首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helix 69 of Escherichia coli 23S rRNA has important roles in specific steps of translation, such as subunit association, translocation, and ribosome recycling. An M13 phage library was used to identify peptide ligands with affinity for helix 69. One selected sequence, NQVANHQ, was shown through a bead assay to interact with helix 69. Electrospray ionization mass spectroscopy revealed an apparent dissociation constant for the amidated peptide and helix 69 in the low micromolar range. This value is comparable to that of aminoglycoside antibiotics binding to the A site of 16S rRNA or helix 69. Helix 69 variants (human) and unrelated RNAs (helix 31 or A site of 16S rRNA) showed two- to fourfold lower affinity for NQVANHQ-NH2. These results suggest that the peptide has desirable features for development as a lead compound for novel antimicrobials.  相似文献   

2.
The helix 69 (H69) region of the large subunit (28S) rRNA of Homo sapiens contains five pseudouridine (Psi) residues out of 19 total nucleotides (26%), three of which are universally or highly conserved. In this study, the effects of this abundant modified nucleotide on the structure and stability of H69 were compared with those of uridine. The role of a loop nucleotide substitution from A in bacteria (position 1918 in Escherichia coli 23S rRNA) to G in eukaryotes (position in 3734 in H. sapiens) was also examined. The thermodynamic parameters were obtained through UV melting studies, and differences in the modified and unmodified RNA structures were examined by 1H NMR and circular dichroism spectroscopy. In addition, a [1,3-15N]Psi phosphoramidite was used to generate H69 analogs with site-specific 15N labels. By using this approach, different Psi residues can be clearly distinguished from one another in 1H NMR experiments. The effects of pseudouridine on H. sapiens H69 are consistent with previous studies on tRNA, rRNA, and snRNA models in which the nucleotide offers stabilization of duplex regions through PsiN1H-mediated hydrogen bonds. The overall secondary structure and base-pairing patterns of human H69 are similar to the bacterial RNA, consistent with the idea that ribosome structure and function are highly conserved. Nonetheless, pseudouridine-containing RNAs have subtle differences in their structures and stabilities compared to the corresponding uridine-containing analogs, suggesting possible roles for Psi such as maintaining translation fidelity.  相似文献   

3.
The solution structure of an oligonucleotide containing the helix III sequence from Xenopus oocyte 5 S rRNA has been determined by NMR spectroscopy. Helix III includes two unpaired adenosine residues, flanked on either side by G:C base-pairs, that are required for binding of ribosomal protein L5. The consensus conformation of helix III in the context provided by this oligonucleotide has the two adenosine residues located in the minor groove and stacked upon the 3' flanking guanosine residue, consistent with biochemical studies of free 5 S rRNA in solution. A distinct break in stacking that occurs between the first adenosine residue of the bulge and the flanking 5' guanosine residue exposes the base of the adenosine residue in the minor groove and the base of the guanosine residue in the major groove. The major groove of the helix is widened at the site of the unpaired nucleotides and the helix is substantially bent; nonetheless, the G:C base-pairs flanking the bulge are intact. The data indicate that there may be conformational heterogeneity centered in the bulge region. The corresponding adenosine residues in the Haloarcula marismortui 50 S ribosomal subunit form a dinucleotide platform, which is quite different from the motif seen in solution. Thus, the conformation of helix III probably changes when 5 S rRNA is incorporated into the ribosome.  相似文献   

4.
The helix 69 (H69) region of the large subunit (28S) ribosomal RNA (rRNA) of Homo sapiens contains five pseudouridine (Ψ) residues out of 19 total nucleotides, three of which are highly conserved. In this study, the effects of this abundant modified nucleotide on the structure and stability of H69 were compared with those of uridine in double-stranded (stem) regions. These results were compared with previous hairpin (stem plus single-stranded loop) studies to understand the contributions of the loop sequences to H69 structure and stability. The role of a loop nucleotide substitution from an A in bacteria (position 1918 in Escherichia coli 23S rRNA) to a G in eukaryotes (position 3734 in H. sapiens 28S rRNA) was examined. Thermodynamic parameters for the duplex RNAs were obtained through UV melting studies, and differences in the modified and unmodified RNA structures were examined by circular dichroism spectroscopy. The overall folded structure of human H69 appears to be similar to the bacterial RNA, consistent with the idea that ribosome structure and function are highly conserved; however, our results reveal subtle differences in structure and stability between the bacterial and human H69 RNAs in both the stem and loop regions. These findings may be significant with respect to H69 as a potential drug target site.  相似文献   

