首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The linear dsDNA plasmids, pGKL1 (8.9 kb) and pGKL2 (13.4 kb) discovered in Kluyveromyces lactis, confer killer and immunity characteristics upon various yeast strains. We have devised an immunity assay and have been able to show the expression of an immunity phenotype in the K. lactis transformants harbouring conventional circular plasmids which contain DNA fragments of pGKL1. Using this expression system, the immunity determinant on pGKL1 was identified as ORF5. In addition, the presence of pGKL2 was proved to be essential for the expression of the immunity phenotype. This is the first demonstration of this new pGKL2 function, as distinct from its known functions for the replication and maintenance of pGKL1 in yeast cells.  相似文献   

2.
Hairpin plasmid--a novel linear DNA of perfect hairpin structure.   总被引:10,自引:1,他引:9       下载免费PDF全文
Y Kikuchi  K Hirai  N Gunge    F Hishinuma 《The EMBO journal》1985,4(7):1881-1886
The terminal structures of deletion derivatives of linear DNA killer plasmid from yeast were analyzed. The yeast Kluyveromyces lactis harbors two unique double-stranded linear DNA killer plasmids, pGKL1 of 8.9 kb and pGKL2 of 13.4 kb. The killer toxin and the resistance to the killer are coded by pGKL1, while pGKL2 is required for the maintenance of pGKL1 in the cell. When the pGKL plasmids from K. lactis were transferred into Saccharomyces cerevisiae by transformation, non-killer transformants harboring pGKL2 and new plasmids, F1 of 7.8 kb and F2 of 3.9 kb, were obtained. F2 was shown to be a linear DNA arising from a 5-kb deletion of the right part of pGKL1. F1 was an inverted dimer of F2. Here we show that F2 has two different terminal structures: one end has a protein attached at the 5' terminus whereas the two strands of duplex are linked together at the other end, thus forming a hairpin structure. This is a novel type of autonomously replicating DNA molecule.  相似文献   

3.
Killer plasmids pGKL1 and pGKL2 of double-stranded linear DNAs were transferred from Kluyveromyces lactis to strains of Kluyveromyces fragilis and Candida pseudotropicalis. The resultant killer strains produced 17-fold and 6-fold larger amounts of killer toxin than K. lactis did, respectively. The killer toxin produced by each species appeared to be a glycoprotein.  相似文献   

4.
The linear DNA killer plasmids (pGKL1 and pGKL2) isolated from a Kluyveromyces lactis killer strain are also maintained and expressed its killer character in Saccharomyces cerevisiae. After these killer plasmid DNAs isolated from S. cerevisiae were treated with alkali, four terminal fragments from each plasmid DNAs were cloned separately. Using these and other cloned DNA fragments, the terminal nucleotide sequences of pGKL2 and the complete nucleotide sequence of pGKL1 were determined. The inverted terminal repetitions of 202 bp and 182 bp were found in pGKL1 and pGKL2, respectively. The pGKL1 sequence showed an extremely high A + T content of 73.2% and it contained five large open reading frames. The largest of these open reading frame was suggested to code for a membrane-bound precursor of glycoprotein subunit of the killer toxin.  相似文献   

5.
Two linear killer plasmids (pGKL1 and pGKL2) from Kluyveromyces lactis stably replicated and expressed the killer phenotype in a neutral petite mutant [( rho0]) of Saccharomyces cerevisiae. However, when cytoplasmic components were introduced by cytoduction from a wild-type [( rho+]) strain of S. cerevisiae, the linear plasmids became unstable and were frequently lost from the cytoductant cells during mitosis, giving rise to nonkiller clones. The phenomenon was ascribed to the incompatibility with the introduced S. cerevisiae mitochondrial DNA (mtDNA), because the plasmid stability was restored by [rho0] mutations in the cytoductant cells. Incompatibility with mtDNA was also apparent for the transmission of plasmids into diploid progeny in crosses between killer cells carrying the pGKL plasmids and [rho+] nonkiller cells lacking the plasmids. High-frequency transmission of the plasmids was observed in crosses lacking mtDNA [( rho0] by [rho0] crosses) and in crosses involving mutated mtDNA with large deletions of various regions of mitochondrial genome. In contrast, mutated mtDNA from various mit- mutations also exerted the incompatibility effect on the transmission of plasmids. Double-stranded RNA killer plasmids were stably maintained and transmitted in the presence of wild-type mtDNA and stably coexisted with pGKL killer plasmids in [rho0] cells of S. cerevisiae.  相似文献   

