首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of an axon and dendrites, neuronal polarization, is a prerequisite for neurons to integrate and propagate information within the brain. During the past years progress has been made toward understanding the initial stage of neuronal polarization, axon formation. First, the physiological role of some candidate regulators of neuronal polarity has been affirmed, including Sad kinases, the Rho-GTPase Cdc42, and the actin regulators Ena/VASP proteins. Second, recent studies have revealed microtubule stabilization as a mechanism complementary to actin dynamics underlying neuronal polarization. Moreover, stable microtubules in the axon may form a landmark to confer identity to the axon. This review highlights the recent advances in understanding the intracellular mechanisms underlying neuronal polarization and discusses them in the context of putative cytoskeletal effectors.  相似文献   

2.
The polarization of a neuron generally results in the formation of one axon and multiple dendrites, allowing for the establishment of neuronal circuitry. The molecular mechanisms involved in priming one neurite to become the axon, particularly those regulating the microtubule network, remain elusive. Here we report the identification of DOCK7, a member of the DOCK180-related protein superfamily, as a Rac GTPase activator that is asymmetrically distributed in unpolarized hippocampal neurons and selectively expressed in the axon. Knockdown of DOCK7 expression prevents axon formation, whereas overexpression induces formation of multiple axons. We further demonstrate that DOCK7 and Rac activation lead to phosphorylation and inactivation of the microtubule destabilizing protein stathmin/Op18 in the nascent axon and that this event is important for axon development. Our findings unveil a pathway linking the Rac activator DOCK7 to a microtubule regulatory protein and highlight the contribution of microtubule network regulation to axon development.  相似文献   

3.
Neuronal differentiation and function require extensive stabilization of the microtubule cytoskeleton. Neurons contain a large proportion of microtubules that resist the cold and depolymerizing drugs and exhibit slow subunit turnover. The origin of this stabilization is unclear. Here we have examined the role of STOP, a calmodulin-regulated protein previously isolated from cold-stable brain microtubules. We find that neuronal cells express increasing levels of STOP and of STOP variants during differentiation. These STOP proteins are associated with a large proportion of microtubules in neuronal cells, and are concentrated on cold-stable, drug-resistant, and long-lived polymers. STOP inhibition abolishes microtubule cold and drug stability in established neurites and impairs neurite formation. Thus, STOP proteins are responsible for microtubule stabilization in neurons, and are apparently required for normal neurite formation.  相似文献   

4.
Axons and dendrites of neurons differ in the polarity orientation of their microtubules. Whereas the polarity orientation of microtubules in axons is uniform, with all plus ends distal, that in dendrites is nonuniform. The mechanisms responsible for establishment and maintenance of microtubule polarity orientation in neuronal processes remain unclear, however. We previously described a culture system in which dendrites of rat cortical neurons convert to axons. In the present study, we examined changes in microtubule polarity orientation in such dendrites. With the use of the hooking procedure and electron microscopy, we found that microtubule polarity orientation changed from nonuniform to uniform, with a plus end-distal arrangement, in dendrites that gave rise to axons during culture of neurons for 24 h. Microtubule polarity orientation remained nonuniform in dendrites that did not elongate. Axon regeneration at the dendritic tip thus triggered the disappearance of minus end-distal microtubules from dendrites. These minus end-distal microtubules also disappeared from dendrites during axon regeneration in the presence of inhibitors of actin polymerization, suggesting that actin-dependent transport of microtubules is not required for this process and implicating a previously unidentified mechanism in the establishment and maintenance of microtubule polarity orientation in neuronal processes.  相似文献   

5.
Axon regeneration is crucial for recovery after trauma to the nervous system. For neurons to recover from complete axon removal they must respecify a dendrite as an axon: a complete reversal of polarity. We show that Drosophila neurons in vivo can convert a dendrite to a regenerating axon and that this process involves rebuilding the entire neuronal microtubule cytoskeleton. Two major microtubule rearrangements are specifically induced by axon and not dendrite removal: 1) 10-fold up-regulation of the number of growing microtubules and 2) microtubule polarity reversal. After one dendrite reverses its microtubules, it initiates tip growth and takes on morphological and molecular characteristics of an axon. Only neurons with a single dendrite that reverses polarity are able to initiate tip growth, and normal microtubule plus-end dynamics are required to initiate this growth. In addition, we find that JNK signaling is required for both the up-regulation of microtubule dynamics and microtubule polarity reversal initiated by axon injury. We conclude that regulation of microtubule dynamics and polarity in response to JNK signaling is key to initiating regeneration of an axon from a dendrite.  相似文献   

