首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although short-acting and long-acting inhaled β(2)-adrenergic receptor agonists (SABA and LABA, respectively) relieve asthma symptoms, use of either agent alone without concomitant anti-inflammatory drugs (corticosteroids) may increase the risk of disease exacerbation in some patients. We found previously that pretreatment of human precision-cut lung slices (PCLS) with SABA impaired subsequent β(2)-agonist-induced bronchodilation, which occurred independently of changes in receptor quantities. Here we provide evidence that prolonged exposure of cultured human airway smooth muscle (HuASM) cells to β(2)-agonists directly augments procontractile signaling pathways elicited by several compounds including thrombin, bradykinin, and histamine. Such treatment did not increase surface receptor amounts or expression of G proteins and downstream effectors (phospholipase Cβ and myosin light chain). In contrast, β-agonists decreased expression of regulator of G protein signaling 5 (RGS5), which is an inhibitor of G-protein-coupled receptor (GPCR) activity. RGS5 knockdown in HuASM increased agonist-evoked intracellular calcium flux and myosin light chain (MLC) phosphorylation, which are prerequisites for contraction. PCLS from Rgs5(-/-) mice contracted more to carbachol than those from WT mice, indicating that RGS5 negatively regulates bronchial smooth muscle contraction. Repetitive β(2)-agonist use may not only lead to reduced bronchoprotection but also to sensitization of excitation-contraction signaling pathways as a result of reduced RGS5 expression.  相似文献   

2.
The regulators of G protein signaling (RGS) protein superfamily negatively controls G protein-coupled receptor signal transduction pathways. RGS16 is enriched in activated/effector T lymphocytes. In this paper, we show that RGS16 constrains pulmonary inflammation by regulating chemokine-induced T cell trafficking in response to challenge with Schistosoma mansoni. Naive Rgs16(-/-) mice were "primed" for inflammation by accumulation of CCR10(+) T cells in the lung. Upon pathogen exposure, these mice developed more robust granulomatous lung fibrosis than wild-type counterparts. Distinct Th2 or putative Th17 subsets expressing CCR4 or CCR10 accumulated more rapidly in Rgs16(-/-) lungs following challenge and produced proinflammatory cytokines IL-13 and IL-17B. CCR4(+)Rgs16(-/-) Th2 cells migrated excessively to CCL17 and localized aberrantly in challenged lungs. T lymphocytes were partially excluded from lung granulomas in Rgs16(-/-) mice, instead forming peribronchial/perivascular aggregates. Thus, RGS16-mediated confinement of T cells to Schistosome granulomas mitigates widespread cytokine-mediated pulmonary inflammation.  相似文献   

3.
Conserved structural motifs on pathogens trigger pattern recognition receptors present on APCs such as dendritic cells (DCs). An important class of such receptors is the Toll-like receptors (TLRs). TLR signaling triggers a cascade of events in DCs that includes modified chemokine and cytokine production, altered chemokine receptor expression, and changes in signaling through G protein-coupled receptors (GPCRs). One mechanism by which TLR signaling could modify GPCR signaling is by altering the expression of regulator of G protein signaling (RGS) proteins. In this study, we show that human monocyte-derived DCs constitutively express significant amounts of RGS2, RGS10, RGS14, RGS18, and RGS19, and much lower levels of RGS3 and RGS13. Engagement of TLR3 or TLR4 on monocyte-derived DCs induces RGS16 and RGS20, markedly increases RGS1 expression, and potently down-regulates RGS18 and RGS14 without modifying other RGS proteins. A similar pattern of Rgs protein expression occurred in immature bone marrow-derived mouse DCs stimulated to mature via TLR4 signaling. The changes in RGS18 and RGS1 expression are likely important for DC function, because both proteins inhibit G alpha(i)- and G alpha(q)-mediated signaling and can reduce CXC chemokine ligand (CXCL)12-, CC chemokine ligand (CCL)19-, or CCL21-induced cell migration. Providing additional evidence, bone marrow-derived DCs from Rgs1(-/-) mice have a heightened migratory response to both CXCL12 and CCL19 when compared with similar DCs prepared from wild-type mice. These results indicate that the level and functional status of RGS proteins in DCs significantly impact their response to GPCR ligands such as chemokines.  相似文献   