6.
A novel gene shuffle approach has been developed for investigating the functions of genes on the cytoplasmic linear DNA killer plasmids of Kluyveromyces lactis . By transplacing k2ORF5 from the larger plasmid pGKL2(k2) onto pGKL1(k1) we have shown this gene to be essential and functionally interchangeable between plasmids. Once transferred onto k1, k2ORF5 is fully able to complement a k2ORF50 deletion on k2 in trans , giving rise to yeast strains containing only the two recombinant plasmid forms. Additionally, the in vivo product of k2ORF5 has been identified as a 19.5 kDa protein by transplacing an epitope-tagged k2ORF5 allele from k2 to k1. The ease of detection of the tagged ORF5 product in comparison to TRF1, the gene product of k2ORF10, indicates that Orf5p is one of the most abundant k2 products, implying structural rather than regulatory function.  相似文献   

7.
Summary The yeast Kluyveromyces lactis haboring linear DNA plasmids pGKL1 and pGKL2 exhibits killer and killer-resistant phenotypes. Two new linear plasmids pK192L and pK192S were found in the weak killer mutant KUV192 induced by UV irradiation. pK192S was always accompanied by pK192L in subclones of KUV192. Both plasmids were derived from pGKL1 by deletion of the large right part of it. pK192L was 4.9 kb in size and had a palindromic structure consisting of 2.35 kb inverted terminal repetitions and a 215 base unique sequence. Analysis of denatured and renatured DNA strands suggested that pK192S was a hairpin-like form of pK192L. The pK192 plasmids were maintained only in cells haboring either pGKL1 or pGKL1S in addition to pGKL2 and competed with pGKL1 or pGKL1S for their maintenance. Since no complete ORF1 was conserved in pK192 plasmids, these results lead to the conclusion that the ORF1 gene is necessary for the replication and/or maintenance of pGKL1.  相似文献   

8.
9.
By the kar1-mediated cytoduction, linear double-stranded DNA plasmids pGKL1 and pGKL2, encoding killer toxin complex, have been successfully transferred to the recipient strains with about 30% frequency. The killer toxin was found to be secreted through the normal yeast secretory pathway by introducing pGKL plasmids into the several Saccharomyces cerevisiae sec mutants and examining the secretion of killer toxin. S. cerevisiae cells, harboring newly isolated deletion plasmid pGKL1D, expressed only the 28K protein among three killer subunits, and secreted the 28K subunit at a level of zero to 20% efficiency of the cells containing intact pGKL1 plasmid. These data indicated that subunit interaction (cosecretion) of killer proteins is required for the efficient secretion of 28K subunit. The 28K precursor protein was found to translocate across the canine pancreatic endoplasmic reticulum membrane under the direction of its own signal peptide in vitro without any other subunits. From kex2 mutant cells harboring pGKL1 plasmid, the 97K subunit, and its precursor 128K protein were not secreted, however, the 28K subunit was secreted in the same amount as that secreted from KEX2 cells. These lines of evidence suggest that the final assembly of killer toxin complex after KEX2 site of Golgi apparatus is not essential for the secretion of 28K subunit, and therefore, that putative interaction between 128K protein and 28K subunit for the transport between endoplasmic reticulum and Golgi apparatus may be required for the efficient secretion of 28K subunit.  相似文献   

10.
Linear vectors based on plasmids pGKL1 and pGKL2 from Kluyveromyces lactis were obtained by in vivo recombination in Saccharomyces cerevisiae and selected for integration of the nuclear LEU2 gene. The linear hybrid molecules obtained had no proteins attached to their 5' ends, as is found for native pGKL plasmids. However, telomere-specific sequences were added to the ends of pGKL1. In contrast to the cytoplasmically localized pGKL plasmids, the newly obtained linear hybrid vectors probably replicate within the nucleus and provide evidence that the nuclear LEU2 gene cannot be expressed in the cytoplasm.  相似文献   