5.
23S rRNA from Escherichia coli was cleaved at single internucleotide bonds using ribonuclease H in the presence of appropriate chimeric oligonucleotides; the individual cleavage sites were between residues 384 and 385, 867 and 868, 1045 and 1046, and 2510 and 2511, with an additional fortuitous cleavage at positions 1117 and 1118. In each case, the 3'' terminus of the 5'' fragment was ligated to radioactively labeled 4-thiouridine 5''-,3''-biphosphate ("psUp"), and the cleaved 23S rRNA carrying this label was reconstituted into 50S subunits. The 50S subunits were able to associate normally with 30S subunits to form 70S ribosomes. Intra-RNA crosslinks from the 4-thiouridine residues were induced by irradiation at 350 nm, and the crosslink sites within the 23S rRNA were analyzed. The rRNA molecules carrying psUp at positions 867 and 1117 showed crosslinks to nearby positions on the opposite strand of the same double helix where the cleavage was located, and no crosslinking was detected from position 2510. In contrast, the rRNA carrying psUp at position 384 showed crosslinking to nt 420 (and sometimes also to 416 and 425) in the neighboring helix in 23S rRNA, and the rRNA with psUp at position 1045 gave a crosslink to residue 993. The latter crosslink demonstrates that the long helix 41-42 of the 23S rRNA (which carries the region associated with GTPase activity) must double back on itself, forming a "U-turn" in the ribosome. This result is discussed in terms of the topography of the GTPase region in the 50S subunit, and its relation to the locations of the 5S rRNA and the peptidyl transferase center.  相似文献   

6.
Translocation during the elongation phase of protein synthesis involves the relative movement of the 30S and 50S ribosomal subunits. This movement is the target of tuberactinomycin antibiotics. Here, we describe the isolation and characterization of mutants of Thermus thermophilus selected for resistance to the tuberactinomycin antibiotic capreomycin. Two base substitutions, A1913U and mU1915G, and a single base deletion, DeltamU1915, were identified in helix 69 of 23S rRNA, a structural element that forms part of an interribosomal subunit bridge with the decoding center of 16S rRNA, the site of previously reported capreomycin resistance base substitutions. Capreomycin resistance in other bacteria has been shown to result from inactivation of the TlyA methyltransferase which 2'-O methylates C1920 of 23S rRNA. Inactivation of the tlyA gene in T. thermophilus does not affect its sensitivity to capreomycin. Finally, none of the mutations in helix 69 interferes with methylation at C1920 or with pseudouridylation at positions 1911 and 1917. We conclude that the resistance phenotype is a consequence of structural changes introduced by the mutations.  相似文献   

7.
8.
Ribosomal (r) RNAs play a crucial role in the fundamental structure and function of the ribosome. Helix 69 (H69) (position 1906-1924), a highly conserved stem-loop in domain IV of the 23 S rRNA of bacterial 50 S subunits, is located on the surface for intersubunit association with the 30 S subunit by connecting with helix 44 of 16 S rRNA with the bridge B2a. H69 directly interacts with A/T-, A-, and P-site tRNAs during each translation step. To investigate the functional importance of the highly conserved loop sequence (1912-1918) of H69, we employed a genetic method that we named SSER (systematic selection of functional sequences by enforced replacement). This method allowed us to identify and select from the randomized loop sequences of H69 in Escherichia coli 23 S rRNA functional sequences that are absolutely required for ribosomal function. From a library consisting of 16,384 sequence variations, 13 functional variants were obtained. A1912 and U(Psi)1917 were selected as essential residues in all variants. An E. coli strain having 23 S rRNA with a U to A mutation at position 1915 showed a severe growth phenotype and low translational fidelity. The result could be explained by the fact that the A1915-ribosome variant has weak subunit association, weak A-site tRNA binding, and decreased translational activity. This study proposes that H69 plays an important role in the control of translational fidelity by modulating A-site tRNA binding during the decoding process.  相似文献   

9.
10.
Pseudouridine modifications in helix 69 (H69) of 23S ribosomal RNA are highly conserved among all organisms. H69 associates with helix 44 of 16S rRNA to form bridge B2a, which plays a vital role in bridging the two ribosomal subunits and stabilizing the ribosome. The three pseudouridines in H69 were shown earlier to play an important role in 50S subunit assembly and in its association with the 30S subunit. In Escherichia coli, these three modifications are made by the pseudouridine synthase, RluD. Previous work showed that RluD is required for normal ribosomal assembly and function, and that it is the only pseudouridine synthase required for normal growth in E. coli. Here, we show that RluD is far more efficient in modifying H69 in structured 50S subunits, compared to free or synthetic 23S rRNA. Based on this observation, we suggest that pseudouridine modifications in H69 are made late in the assembly of 23S rRNA into mature 50S subunits. This is the first reported observation of a pseudouridine synthase being able to modify a highly structured ribonucleoprotein particle, and it may be an important late step in the maturation of 50S ribosomal subunits.  相似文献   