6.
Lee SH 《Molecules and cells》2005,20(2):256-262
The neuronal cytoskeleton is essential for establishment of neuronal polarity, but mechanisms controlling generation of polarity in the cytoskeleton are poorly understood. The nonreceptor tyrosine kinase, Fer, has been shown to bind to microtubules and to interact with several actin-regulatory proteins. Furthermore, Fer binds p120 catenin and has been shown to regulate cadherin function by modulating cadherin-beta-catenin interaction. Here we show involvement of Fer in neuronal polarization and neurite development. Fer is concentrated in growth cones together with cadherin, beta-catenin, and cortactin in stage 2 hippocampal neurons. Inhibition of Fer-p120 catenin interaction with a cell-permeable inhibitory peptide (FerP) increases neurite branching. In addition, the peptide significantly delays conversion of one of several dendrites into an axon in early stage hippocampal neurons. FerP-treated growth cones also exhibit modified localization of the microtubule and actin cytoskeleton. Together, this indicates that the Fer-p120 interaction is required for normal neuronal polarization and neurite development.  相似文献   

7.
Developing neurons can change axonal and dendritic fate upon axonal lesion, but it is unclear whether neurons retain such plasticity when they are synaptically interconnected. To address whether polarity is reversible in mature neurons, we cut the axon of GFP-labeled hippocampal neurons in dissociated and organotypic cultures and found that a new axon arose from a mature dendrite. The regenerative response correlated with the length of the remaining stump: proximal axotomies (<35 microm) led to the transformation of a dendrite into an axon (identity change), whereas distal cuts (>35 microm) induced axon regrowth, similar to what is seen in young neurons. Searching for a putative landmark in the distal axon that could determine axon identity, we focused on the stability of microtubules, which regulate initial neuronal polarization during early development. We found that functionally polarized neurons contain a distinctively high proportion of stable microtubules in the distal axon. Moreover, pharmacological stabilization of microtubules was sufficient to induce the formation of multiple axons out of differentiated dendrites. Our data argue that mature neurons integrated in functional networks remain flexible in their polarity and that mechanisms acting during initial axon selection can be reactivated to induce axon growth out of functionally mature dendrites.  相似文献   

8.
Neuronal polarization: the cytoskeleton leads the way   总被引:1,自引:0,他引:1  
The morphology of cells is key to their function. Neurons extend a long axon and several shorter dendrites to transmit signals in the nervous system. This process of neuronal polarization is driven by the cytoskeleton. The first and decisive event during neuronal polarization is the specification of the axon. Distinct cytoskeletal dynamics and organization of the cytoskeleton determine the future axon while the other neurites become dendrites. Here, we will review how the cytoskeleton and its effectors drive axon specification and neuronal polarization. First, the role of the actin cytoskeleton and microtubules in axon specification will be presented. Then, we will discuss the role of the centrosome in axon determination as well as how microtubules are generated in axons and dendrites. Finally, we will discuss potential mechanisms leading to axon specification, such as positive feedback loops that could be a coordinated interaction between actin and microtubules. Together, this review will present the recent advances on the role of the microtubules and the actin cytoskeleton during neuronal polarization. We will pinpoint the upcoming challenges to gain a better understanding of neuronal polarization on a fundamental intracellular level. Finally, we will outline how reactivation of the intrinsic polarization program may help to induce axon regeneration after CNS injury.  相似文献   

