首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The zif268 gene, which encodes a protein with three typical zinc finger sequences, is induced in mouse 3T3 cells by serum, phorbol 12-myristate 13-acetate platelet-derived growth factor, and fibroblast growth factor. The induction is coordinate with that of c-fos. The 5'-flanking region of zif268 contains sequences that resemble known regulatory elements, including four CC(A or T)6GG sequences similar to the core serum response elements (SREs) found upstream of c-fos and actin genes. To determine whether the zif268 SRE-like elements mediate induction, CAT (chloramphenicol acetyltransferase) plasmids with different lengths of zif268 upstream sequences were tested for inducibility in 3T3 cells by serum, platelet-derived growth factor, or phorbol 12-myristate 13-acetate. In addition, double-stranded oligonucleotides corresponding to each of the four zif268 putative SREs were tested individually for responsiveness when placed upstream of a thymidine kinase gene promoter. Each of the four SREs conferred inducibility by the agents tested, and multiple SREs resulted in greater inducibility than did a single element. Each of the zif268 SREs also competed with the c-fos SRE for binding by serum response factor present in HeLa cell nuclear extract. We conclude that the zif268 SRE-like sequences are functional and probably account for the coordinate induction of zif268 and c-fos.  相似文献   

2.
3.
4.
5.
We have previously reported on the presence of a CArG motif at -100 in the Rous sarcoma virus long terminal repeat which binds an avian nuclear protein termed enhancer factor III (EFIII) (A. Boulden and L. Sealy, Virology 174:204-216, 1990). By all analyses, EFIII protein appears to be the avian homolog of the serum response factor (SRF). In this study, we identify a second CArG motif (EFIIIB) in the Rous sarcoma virus long terminal repeat enhancer at -162 and show only slightly lower binding affinity of the EFIII/SRF protein for this element in comparison with c-fos serum response element (SRE) and EFIII DNAs. Although all three elements bind the SRF with similar affinities, serum induction mediated by the c-fos SRE greatly exceeds that effected by the EFIII or EFIIIB sequence. We postulated that this difference in serum inducibility might result from binding of factors other than the SRF which occurs on the c-fos SRE but not on EFIII and EFIIIB sequences. Upon closer inspection of nuclear proteins which bind the c-fos SRE in chicken embryo fibroblast and NIH 3T3 nuclear extracts, we discovered another binding factor, SRE-binding protein (SRE BP), which fails to recognize EFIII DNA with high affinity. Competition analyses, methylation interference, and site-directed mutagenesis have determined that the SRE BP binding element overlaps and lies immediately 3' to the CArG box of the c-fos SRE. Mutation of the c-fos SRE so that it no longer binds SRE BP reduces serum inducibility to 33% of the wild-type level. Conversely, mutation of the EFIII sequence so that it binds SRE BP with high affinity results in a 400% increase in serum induction, with maximal stimulation equaling that of the c-fos SRE. We conclude that binding of both SRE BP and SRF is required for maximal serum induction. The SRE BP binding site coincides with the recently reported binding site for rNF-IL6 on the c-fos SRE. Nonetheless, we show that SRE BP is distinct from rNF-IL6, and identification of this novel factor is being pursued.  相似文献   

6.
7.
8.
9.
W A Ryan  Jr  B R Franza  Jr    M Z Gilman 《The EMBO journal》1989,8(6):1785-1792
  相似文献   

10.
11.
12.
13.
14.
Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptor-mediated signaling cascades. Recently, we reported that LPA stimulates cAMP response element-binding protein (CREB) through mitogen- and stress-activated protein kinase-1 (MSK1). Previously, LPA has been shown to stimulate c-fos mRNA expression in Rat-2 fibroblast cells via a serum response element binding protein (SRF). However, involvement of CREB in LPA-stimulated c-fos gene expression is not elucidated yet. To investigate the CREB-mediated c-fos activation by LPA, various c-fos promoter-reporter constructs containing wild-type and mutated SRE and CRE were tested for their inducibility by LPA in transient transfection assays. LPA-stimulated c-fos promoter activation was markedly decreased when SRE and CRE were mutated. A dominant negative CREB significantly down-regulated the LPA-stimulated c-fos promoter activation. Chromatin immunoprecipitation assay revealed that LPA induced an increased binding of phosphorylated CREB and CREB-binding protein (CBP) to the CRE region of the endogenous c-fos promoter. Immunoblot analyses with various pharmacological inhibitors further showed that LPA induces up-regulation of c-fos mRNA level by activation of ERK, p38 MAPK, and MSK1. Taken together, our results suggest that CREB plays an important role in up-regulation of c-fos mRNA level in LPA-stimulated Rat-2 fibroblast cells.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号