4.
Regulator of G protein signaling (RGS) proteins, and notably members of the RGS-R4 subfamily, control vasocontractility by accelerating the inactivation of Gα-dependent signaling. RGS5 is the most highly and differently expressed RGS-R4 subfamily member in arterial smooth muscle. Expression of RGS5 first appears in pericytes during development of the afferent vascular tree, suggesting that RGS5 is a good candidate for a regulator of arterial contractility and, perhaps, for determining the mass of the smooth muscle coats required to regulate blood flow in the branches of the arterial tree. Consistent with this hypothesis, using cultured vascular smooth muscle cells (VSMCs), we demonstrate RGS5 overexpression inhibits G protein-coupled receptor (GPCR)-mediated hypertrophic responses. The next objective was to determine which physiological agonists directly control RGS5 expression in VSMCs. GPCR agonists failed to directly regulate RGS5 mRNA expression; however, platelet-derived growth factor (PDGF) acutely represses expression. Downregulation of RGS5 results in the induction of migration and the activation of the GPCR-mediated signaling pathways. This stimulation leads to the activation of mitogen-activated protein kinases directly downstream of receptor stimulation, and ultimately VSMC hypertrophy. These results demonstrate that RGS5 expression is a critical mediator of both VSMC contraction and potentially, arterial remodeling.  相似文献   

5.
6.
Regulator of G protein signaling 2 (RGS2) is a GTPase-activating protein for G(q/11)α and G(i/o)α subunits. RGS2 deficiency is linked to hypertension in mice and humans, although causative mechanisms are not understood. Because endothelial dysfunction and increased peripheral resistance are hallmarks of hypertension, determining whether RGS2 regulates microvascular reactivity may reveal mechanisms relevant to cardiovascular disease. Here we have determined the effects of systemic versus endothelium- or vascular smooth muscle-specific deletion of RGS2 on microvascular contraction and relaxation. Contraction and relaxation of mesenteric resistance arteries were analyzed in response to phenylephrine, sodium nitroprusside, or acetylcholine with or without inhibitors of nitric oxide (NO) synthase or K(+) channels that mediate endothelium-derived hyperpolarizing factor (EDHF)-dependent relaxation. The results showed that deleting RGS2 in vascular smooth muscle had minor effects. Systemic or endothelium-specific deletion of RGS2 strikingly inhibited acetylcholine-evoked relaxation. Endothelium-specific deletion of RGS2 had little effect on NO-dependent relaxation but markedly impaired EDHF-dependent relaxation. Acute, inducible deletion of RGS2 in endothelium did not affect blood pressure significantly. Impaired EDHF-mediated vasodilatation was rescued by blocking G(i/o)α activation with pertussis toxin. These findings indicated that systemic or endothelium-specific RGS2 deficiency causes endothelial dysfunction resulting in impaired EDHF-dependent vasodilatation. RGS2 deficiency enables endothelial G(i/o) activity to inhibit EDHF-dependent relaxation, whereas RGS2 sufficiency facilitates EDHF-evoked relaxation by squelching endothelial G(i/o) activity. Mutation or down-regulation of RGS2 in hypertension patients therefore may contribute to endothelial dysfunction and defective EDHF-dependent relaxation. Blunting G(i/o) signaling might improve endothelial function in such patients.  相似文献   

7.
Regulators of G protein signaling (RGS) proteins act as GTPase activating proteins to negatively regulate G protein-coupled receptor (GPCR) signaling. Although several RGS proteins including RGS2, RGS16, RGS10, and RGS18 are expressed in human and mouse platelets, the respective unique function(s) of each have not been fully delineated. RGS10 is a member of the D/R12 subfamily of RGS proteins and is expressed in microglia, macrophages, megakaryocytes, and platelets. We used a genetic approach to examine the role(s) of RGS10 in platelet activation in vitro and hemostasis and thrombosis in vivo. GPCR-induced aggregation, secretion, and integrin activation was much more pronounced in platelets from Rgs10-/- mice relative to wild type (WT). Accordingly, these mice had markedly reduced bleeding times and were more susceptible to vascular injury-associated thrombus formation than control mice. These findings suggest a unique, non-redundant role of RGS10 in modulating the hemostatic and thrombotic functions of platelets in mice. RGS10 thus represents a potential therapeutic target to control platelet activity and/or hypercoagulable states.  相似文献   