9.
Neurons have highly polarized arrangements of microtubules, but it is incompletely understood how microtubule polarity is controlled in either axons or dendrites. To explore whether microtubule nucleation by γ-tubulin might contribute to polarity, we analyzed neuronal microtubules in Drosophila containing gain- or loss-of-function alleles of γ-tubulin. Both increased and decreased activity of γ-tubulin, the core microtubule nucleation protein, altered microtubule polarity in axons and dendrites, suggesting a close link between regulation of nucleation and polarity. To test whether nucleation might locally regulate polarity in axons and dendrites, we examined the distribution of γ-tubulin. Consistent with local nucleation, tagged and endogenous γ-tubulins were found in specific positions in dendrites and axons. Because the Golgi complex can house nucleation sites, we explored whether microtubule nucleation might occur at dendritic Golgi outposts. However, distinct Golgi outposts were not present in all dendrites that required regulated nucleation for polarity. Moreover, when we dragged the Golgi out of dendrites with an activated kinesin, γ-tubulin remained in dendrites. We conclude that regulated microtubule nucleation controls neuronal microtubule polarity but that the Golgi complex is not directly involved in housing nucleation sites.  相似文献   

10.
The GTPase Rnd1 affects actin dynamics antagonistically to Rho and has been implicated in the regulation of neurite outgrowth, dendrite development, and axon guidance. Here we show that Rnd1 interacts with the microtubule regulator SCG10. This interaction requires a central domain of SCG10 comprising about 40 amino acids located within the N-terminal-half of a putative alpha-helical domain and is independent of phosphorylation at the four identified phosphorylation sites that regulate SCG10 activity. Rnd1 enhances the microtubule destabilizing activity of SCG10 and both proteins colocalize in neurons. Knockdown of Rnd1 or SCG10 by RNAi suppressed axon extension, indicating a critical role for both proteins during neuronal differentiation. Overexpression of Rnd1 in neurons induces the formation of multiple axons. The effect of Rnd1 on axon extension depends on SCG10. These results indicate that SCG10 acts as an effector downstream of Rnd1 to regulate axon extensions by modulating microtubule organization.  相似文献   

11.

Background  

Wnt factors are a large family of signaling molecules that play important roles in the regulation of cell fate specification, tissue polarity and cell movement. In the nervous system, Wnts also regulates the formation of neuronal connection acting as retrograde signals that regulate the remodeling of the axons prior to the assembly of the presynaptic apparatus. The scaffold protein Dishevelled (Dvl) mimics the effect of Wnt on the neuronal cytoskeleton by increasing the number of stable microtubule along the axon shaft and inducing the formation of looped microtubules (MT) at enlarged growth cones. A divergent Wnt-Dvl canonical pathway which bifurcates downstream of Gsk3β regulates MT dynamics.  相似文献   

12.
Microtubules establish the directionality of intracellular transport by kinesins and dynein through polarized assembly, but it remains unclear how directed transport occurs along microtubules organized with mixed polarity. We investigated the ability of the plus end–directed kinesin-4 motor KIF21B to navigate mixed polarity microtubules in mammalian dendrites. Reconstitution assays with recombinant KIF21B and engineered microtubule bundles or extracted neuronal cytoskeletons indicate that nucleotide-independent microtubule-binding regions of KIF21B modulate microtubule dynamics and promote directional switching on antiparallel microtubules. Optogenetic recruitment of KIF21B to organelles in live neurons induces unidirectional transport in axons but bidirectional transport with a net retrograde bias in dendrites. Removal of the secondary microtubule-binding regions of KIF21B or dampening of microtubule dynamics with low concentrations of nocodazole eliminates retrograde bias in live dendrites. Further exploration of the contribution of microtubule dynamics in dendrites to directionality revealed plus end–out microtubules to be more dynamic than plus end–in microtubules, with nocodazole preferentially stabilizing the plus end–out population. We propose a model in which both nucleotide-sensitive and -insensitive microtubule-binding sites of KIF21B motors contribute to the search and selection of stable plus end–in microtubules within the mixed polarity microtubule arrays characteristic of mammalian dendrites to achieve net retrograde movement of KIF21B-bound cargoes.  相似文献   