11.
The terminal structures of linear DNA killer plasmids from yeast, pGKL1 and pGKL2, were analyzed. Results obtained by exonuclease treatments of these plasmids show that both pGKL plasmids have free hydroxyl 3'-ends and blocked 5'-ends. Electrophoretic analysis of the terminal restriction fragments treated with proteases revealed that pGKL1 and pGKL2 have proteins bound at 5'termini and that the terminal protein of pGKL1 is distinct from that of pGKL2. This is the first linear DNA-terminal protein association found in yeast.  相似文献   

12.
Certain strains of Pichia acaciae and Wingea robertsiae (synonym Debaryomyces robertsiae) harbour extranuclear genetic elements that confer a killer phenotype to their host. Such killer plasmids (pPac1-2 of P. acaciae and pWR1A of W. robertsiae) were sequenced and compared with the zymocin encoding pGKL1 of Kluyveromyces lactis. Both new elements were found to be closely related to each other, but they are only partly similar to pGKL1. As for the latter, they encode functions mediating binding of the toxin to the target cell's chitin and a hydrophobic region potentially involved in uptake of a toxin subunit by target cells. Consistently, mutations affecting the target cell's major chitin synthase (Chs3) protect it from toxin action. Heterologous intracellular expression of respective open reading frames identified cell cycle-arresting toxin subunits deviating structurally from the likewise imported gamma-subunit of the K. lactis zymocin. Accordingly, toxicity of both P. acaciae and Wingea toxins was shown to be independent of RNA polymerase II Elongator, which is indispensable for zymocin action. Thus, P. acaciae and Wingea toxins differ in their mode of action from the G1-arresting zymocin. Fluorescence-activated cell sorting analysis and determination of budding indices have proved that such novel toxins mediate cell cycle arrest post-G1 during the S phase. Concomitantly, the DNA damage checkpoint kinase Rad53 is phosphorylated. As a mutant carrying the checkpoint-deficient allele rad53-11 displays toxin hypersensitivity, damage checkpoint activation apparently contributes to coping with toxin stress, rather than being functionally implemented in toxin action.  相似文献   

13.
On the basis of the linear killer plasmid pGKL1 from Kluyveromyces lactis, two new linear hybrid plasmids were constructed. One of these, pRSC126, carried the xylA gene from Streptomyces rubiginosus encoding the xylose isomerase. The other linear hybrid molecule, pRSC128, carried the hasB gene of Streptococcus pyogenes encoding the UDP glucose dehydrogenase. Construction was performed in a way that the putative cytoplasmic promoter element of ORF5 of pGKL2 was fused to the coding region of the heterologous genes. After transformation, in vivo recombination led to the establishment of linear hybrid vectors. Though efficiency of expression was low when compared with bacterial systems, cytoplasmic expression of both genes was clearly demonstrated. Received: 1 April 1996 / Accepted: 30 May 1996  相似文献   

14.
Two linear deoxyribonucleic acid plasmids, designated pGK11 and pGK12, were isolated from the yeast Kluyveromyces lactis IFO 1267. pGK11 and pGK12 had molecular weights of 5.4 X 10(6) and 8.4 X 10(6), respectively. Both plasmids possessed the same density of 1.687 g/cm3, lighter than the densities of mitochondrial (1.692 g/cm3) and nuclear (1.699 g/cm3) deoxyribonucleic acids. A restriction map of pGK11 was constructed from digestions by EcoRI, HindIII, PstI, and BamHI. pGK12 was cleaved by EcoRI into seven fragments and by BamHI into two fragments K. lactis IFO 1267 killed Saccharomyces cerevisiae sensitive and killer strains and certain strains of Saccharomyces italicus, K. lactis, Kluyveromyces thermotolerans, and K. vanudenii. All K. lactis strains lacking the pGK1 plasmids were nonkillers. A hybrid was constructed between K. lactis IFO 1267 and a nonkiller K. lactis strain lacking the plasmids and subjected to tetrad analysis after sporulation. The killer character was extrachromosomally transmitted in all tetrads in association with the pGK1 plasmids. The double-stranded ribonucleic acid killer plasmid could not be detected in any K. lactis killer strains. It is thus highly probable that the killer character is mediated by the linear deoxyribonucleic acid plasmids. A single chromosomal gene was found which was responsible for the resistance to the K. lactis killer.  相似文献   