8.
Liver fibrosis is mediated by hepatic stellate cells (HSCs), which respond to a variety of cytokine and growth factors to moderate the response to injury and create extracellular matrix at the site of injury. G-protein coupled receptor (GPCR)-mediated signaling, via endothelin-1 (ET-1) and angiotensin II (AngII), increases HSC contraction, migration and fibrogenesis. Regulator of G-protein signaling-5 (RGS5), an inhibitor of vasoactive GPCR agonists, functions to control GPCR-mediated contraction and hypertrophy in pericytes and smooth muscle cells (SMCs). Therefore we hypothesized that RGS5 controls GPCR signaling in activated HSCs in the context of liver injury. In this study, we localize RGS5 to the HSCs and demonstrate that Rgs5 expression is regulated during carbon tetrachloride (CCl4)-induced acute and chronic liver injury in Rgs5LacZ/LacZ reporter mice. Furthermore, CCl4 treated RGS5-null mice develop increased hepatocyte damage and fibrosis in response to CCl4 and have increased expression of markers of HSC activation. Knockdown of Rgs5 enhances ET-1-mediated signaling in HSCs in vitro. Taken together, we demonstrate that RGS5 is a critical regulator of GPCR signaling in HSCs and regulates HSC activation and fibrogenesis in liver injury.  相似文献   

9.
Normal lymphoid tissue development and function depend upon directed cell migration. Providing guideposts for cell movement and positioning within lymphoid tissues, chemokines signal through cell surface receptors that couple to heterotrimeric G proteins, which are in turn subject to regulation by regulator of G protein signaling (RGS) proteins. In this study, we report that germinal center B lymphocytes and thymic epithelial cells strongly express one of the RGS family members, RGS13. Located between Rgs1 and Rgs2, Rgs13 spans 42 kb on mouse chromosome 1. Rgs13 encodes a 157-aa protein that shares 82% amino acid identity with its 159-aa human counterpart. In situ hybridization with sense and antisense probes localized Rgs13 expression to the germinal center regions of mouse spleens and Peyer's patches and to the thymus medulla. Affinity-purified RGS13 Abs detected RGS13-expressing cells in the light zone of the germinal center. RGS13 interacted with both Gialpha and Gqalpha and strongly impaired signaling through G(i)-linked signaling pathways, including signaling through the chemokine receptors CXCR4 and CXCR5. Prolonged CD40 signaling up-regulated RGS13 expression in human tonsil B lymphocytes. These results plus previous studies of RGS1 indicate the germinal center B cells use two RGS proteins, RGS1 and RGS13, to regulate their responsiveness to chemokines.  相似文献   

10.
11.
Nitric oxide (NO) inhibits vascular contraction by activating cGMP-dependent protein kinase I-alpha (PKGI-alpha), which causes dephosphorylation of myosin light chain (MLC) and vascular smooth muscle relaxation. Here we show that PKGI-alpha attenuates signaling by the thrombin receptor protease-activated receptor-1 (PAR-1) through direct activation of regulator of G-protein signaling-2 (RGS-2). NO donors and cGMP cause cGMP-mediated inhibition of PAR-1 and membrane localization of RGS-2. PKGI-alpha binds directly to and phosphorylates RGS-2, which significantly increases GTPase activity of G(q), terminating PAR-1 signaling. Disruption of the RGS-2-PKGI-alpha interaction reverses inhibition of PAR-1 signaling by nitrovasodilators and cGMP. Rgs2-/- mice develop marked hypertension, and their blood vessels show enhanced contraction and decreased cGMP-mediated relaxation. Thus, PKGI-alpha binds to, phosphorylates and activates RGS-2, attenuating receptor-mediated vascular contraction. Our study shows that RGS-2 is required for normal vascular function and blood pressure and is a new drug development target for hypertension.  相似文献   

12.
RGS2, a GTPase-activating protein (GAP) for G(q)alpha, regulates vascular relaxation and blood pressure. RGS2 can be phosphorylated by type Ialpha cGMP-dependent protein kinase (cGKIalpha), increasing its GAP activity. To understand how RGS2 and cGKIalpha regulate vascular smooth muscle signaling and function, we identified signaling pathways that are controlled by cGMP in an RGS2-dependent manner and discovered new mechanisms whereby cGK activity regulates RGS2. We show that RGS2 regulates vasoconstrictor-stimulated Ca(2+) store release, capacitative Ca(2+) entry, and noncapacitative Ca(2+) entry and that RGS2 is required for cGMP-mediated inhibition of vasoconstrictor-elicited phospholipase Cbeta activation, Ca(2+) store release, and capacitative Ca(2+) entry. RGS2 is degraded in vascular smooth muscle cells via the proteasome. Inhibition of cGK activity blunts RGS2 degradation. However, inactivation of the cGKIalpha phosphorylation sites in RGS2 does not stabilize the protein, suggesting that cGK activity regulates RGS2 degradation by other mechanisms. cGK activation promotes association of RGS2 with the plasma membrane by a mechanism requiring its cGKIalpha phosphorylation sites. By regulating GAP activity, plasma membrane association, and degradation, cGKIalpha therefore may control a cycle of RGS2 activation and inactivation. By diminishing cGK activity, endothelial dysfunction may impair RGS2 activation, thereby blunting vascular relaxation and contributing to hypertension.  相似文献   

