首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic mapping of enzyme activities (enzyme histochemistry) is an important tool to understand (patho)physiological functions of enzymes. A new enzyme histochemical method has been developed to detect transketolase activity in situ in various rat tissues and its ultrastructural localization in individual cells. In situ detection of transketolase is important because this multifunctional enzyme has been related with diseases such as cancer, diabetes, Alzheimer's disease, and Wernicke-Korsakoff's syndrome. The proposed method is based on the tetrazolium salt method applied to unfixed cryostat sections in the presence of polyvinyl alcohol. The method appeared to be specific for transketolase activity when the proper control reaction is performed and showed a linear increase of the amount of final reaction product with incubation time. Transketolase activity was studied in liver, small intestine, trachea, tongue, kidney, adrenal gland, and eye. Activity was found in liver parenchyma, epithelium of small intestine, trachea, tongue, proximal tubules of kidney and cornea, and ganglion cells in medulla of adrenal gland. To demonstrate transketolase activity ultrastructurally in liver parenchymal cells, the cupper iron method was used. It was shown that transketolase activity was present in peroxisomes and at membranes of granular endoplasmic reticulum. This ultrastructural localization is similar to that of glucose-6-phosphate dehydrogenase activity, suggesting activity of the pentose phosphate pathway at these sites. It is concluded that the method developed for in situ localization of transketolase activity for light and electron microscopy is specific and allows further investigation of the role of transketolase in (proliferation of) cancer cells and other pathophysiological processes.  相似文献   

2.
Transketolase, one of the enzymes in the nonoxidative branch of the pentose phosphate pathway, operates to shuttle ribose 5-phosphate and glycolytic intermediates together with transaldolase, and might be involved in the availability of ribose 5-phosphate, a precursor of nucleotide biosynthesis. The tkt and tal genes encoding transketolase and transaldolase, respectively, were cloned from the typical nucleotide- and nucleoside-producing organism Corynebacterium ammoniagenes by a PCR approach using oligonucleotide primers derived from conserved regions of each amino acid sequence from other organisms. Enzymatic and molecular analyses revealed that the two genes were clustered on the genome together with the glucose 6-phosphate dehydrogenase gene (zwf). The effect of transketolase modifications on the production of inosine and 5'-xanthylic acid was investigated in industrial strains of C. ammoniagenes. Multiple copies of plasmid-borne tkt caused about tenfold increases in transketolase activity and resulted in 10-20% decreased yields of products relative to the parents. In contrast, site-specific disruption of tkt enabled both producers to accumulate 10-30% more products concurrently with a complete loss of transketolase activity and the expected phenotype of shikimate auxotrophy. These results indicate that transketolase normally shunts ribose 5-phosphate back into glycolysis in these biosynthetic processes and interception of this shunt allows cells to redirect carbon flux through the oxidative pentose pathway from the intermediate towards the purine-nucleotide pathway.  相似文献   

3.
1. Measurements were made of the activities of the enzymes of the pentose phosphate pathway concerned in both the oxidative (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) and the non-oxidative (ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase, transketolase and transaldolase) reactions of this pathway, together with hexokinase and phosphoglucose isomerase, in adipose tissue in a variety of nutritional and hormonal conditions. 2. Starvation for 2 days caused a significant decrease in the activities of all the enzymes of the pentose phosphate pathway, with the exception of glucose 6-phosphate dehydrogenase, when expressed as activity/2 fat-pads; only the activities of ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase were significantly decreased on the basis of activity/mg. of protein. Re-feeding with a high-carbohydrate or high-fat diet for 3 days restored the activity of all the enzymes of the pentose phosphate pathway to the range of the control values, with the exception of transketolase, which showed a marked ;overshoot' in rats re-fed with carbohydrate. Starvation for 3 days caused a marked decrease in the activities of glucose 6-phosphate dehydrogenase and transketolase. 3. On the basis of activity/two fat-pads, alloxan-diabetes caused a marked decrease, to about half the control value, in the activities of all the enzymes concerned in the pentose phosphate pathway, transketolase showing the smallest decrease; hexokinase and phosphoglucose isomerase activities were also decreased. Treatment with insulin for 3 and 7 days raised the activities to normal or supranormal values, transketolase showing the most marked ;overshoot' effect. On the basis of activity/mg. of protein the activity of none of the enzymes was significantly decreased in alloxan-diabetes; transketolase and transaldolase activities were raised above the control values. With insulin treatment for 3 or 7 days the activities of all the enzymes were significantly increased, except that of ribulose 5-phosphate epimerase at the shorter time-interval. Glucagon treatment did not alter any of the enzyme activities expressed on either basis. 4. Thyroidectomy caused a decrease of 30-40% in the activities of enzymes of the pentose phosphate pathway, except for transketolase activity, which fell to 50% of the control value. Little change occurred in adipose-tissue weight or protein content. 5. Adrenalectomy caused a decrease of 40% in the activity of glucose 6-phosphate dehydrogenase and of 20-30% in the activities of the remaining enzymes of the pentose phosphate pathway; hexokinase activity was also decreased. Treatment with cortisone for 3 days did not significantly raise the activity from that found in adrenalectomized rats. Treatment of normal rats with high doses of cortisone had no significant effect on the activities of the enzymes of the pentose phosphate pathway in adipose tissue. 6. The changes in enzyme activities are discussed in relation to: (a) the concept of constant-proportion groups of enzymes; (b) the known changes in the flux of glucose through alternative metabolic pathways; (c) the pattern of change found in liver with similar hormonal and dietary conditions.  相似文献   