13.
Axon formation critically relies on local microtubule remodeling and marks the first step in establishing neuronal polarity. However, the function of the microtubule‐organizing centrosomes during the onset of axon formation is still under debate. Here, we demonstrate that centrosomes play an essential role in controlling axon formation in human‐induced pluripotent stem cell (iPSC)‐derived neurons. Depleting centrioles, the core components of centrosomes, in unpolarized human neuronal stem cells results in various axon developmental defects at later stages, including immature action potential firing, mislocalization of axonal microtubule‐associated Trim46 proteins, suppressed expression of growth cone proteins, and affected growth cone morphologies. Live‐cell imaging of microtubules reveals that centriole loss impairs axonal microtubule reorganization toward the unique parallel plus‐end out microtubule bundles during early development. We propose that centrosomes mediate microtubule remodeling during early axon development in human iPSC‐derived neurons, thereby laying the foundation for further axon development and function.  相似文献   

14.
It is widely believed that signature patterns of microtubule polarity orientation within axons and dendrites underlie compositional and morphological differences that distinguish these neuronal processes from one another. Axons of vertebrate neurons display uniformly plus-end-distal microtubules, whereas their dendrites display non-uniformly oriented microtubules. Recent studies on insect neurons suggest that it is the minus-end-distal microtubules that are the critical feature of the dendritic microtubule array, whether or not they are accompanied by plus-end-distal microtubules. Discussed in this article are the history of these findings, their implications for the regulation of neuronal polarity across the animal kingdom, and potential mechanisms by which neurons establish the distinct microtubule polarity patterns that define axons and dendrites.  相似文献   

15.
Neuronal polarization, the formation of one long axon and several short dendrites, is an obligatory process to integrate and propagate information within the brain. Axon formation is the key event during neuronal polarization and is based on tightly regulated rearrangements of the cytoskeleton. Here, we discuss how the cytoskeleton drives neuronal polarization. First, we convey the role of the actin cytoskeleton and microtubules during axon formation. Second, we discuss different cytoskeletal binding and regulating proteins, which are essential to specify the axon. Finally, we outline plus end tracking proteins (+TIPs) as important regulators for neuronal polarization by mediating the interaction between the actin cytoskeleton and microtubules and compare this function to other polarity processes.  相似文献   

16.
Neuronal differentiation is under the tight control of both biochemical and physical information arising from neighboring cells and micro-environment. Here we wished to assay how external geometrical constraints applied to the cell body and/or the neurites of hippocampal neurons may modulate axonal polarization in vitro. Through the use of a panel of non-specific poly-L-lysine micropatterns, we manipulated the neuronal shape. By applying geometrical constraints on the cell body we provided evidence that centrosome location was not predictive of axonal polarization but rather follows axonal fate. When the geometrical constraints were applied to the neurites trajectories we demonstrated that axonal specification was inhibited by curved lines. Altogether these results indicated that intrinsic mechanical tensions occur during neuritic growth and that maximal tension was developed by the axon and expressed on straight trajectories. The strong inhibitory effect of curved lines on axon specification was further demonstrated by their ability to prevent formation of multiple axons normally induced by cytochalasin or taxol treatments. Finally we provided evidence that microtubules were involved in the tension-mediated axonal polarization, acting as curvature sensors during neuronal differentiation. Thus, biomechanics coupled to physical constraints might be the first level of regulation during neuronal development, primary to biochemical and guidance regulations.  相似文献   

17.
The initial event in establishing a polarized neuron is the specification of a single axon. Spatially regulated glycogen synthase kinase-3beta (GSK-3beta) activity is critical for specifying axon-dendrite fate; however, the upstream signaling of GSK-3beta in the determination of neuronal polarity still remains obscure. Here, we found that, in cultured hippocampal neurons, the small GTPase R-Ras selectively localized in a single neurite of stage 2 neurons and that its activity increased after plating and peaked between stages 2 and 3. Ectopic expression of R-Ras induced global inactivation of GSK-3beta and formation of multiple axons, whereas knockdown of endogenous R-Ras by RNA interference blocked GSK-3beta inactivation and axon formation. GSK-3beta inactivation and axon formation by R-Ras required integrin-linked kinase (ILK), and subcellular localization of ILK was strictly regulated by R-Ras-mediated phosphatidylinositol 3-kinase activity. In addition, membrane targeting of ILK was sufficient to inactivate GSK-3beta and to form multiple axons. Our study demonstrates a novel role of R-Ras and ILK upstream of GSK-3beta in the regulation of neuronal polarity.  相似文献   