13.
14.
Regulator of G protein signaling 10 (RGS10), a GTPase accelerating protein (GAP) for G alpha subunits, is a negative regulator of NF-κB in microglia. Here, we investigated the role of RGS10 in macrophages, a closely related myeloid-derived cell type. Features of classical versus alternative activation were assessed in Rgs10-/- peritoneal and bone marrow-derived macrophages upon LPS or IL-4 treatments, respectively. Our results showed that Rgs10-/- macrophages produced higher levels of pro-inflammatory cytokines including TNF, IL-1β and IL-12p70 in response to LPS treatment and exerted higher cytotoxicity on dopaminergic MN9D neuroblastoma cells. We also found that Rgs10-/- macrophages displayed a blunted M2 phenotype upon IL-4 priming. Specifically, Rgs10-/- macrophages displayed lower YM1 and Fizz1 mRNA levels as measured by QPCR compared to wild type macrophages upon IL-4 treatment and this response was not attributable to differences in IL-4 receptor expression. Importantly, phagocytic activities of Rgs10-/- macrophages were blunted in response to IL-4 priming and/or LPS treatments. However, there was no difference in chemotaxis between Rgs10-/- and WT macrophages. Our data indicate that Rgs10-/- macrophages displayed dysregulated M1 responses along with blunted M2 alternative activation responses, suggesting that RGS10 plays an important role in determining macrophage activation responses.  相似文献   

15.
Regulator of G protein signaling (RGS2) deletion in mice prolongs signaling by G protein-coupled vasoconstrictor receptors and increases blood pressure. However, the exact mechanism of the increase in blood pressure is unknown. To address this question we tested autonomic nervous system function and blood pressure regulation in RGS2-deficient mice (RGS2-/-). We measured arterial blood pressure and heart rate (HR) with telemetry, computed time and frequency-domain measures for blood pressure and HR variability (HRV) as well as baroreflex sensitivity [BRS-low frequency (LF)], and assessed environmental stress sensitivity. Mean arterial blood pressure (MAP) was approximately 10 mmHg higher in RGS2-/-compared with RGS2+/+mice, while HR was not different between the groups, indicating a resetting of the baroreceptor reflex. Atropine increased MAP more in RGS2-/-than in RGS2+/+mice while HR responses were not different. Urinary norepinephrine excretion was higher in RGS2-/-than in RGS2+/+mice. The blood pressure decrease following prazosin was more pronounced in RGS2-/-mice than in RGS2+/+mice. The LF and high-frequency (HF) power of HRV were reduced in RGS2-/-compared with controls while BRS-LF and SBP-LF were not different. Atropine and atropine+metoprolol markedly reduced the HRV parameters in the time (RMSSD) and frequency domain (LF, HF, LF/HF) in both strains. Environmental stress sensitivity was increased in RGS2-/-mice compared with controls. We conclude that the increase in blood pressure in RGS2-/-mice is not solely explained by peripheral vascular mechanisms. A central nervous system mechanism might be implicated by an increased sympathetic tone. This state of affairs could lead to a baroreceptor-HR reflex resetting, while BRS remains unimpaired.  相似文献   