4.
Transketolase, a key enzyme in the pentose phosphate pathway, has been suggested as a target for inhibition in the treatment of cancer. Compound 5a ('N3'-pyridyl thiamine'; 3-(6-methyl-2-amino-pyridin-3-ylmethyl)-5-(2-hydroxy-ethyl)-4-methyl-thiazol-3-ium chloride hydrochloride), an analog of the transketolase cofactor thiamine, is a potent transketolase inhibitor but suffers from poor pharmacokinetics due to high clearance and C(max) linked toxicity. An efficient way of improving the pharmacokinetic profile of 5a is to prepare oxidized prodrugs which are slowly reduced in vivo yielding longer, sustained blood levels of the drug. The synthesis of such prodrugs and their evaluation in rodent models is reported.  相似文献   

5.
Using a rabbit anti-human transketolase antiserum and Western blotting we can determine nanogram amounts of transketolase in human hemolysates quantitatively. Transketolase concentration in 18 apparently healthy subjects was 55.7 +/- 12.1 micrograms/g Hb (mean +/- SD). Transketolase concentration correlated positively with the enzyme activity both with and without in vitro addition of thiamin pyrophosphate. However, the former had a closer correlation (r = 0.8418, P less than 0.001) than the latter (r = 0.6703, P less than 0.01). A heavy drinker with an extremely low transketolase activity had proportionally low concentration to the activity. These results indicate that transketolase in hemolysates, whether it is holoenzyme or apoenzyme activated in vitro, has an identical specific activity among all subjects studied and that the reduced activity of transketolase in alcoholics is due to the reduced content of the enzyme protein. This method is applicable to study the dynamics and the abnormality of apotransketolase in human hemolysates.  相似文献   

6.
(1) The effects of thiamine deficiency as produced by pyrithiamine injections have been studied in the weanling mouse. Selected metabolites were measured in extracts from brain and liver of quick-frozen animals. Pyruvate and α-oxoglutarate dehydrogenases and transketolase were also measured. (2) In deficient brain, pyruvate and α-oxoglutarate levels were greatly increased. Xylulose-5-P and 6-P-gluconate were more than doubled. Lactate, glucose-6-P, glucose and P-creatine were moderately elevated, and ATP was increased a little. Glutamate was depressed. (3) In deficient liver, α-oxoglutarate was much increased and ATP was twice normal. Glycogen, glucose, glucose-6-P, 6-P-gluconate, pyruvate, and glutamate were not different from the controls. Lactate was depressed. (4) Pyruvate dehydrogenase activity was reduced to 25 per cent or less in brain and liver. Transketolase and α-oxoglutarate dehydrogenase activities were reduced to 50 per cent in both organs. (5) Thiamine treatment, within 5 hr, largely reversed the metabolite changes brought on by pyrithiamine in brain. At the same time pyruvate and α-oxoglutarate dehydrogenase activities were increased 60 per cent or more in both brain and liver. Transketolase activity in liver was only increased 20 per cent at this time, however, and in brain was unchanged. (6) The results are interpreted to indicate that inhibition of pyruvate and α-oxoglutarate dehydrogenases in brain is sufficient to depress in vivo function. The same seems true for the inhibition of α-oxoglutarate dehydrogenase in liver. However, the changes seen in brain 6-P-gluconate and xyluIose-5-P probably depend on factors other than, or in addition to, the decrease in transketolase activity. It seems worthy of emphasis that in spite of the partial metabolic blocks high-energy phosphate stores were actually increased.  相似文献   