11.
The in vivo assembly of ribosomal subunits requires assistance by maturation proteins that are not part of mature ribosomes. One such protein, RbfA, associates with the 30S ribosomal subunits. Loss of RbfA causes cold sensitivity and defects of the 30S subunit biogenesis and its overexpression partially suppresses the dominant cold sensitivity caused by a C23U mutation in the central pseudoknot of 16S rRNA, a structure essential for ribosome function. We have isolated suppressor mutations that restore partially the growth of an RbfA-lacking strain. Most of the strongest suppressor mutations alter one out of three distinct positions in the carboxy-terminal domain of ribosomal protein S5 (S5) in direct contact with helix 1 and helix 2 of the central pseudoknot. Their effect is to increase the translational capacity of the RbfA-lacking strain as evidenced by an increase in polysomes in the suppressed strains. Overexpression of RimP, a protein factor that along with RbfA regulates formation of the ribosome''s central pseudoknot, was lethal to the RbfA-lacking strain but not to a wild-type strain and this lethality was suppressed by the alterations in S5. The S5 mutants alter translational fidelity but these changes do not explain consistently their effect on the RbfA-lacking strain. Our genetic results support a role for the region of S5 modified in the suppressors in the formation of the central pseudoknot in 16S rRNA.  相似文献   

12.
13.
14.
15.
Elucidation of the structure of the ribosome has stimulated numerous proposals for the roles of specific rRNA elements, including the universally conserved helix 69 (H69) of 23S rRNA, which forms intersubunit bridge B2a and contacts the D stems of A- and P-site tRNAs. H69 has been proposed to be involved not only in subunit association and tRNA binding but also in initiation, translocation, translational accuracy, the peptidyl transferase reaction, and ribosome recycling. Consistent with such proposals, deletion of H69 confers a dominant lethal phenotype. Remarkably, in vitro assays show that affinity-purified Deltah69 ribosomes have normal translational accuracy, synthesize a full-length protein from a natural mRNA template, and support EF-G-dependent translocation at wild-type rates. However, Deltah69 50S subunits are unable to associate with 30S subunits in the absence of tRNA, are defective in RF1-catalyzed peptide release, and can be recycled in the absence of RRF.  相似文献   

16.
A library of random mutations in Xenopus ribosomal protein L5 was generated by error-prone PCR and used to delineate the binding domain for 5S rRNA. All but one of the amino acid substitutions that affected binding affinity are clustered in the central region of the protein. Several of the mutations are conservative substitutions of non-polar amino acid residues that are unlikely to form energetically significant contacts to the RNA. Thermal denaturation, monitored by circular dichroism (CD), indicates that L5 is not fully structured and association with 5S rRNA increases the t(m) of the protein by 16 degrees C. L5 induces changes in the CD spectrum of 5S rRNA, establishing that the complex forms by a mutual induced fit mechanism. Deuterium exchange reveals that a considerable amount of L5 is unstructured in the absence of 5S rRNA. The fluorescence emission of W266 provides evidence for structural changes in the C-terminal region of L5 upon binding to 5S rRNA; whereas, protection experiments demonstrate that the N terminus remains highly sensitive to protease digestion in the complex. Analysis of the amino acid sequence of L5 by the program PONDR predicts that the N and C-terminal regions of L5 are intrinsically disordered, but that the central region, which contains three essential tyrosine residues and other residues important for binding to 5S rRNA, is likely to be structured. Initial interaction of the protein with 5S rRNA likely occurs through this region, followed by induced folding of the C-terminal region. The persistent disorder in the N-terminal domain is possibly exploited for interactions between the L5-5S rRNA complex and other proteins.  相似文献   

17.
The Escherichia coli rluD gene encodes a pseudouridine synthase responsible for the pseudouridine (Ψ) modifications at positions 1911, 1915, and 1917 in helix 69 of 23S rRNA. It has been reported that deletion of rluD in K-12 strains of E. coli is associated with extremely slow growth, increased readthrough of stop codons, and defects in 50S ribosomal subunit assembly and 30S-50S subunit association. Suppressor mutations in the prfB and prfC genes encoding release factor 2 (RF2) and RF3 that restore the wild type-growth rate and also correct the ribosomal defects have now been isolated. These suppressors link helix 69 Ψ residues with the termination phase of protein synthesis. However, further genetic analysis reported here also reveals that the slow growth and other defects associated with inactivation of rluD in E. coli K-12 strains are due to a defective RF2 protein, with a threonine at position 246, which is present in all K-12 strains. This is in contrast to the more typical alanine found at this position in most bacterial RF2s, including those of other E. coli strains. Inactivation of rluD in E. coli strains containing the prfB allele from E. coli B or in Salmonella enterica, both carrying an RF2 with Ala246, has negligible effects on growth, termination, or ribosome function. The results indicate that, in contrast to those in wild bacteria, termination functions in E. coli K-12 strains carrying a partially defective RF2 protein are especially susceptible to perturbation of ribosome-RF interactions, such as that caused by loss of h69 Ψ modifications.  相似文献   