16.
17.
Regulators of G protein signaling (RGS) proteins compose a highly diverse protein family best known for inhibition of G protein signaling by enhancing GTP hydrolysis by Galpha subunits. Little is known about the function of endogenous RGS proteins. In this study, we used synthetic ribozymes targeted to RGS2, RGS3, RGS5, and RGS7 to assess their function. After demonstrating the specificity of in vitro cleavage by the RGS ribozymes, rat aorta smooth muscle cells were used for transient transfection with the RGS-specific ribozymes. RGS3 and RGS5 ribozymes differentially enhanced carbachol- and angiotensin II-induced MAP kinase activity, respectively, whereas RGS2 and RGS7 ribozymes had no effect. This enhancement was pertussis toxin-insensitive. Thus RGS3 is a negative modulator of muscarinic m3 receptor signaling, and RGS5 is a negative modulator of angiotensin AT1a receptor signaling through G(q/11). Also, RGS5 ribozyme enhanced angiotensin-stimulated inositol phosphate release. These results indicate the feasibility of using the ribozyme technology to determine the functional role of endogenous RGS proteins in signaling pathways and to define novel receptor-selective roles of endogenous RGS3 and RGS5 in modulating MAP kinase responses to either carbachol or angiotensin.  相似文献   

18.
Parasympathetic activity decreases heart rate (HR) by inhibiting pacemaker cells in the sinoatrial node (SAN). Dysregulation of parasympathetic influence has been linked to sinus node dysfunction and arrhythmia. RGS (regulator of G protein signaling) proteins are negative modulators of the parasympathetic regulation of HR and the prototypical M2 muscarinic receptor (M2R)-dependent signaling pathway in the SAN that involves the muscarinic-gated atrial K+ channel IKACh. Both RGS4 and RGS6-Gβ5 have been implicated in these processes. Here, we used Rgs4−/−, Rgs6−/−, and Rgs4−/−:Rgs6−/− mice to compare the relative influence of RGS4 and RGS6 on parasympathetic regulation of HR and M2R-IKACh-dependent signaling in the SAN. In retrogradely perfused hearts, ablation of RGS6, but not RGS4, correlated with decreased resting HR, increased heart rate variability, and enhanced sensitivity to the negative chronotropic effects of the muscarinic agonist carbachol. Similarly, loss of RGS6, but not RGS4, correlated with enhanced sensitivity of the M2R-IKACh signaling pathway in SAN cells to carbachol and a significant slowing of M2R-IKACh deactivation rate. Surprisingly, concurrent genetic ablation of RGS4 partially rescued some deficits observed in Rgs6−/− mice. These findings, together with those from an acute pharmacologic approach in SAN cells from Rgs6−/− and Gβ5−/− mice, suggest that the partial rescue of phenotypes in Rgs4−/−:Rgs6−/− mice is attributable to another R7 RGS protein whose influence on M2R-IKACh signaling is masked by RGS4. Thus, RGS6-Gβ5, but not RGS4, is the primary RGS modulator of parasympathetic HR regulation and SAN M2R-IKACh signaling in mice.  相似文献   

19.
20.
The regulator of G protein signaling (RGS) 2, a GTPase-activating protein, is activated via the nitric oxide (NO)-cGMP pathway and thereby may influence blood pressure regulation. To test that notion, we measured mean arterial blood pressure (MAP) and heart rate (HR) with telemetry in N(omega)-nitro-l-arginine methyl ester (l-NAME, 5 mg l-NAME/10 ml tap water)-treated RGS2-deficient (RGS2(-/-)) and RGS2-sufficient (RGS2(+/+)) mice and assessed autonomic function. Without l-NAME, RGS2(-/-) mice showed during day and night a similar increase of MAP compared with controls. l-NAME treatment increased MAP in both strains. nNOS is involved in this l-NAME-dependent blood pressure increase, since 7-nitroindazole increased MAP by 8 and 9 mmHg (P < 0.05) in both strains. The l-NAME-induced MAP increase of 14-15 mmHg during night was similar in both strains. However, the l-NAME-induced MAP increase during the day was smaller in RGS2(-/-) than in RGS2(+/+) (11 +/- 1 vs. 17 +/- 2 mmHg; P < 0.05). Urinary norepinephrine and epinephrine excretion was higher in RGS2(-/-) than in RGS2(+/+) mice. The MAP decrease after prazosin was more pronounced in l-NAME-RGS2(-/-). HR variability parameters [root mean square of successive differences (RMSSD), low-frequency (LF) power, and high-frequency (HF) power] and baroreflex sensitivity were increased in RGS2(-/-). Atropine and atropine plus metoprolol markedly reduced RMSSD, LF, and HF. Our data suggest an interaction between RGS2 and the NO-cGMP pathway. The blunted l-NAME response in RGS2(-/-) during the day suggests impaired NO signaling. The MAP increases during the active phase in RGS2(-/-) mice may be related to central sympathetic activation and increased vascular adrenergic responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号