15.
Saccharomyces cerevisiae and other yeast cells harboring the linear double stranded (ds) DNA plasmids pGKL1 and pGKL2 secrete a killer toxin consisting of 97K, 31K and 28K subunits into the culture medium (EMBO J. 5, 1995-2002 (1986), Nucleic Acids Res., 15, 1031-1046 (1987]. The 28K subunit of the killer toxin was successfully expressed in S. cerevisiae when it was cloned on a circular plasmid with its putative promoter region replaced with that of S. cerevisiae chromosomal genes. The expression of the 28K subunit of the killer toxin in killer-sensitive cells resulted in the death of the host cells. This killing activity by the 28K subunit was prevented by the expression of the killer immunity, indicating that the killing activity of the killer toxin complex was carried out by the 28K subunit. Although the 28K subunit was synthesized as a intact precursor protein with its own signal sequence, it was not secreted into the culture medium but remained in the host cells. This indicated that 28K subunit killed host cells from inside of the cells rather than from outside. We further suggested that 28K killer subunit without 97K and 31K subunits did not kill the killer-sensitive cells from outside.  相似文献   

16.
Two novel linear deoxyribonucleic acid plasmids, pGKl1 and pGKl2, were isolated from the yeast Kluyveromyces lactis. K. lactis strains harboring the pGK1 plasmids killed a certain group of yeasts, including Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces rouxii, K. lactis, Kluyveromyces thermotolerans, Kluyvermyces vanudenii, Torulopsis glabrata, Candida utilis, and Candida intermedia. In this experiment, the pGKl1 and pGKl2 plasmids were intergenerically transferred from a K. lactis killer strain into a non-killer (killer-sensitive) strain of S. cerevisiae by the use of a protoplast fusion technique. Both of the pGKl plasmids replicated autonomously and stably in the new host cells of S. cerevisiae and could coexist with the resident 2-micrometers deoxyribonucleic acid plasmid. The S. cerevisiae cells which accepted the pGKl plasmids expressed the same killer phenotype as that of the donor K. lactis killer and became resistant to the K. lactis killer. The pGKl plasmids existing in the S. cerevisiae cells were cured by treatment with ethidium bromide, and the killer and resistance characters were simultaneously lost. From there results, it was concluded that both the killer and the resistance genes are located on the pGKl plasmids.  相似文献   

17.
18.
Genetic manipulation of yeast linear DNA plasmids, particularly of k1 and k2 from the non-conventional dairy yeast Kluyveromyces lactis, has been advanced by the recent establishment of DNA transformation-mediated one-step gene disruption and allele replacement techniques. These methods provide the basis for a strategy for the functional analysis of plasmid genes and DNA elements. By use of double selection regimens, these single-gene procedures have been extended to effect disruption of individual genes on plasmid k2 and transplacement of a functional copy onto plasmid k1, resulting in the production of yeast strains with an altered plasmid composition. This cytoplasmic gene shuffle system facilitates the introduction of specifically modified alleles into k1 or k2 in order to study the function, expression (from UCS promoters) and regulation of cytoplasmic linear plasmid genes. Additionally, identification, characterization and localization of plasmid gene products of interest are made possible by shuffling GFP-, epitope- or affinity purification-tagged alleles between k2 and k1. The gene shuffle approach can also be used for vector development and heterologous protein expression in order to exploit the biotechnical potential of the K. lactis k1/k2 system in yeast cell factory research.  相似文献   

19.
Saccharomyces cerevisiae harboring linear dsDNA plasmids, pGKL1 and pGKL2, secretes a killer toxin consisting of 97, 31 and 28 kilodalton subunits (Nucleic Acids Res., 15, 1031-1046, 1987). We isolated the DNA encoding the N-terminal pre-sequence of the 28K precursor protein and constructed a new secretion vector in S. cerevisiae. Mouse alpha-amylase fused to the 28K signal sequence was secreted into the culture medium with a high efficiency similar to those fused to the mating factor alpha and 97K-31K killer signal sequences. This data clearly indicates that 28K presequence functions as a secretion signal. Glycosylated and nonglycosylated alpha-amylase molecules were detected in the culture medium. The secretion of alpha-amylase was blocked by sec18-1 mutation. The secreted alpha-amylase recovered from the medium was found to migrate faster in SDS-polyacrylamide gel than the precursor form of alpha-amylase synthesized in vitro. These lines of evidence suggest that mouse alpha-amylase fused to 28K killer signal sequence was processed, glycosylated and secreted through the normal secretion pathway of the yeast.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号