Thailand. The death rates increase when maximum temperature increase with the highest rates in the North and Central during hot months. The final equation used in this study allowed estimation of the impact of a 4 °C increase in temperature as projected for Thailand by 2100; this analysis revealed that the heat-related deaths will increase more than the cold-related deaths avoided in the hot and wet months, and overall the net increase in expected mortality by region ranges from 5 to 13 % unless preventive measures were adopted. Overall, these results are useful for health impact assessment for the present situation and future public health implication of global climate change for tropical Thailand.  相似文献   

16.
A classification of daily weather types is used to obtain typical deviations of daily maximum and minimum air temperatures, global radiation, amount of precipitation, mean daily relative humidity at 1400 hours local time, meteorological water balance, grass minimum temperature at a height above the turf of 5 cm and duration of daily leaf wetness for SW Germany (Stuttgart area) from the corresponding monthly means. The period of reference was the growing season from May to September for the 5 years 1980–1984. Medium-range weather forecast maps for the ground surface and the 850 hPa level are issued daily for 5 days in advance by the medium-range weather forecasting centre at Reading (ECMWF). The forecasts are valid for Western Europe and have been used to transform the forecasted flow pattern and air pressure distribution, both on the ground and at the 850 hPa level into Central European weather types, following the classification mentioned above. The seasonal variability (from May to September) has been found to be small enough to be able to present the results as a single table for the whole vegetation period. The deviation of the forecasted values from the observed values are compared, using as test period the 1988 and 1989 seasons. The forecasts were: (i) persistency forecasts (the same deviations are forecasted for the next 5-days period); (ii) supposed weather types during the next 5 days, derived from ECMWF with expected deviations of the meteorological elements from the seasonal mean; and (iii) real weather types, classified officially from the German Weather Service using mean deviations of the meterological elements from the seasonal means. The means obtained on the 5-day deviations are discussed. The values were, for exemple, 2 K for minimum temperature, about 3 K for maximum temperature, 20% of the values for global radiation, 1.5 mm for the amount of daily precipitation and 16% for the daily duration of leaf wetness. The mean relative deviations differed between the various meterological elements, being smaller for elements mainly related on the macro-/mesoscale than for elements such as minimum temperatures that are mainly related to the microclimate.  相似文献   

17.
Several studies have examined the relationship of high and low air temperatures to cardiovascular mortality in the Czech Republic. Much less is understood about heat-/cold-related cardiovascular morbidity and possible regional differences. This paper compares the effects of warm and cold days on excess mortality and morbidity for cardiovascular diseases (CVDs) in the city of Prague and a rural region of southern Bohemia during 1994–2009. Population size and age structure are similar in the two regions. The results are evaluated for selected population groups (men and women). Excess mortality (number of deaths) and morbidity (number of hospital admissions) were determined as differences between observed and expected daily values, the latter being adjusted for long-term changes, annual and weekly cycles, and epidemics of influenza/acute respiratory infections. Generally higher relative excess CVD mortality on warm days than on cold days was identified in both regions. In contrast to mortality, weak excess CVD morbidity was observed for both warm and cold days. Different responses of individual CVDs to heat versus cold stress may be caused by the different nature of each CVD and different physiological processes induced by heat or cold stress. The slight differences between Prague and southern Bohemia in response to heat versus cold stress suggest the possible influence of environmental and socioeconomic factors such as the effects of urban heat island and exposure to air pollution, lifestyle differences, and divergence in population structure, which may result in differing vulnerability of urban versus rural population to temperature extremes.  相似文献   

18.
A simple heat alert system, based solely on predicted maximum and minimum daily temperatures, has been developed for the city of Melbourne in southeast Australia. The system is based upon a demonstration that, when mean daily temperature exceeds a threshold of 30°C (mean of today’s maximum temperature and tonight’s minimum temperature), the average daily mortality of people aged 65 years or more is about 15–17% greater than usual. Similar numbers of excess deaths also occur when daily minimum temperatures exceed 24°C (increases of 19–21% over expected death rate), so a heat alert system based solely on this widely available weather forecast variable is also feasible. No strong signal of excess heat-related deaths appears when the data are stratified using daily maximum temperatures. This may be because in Melbourne some days with very high maximum temperatures will be affected by the passage of cool changes and cold fronts in the afternoon, leading to a rapid drop in temperature (i.e., some days with high maximum temperatures will not continue to be hot throughout the day and into the evening). A single day with temperatures exceeding the thresholds noted above is sufficient to cause this increase in mortality, rather than requiring an extended heat wave. The increased daily mortality does not appear to represent a short-term advancement of mortality.  相似文献   

19.
The survival rate of mosquitoes is an important topic that affects many aspects of decision‐making in mosquito management. This study aims to estimate the variability in the survival rate of Ae. aegypti, and climate factors that are related to such variability. It is generally assumed that the daily probability of mosquito survival is independent of natural environment conditions and age. To test this assumption, a three‐year fieldwork (2005–2007) and experimental study was conducted at Fortaleza‐CE in Brazil with the aim of estimating daily survival rates of the dengue vector Aedes aegypti under natural conditions in an urban city. Survival rates of mosquitoes may be age‐dependent and statistical analysis is a sensitive approach for comparing patterns of mosquito survival. We studied whether weather conditions occurring on a particular day influence the mortality observed on that particular day. We therefore focused on the impact of daily meteorological fluctuations around a given climate average, rather than on the influence of climate itself. With regard to survival time, multivariate analyses using the stepwise logistic regression model, adjusted for daily temperature, relative humidity, and saturated vapor pressure deficit (SVPD), suggest that age, the seasonal factor, and the SVPD were the most dependent mortality factors. Similar results were obtained using the Cox proportional hazard model, which explores the relationships between the survival and explanatory variables.  相似文献   

20.
In this study the contribution of meteorological parameters to the total variability of respiratory infections (RI) is analysed. For this purpose, data on the daily numbers of general practitioner (GP) consultations for RI during the year 2002 were used. This dataset has been compiled by the Local Health Service in the surroundings of Athens, Greece (Acharnes city). The meteorological data obtained by the Meteorological Station of the National Observatory of Athens comprise daily values of mean, maximum, and minimum air temperature, air temperature range, relative humidity, absolute humidity, sunshine, surface atmospheric pressure, wind speed, as well as day-to-day changes of these parameters. Furthermore, the following biometeorological parameters and thermal indices were also evaluated: mean radiant temperature (T mrt), predicted mean vote (PMV), physiologically equivalent temperature (PET) and standard effective temperature (SET*) as well as their day-to-day changes. First, the relationship between every meteorological-biometeorological parameter and consultations for RI was examined by applying the Pearson Chi-Square Test (χ 2) to the data of the 25 compiled contingency tables. In the second stage, the application of generalised linear models (GLM) with Poisson distribution to the data revealed how much the weather variability leads to statistically important changes in consultations for RI. The results of this study contribute to the evidence that there is an association between weather conditions and the number of GP consultations for RI. More specifically, the influence of air temperature and absolute humidity on consultations on the same day is weaker than the lag effect (∼2 weeks) related to cold existence and absolute humidity, while a strong wind during the preceding 3 days drives a peak in GP consultations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号