18.
《The Journal of cell biology》1994,127(5):1407-1418
Neurite formation by dissociated chick sympathetic neurons in vitro begins when one of the many filopodia that emanate from the cell body of a neuron is invaded by cytoplasm containing microtubules and other components of axoplasm (Smith, 1994). This study was undertaken to determine whether this process depends on assembly of microtubules. To inhibit microtubule assembly, neurons were grown in medium containing nocodazole or colchicine. In one series of experiments, neurons first were exposed to the microtubule-stabilizing drug, taxol, so that existing microtubules would remain intact while assembly of new microtubules was inhibited. The ability of neurons to form neurites was assessed by time-lapse video microscopy. Neurons subsequently were stained with antibodies against the tyrosinated and acetylated forms of alpha-tubulin and examined by laser confocal microscopy to visualize microtubules. Neurons were able to form short processes despite inhibition of microtubule assembly and they did so in a way that closely resembled process formation in control medium. Processes formed by neurons that had not been pretreated with taxol were devoid of microtubules. However, microtubules were present in processes of taxol- pretreated neurons. These microtubules contained acetylated alpha- tubulin, as is typical of stable microtubules, but not tyrosinated alpha-tubulin, the form present in recently assembled microtubules. These findings show that the initial steps in neurite formation do not depend on microtubule assembly and suggest that microtubules assembled in the cell body can be translocated into developing neurites as they emerge. The results are compatible with models of neurite formation which postulate that cytoplasm from the cell body is transported into filopodia by actomyosin-based motility mechanisms.  相似文献   

19.
Inhibition of neurite initiation and growth by taxol   总被引:18,自引:10,他引:8       下载免费PDF全文
We cultured sensory neurons from chick embryos in media containing the alkaloid taxol at concentrations from 7 X 10(-9) to 3.5 X 10(-6) M. When plated at taxol concentrations above 7 X 10(-8) M for 24 h, neurons have short broad extensions that do not elongate on the culture substratum. When actively growing neurites are exposed to these levels of taxol, neurite growth stops immediately and does not recommence. The broad processes of neurons cultured 24 h with taxol contain densely packed arrays of microtubules that loop back at the ends of the process. Neurofilaments are segregated from microtubules into bundles and tangled masses in these taxol-treated neurons. At the ends of neurites treated for 5 min with taxol, microtubules also turn and loop back abnormally toward the perikaryon. In the presence of 7 X 10(-9) M taxol neurites do grow, although they are broader and less branched than normally. The neurites of these cells appear to have normal structure except for a large number of microtubules. Taxol probably stimulates microtubule polymerization in these cultured neurons. At high levels of the drug, this action inhibits neurite initiation and outgrowth by removing free tubulin from the cytoplasm and destroying the normal control of microtubule assembly in growing neurites. The rapid inhibition suggests that microtubule assembly may occur at neurite tips. At lower concentrations, taxol may slightly enhance the mechanisms of microtubule assembly in neurons, and this alteration of normal processes changes the morphogenetic properties of the growing neurites.  相似文献   

20.
GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity   总被引:2,自引:0,他引:2  
Neurons are highly polarized and comprised of two structurally and functionally distinct parts, an axon and dendrites. We previously showed that collapsin response mediator protein-2 (CRMP-2) is critical for specifying axon/dendrite fate, possibly by promoting neurite elongation via microtubule assembly. Here, we showed that glycogen synthase kinase-3beta (GSK-3beta) phosphorylated CRMP-2 at Thr-514 and inactivated it. The expression of the nonphosphorylated form of CRMP-2 or inhibition of GSK-3beta induced the formation of multiple axon-like neurites in hippocampal neurons. The expression of constitutively active GSK-3beta impaired neuronal polarization, whereas the nonphosphorylated form of CRMP-2 counteracted the inhibitory effects of GSK-3beta, indicating that GSK-3beta regulates neuronal polarity through the phosphorylation of CRMP-2. Treatment of hippocampal neurons with neurotrophin-3 (NT-3) induced inactivation of GSK-3beta and dephosphorylation of CRMP-2. Knockdown of CRMP-2 inhibited NT-3-induced axon outgrowth. These results suggest that NT-3 decreases phosphorylated CRMP-2 and increases nonphosphorylated active CRMP-2, thereby promoting axon outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号