18.
Intersubunit bridges are important for holding together subunits in the 70S ribosome. Moreover, a number of intersubunit bridges have a role in modulating the activity of the ribosome during translation. Ribosomal intersubunit bridge B2a is formed by the interaction between the conserved 23S rRNA helix-loop 69 (H69) and the top of the 16S rRNA helix 44. Within the 70S ribosome, bridge B2a contacts translation factors and the A-site tRNA. In addition to bridging the subunits, bridge B2a has been invoked in a number of other ribosomal functions from initiation to termination. In the present work, single-nucleotide substitutions were inserted at positions 1912 and 1919 of Escherichia coli 23S rRNA (helix 69), which are involved in important intrahelical and intersubunit tertiary interactions in bridge B2a. The resulting ribosomes had a severely reduced activity in a cell-free translation elongation assay, but displayed a nearly wild-type-level peptidyl transferase activity. In vitro reassociation efficiency decreased with all of the H69 variant 50S subunits, but was severest with the A1919C and ΔH69 variants. The mutations strongly affected initiation-factor-dependent 70S initiation complex formation, but exhibited a minor effect on the nonenzymatic initiation process. The mutations decreased ribosomal processivity in vitro and caused a progressive depletion of 50S subunits in polysomal fractions in vivo. Mutations at position 1919 decreased the stability of a dipeptidyl-tRNA in the A-site, whereas the binding of the dipeptidyl-tRNA was rendered more stable with 1912 and ΔH69 mutations. Our results suggest that the H69 of 23S rRNA functions as a control element during enzymatic steps of translation.  相似文献   

19.
Kipper K  Sild S  Hetényi C  Remme J  Liiv A 《Biochimie》2011,93(5):834-844
Pseudouridine [Ψ] is a frequent base modification in the ribosomal RNA [rRNA] and may be involved in the modulation of the conformational flexibility of rRNA helix-loop structures during protein synthesis. Helix 69 of 23S rRNA contains pseudouridines at the positions 1911, 1915 and 1917 which are formed by the helix 69-specific synthase RluD. The growth defect caused by the lack of RluD can be rescued by mutations in class I release factor RF2, indicating a role for helix 69 pseudouridines in translation termination. We investigated the role of helix 69 pseudouridines in peptide release by release factors RF1 and RF2 in an in vitro system consisting of purified components of the Escherichia coli translation apparatus. Lack of all three pseudouridines in helix 69 compromised the activity of RF2 about 3-fold but did not significantly affect the activity of RF1. Reintroduction of pseudouridines into helix 69 by RluD-treatment restored the activity of RF2 in peptide release. A Ψ-to-C substitution at the 1917 position caused an increase in the dissociation rate of RF1 and RF2 from the postrelease ribosome. Our results indicate that the presence of all three pseudouridines in helix 69 stimulates peptide release by RF2 but has little effect on the activity of RF1. The interactions around the pseudouridine at the 1917 position appear to be most critical for a proper interaction of helix 69 with release factors.  相似文献   

20.
Ribosomal protein L2 is a primary 23S rRNA binding protein in the large ribosomal subunit. We examined the contribution of the N- and C-terminal regions of Bacillus stearothermophilus L2 (BstL2) to the 23S rRNA binding activity. The mutant desN, in which the N-terminal 59 residues of BstL2 were deleted, bound to the 23S rRNA fragment to the same extent as wild type BstL2, but the mutation desC, in which the C-terminal 74 amino acid residues were deleted, abolished the binding activity. These observations indicated that the C-terminal region is involved in 23S rRNA binding. Subsequent deletion analysis of the C-terminal region found that the C-terminal 70 amino acids are required for efficient 23S rRNA binding by BstL2. Furthermore, the surface plasmon resonance analysis indicated that successive truncations of the C-terminal residues increased the dissociation rate constants, while they had little influence on association rate constants. The result indicated that reduced affinities of the C-terminal deletion mutants were due only to higher dissociation rate constants, suggesting that the C-terminal region primarily functions by stabilizing the protein L2-23S rRNA complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号