7.
T Takabe  S Asami  T Akazawa 《Biochemistry》1980,19(17):3985-3989
A homogeneous preparation of transketolase was obtained from spinach leaf; the specific enzyme activity was 9.5 mumolo of glyceraldehyde-3-P formed (mg of protein)-1 min-1, when xylulose-5-P and ribose-5-P were used as the donor and acceptor, respectively, of the ketol residue. Transketolase catalyzed the formation of glycolate from fructose-6-P coupled with the O2- -generating system of xanthine-xanthine oxidase. The addition of superoxide dismutase (145 units) or 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron) (5 mM), both O2- scavengers, to the reaction system inhibited glycolate formation 72 and 58%, respectively. The reacton was not inhibited by catalase. Mannitol, an .OH scavenger, and beta-carotene and 1,4-diazobicyclo[2.2.2]octane, 1O2 scavengers, showed little or no inhibitory effects. The rate of glycolate formation catalyzed by the transketolase system was measured in a coupled reaction with a continuous supply of KO2 dissolved in dimethyl sulfoxide, used as an O2- -generating system. The optimum pH of the reaction was above pH 8.5. The second-order rate constant for the reaction between transketolase and O2-, determined by the competition for O2- between nitroblue tetrazolium (NBT) and transketolase, was 1.0 X 10(6) M-1 s-1. Transketolase showed an inhibitory effect on the O2- -dependent reduction of NBT only if the reaction mixture was previously incubated with ketol donors such as fructose-6-P, xylulose-5-P, or glycolaldehyde. The results suggest the possibility that transketolase catalyzes O2- -dependent glycolate formation under increased steady-state levels of O2- in the chloroplast stroma.  相似文献   

8.
Transketolase has been purified for the first time from human leukocytes, according to a new procedure which consists of three conventional steps. The enzyme was finally detached from CM-cellulose by specific elution with a D-xylulose-5-phosphate/D-ribose-5-phosphate mixture and the isolated product exhibited a specific activity of about 10 units/mg protein at 37 degrees C. Transketolase preparations are contamination-free, except for a slight residual activity of phosphohexose isomerase. Kinetic constants for D-xylulose 5-phosphate and D-ribose 5-phosphate were found to be 0.19 mM and 0.63 mM, respectively. Pure transketolase migrates on SDS/PAGE as a single band, with a molecular mass of about 66 kDa. The isoelectrophoretic heterogeneity of transketolase was assessed either by activity staining or immunovisualization with anti-transketolase antisera, previously induced in rabbits. These techniques yielded two practically overlapping patterns consisting of 6-8 distinct bands within a pI range of 6.5-8.5. Both pure and crude transketolase preparations showed a similar heterogeneous profile, thus confirming the stability of the enzyme throughout purification. The occurrence of multiple enzyme forms in fresh human white cells has also been established by the analysis of transketolase in isolated populations of either lymphocytes or polymorphonuclear leukocytes, from individual healthy subjects.  相似文献   

9.
The activity of the key enzymes of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, transketolase) was determined in cell-free homogenates of Candida lipolytica 695 and Candida tropicalis 303 growing on different carbon sources. The activity of these enzymes remained almost the same in the course of growth of both cultures. The activity of the enzymes differed only slightly in the cells metabolizing hexadecane and glucose. The activity of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the cell-free homogenates of C. tropicalis 303 was twice as high as in the cells of C. lipolytica 695. The activity of transketolase was the same in both cultures. The main role of the pentose phosphate pathway is presumed to consist not in catabolism of the carbon source, but in biosynthesis of pentoses and other important intermediates.  相似文献   

10.
Thiamin, or vitamin B1, is crucial for brain function. In its active form, thiamin pyrophosphate (TPP), it is a co-enzyme for several enzymes, including transketolase. Transketolase is an important enzyme in the non-oxidative branch of the pentose phosphate pathway (PPP), a pathway responsible for generating reducing equivalents, which is essential for energy transduction and for generating ribose for nucleic acid synthesis. Transketolase also links the PPP to glycolysis, allowing a cell to adapt to a variety of energy needs, depending on its environment. Abnormal transketolase expression and/or activity have been implicated in a number of diseases where thiamin availability is low, including Wernicke-Korsakoff's Syndrome and alcoholism. Yet, the precise mechanism by which this enzyme is involved in the pathophysiology of these disorders remains controversial.  相似文献   

11.
Transketolase was isolated from human red blood cells with over 6,200 fold purification by a new method. The stepwise procedure for the isolation of the enzyme from erythrocyte hemolysate included the use of ethanol/chloroform precipitation, chromatography on hydroxyapatite and finally, affinity adsorption on carboxymethyl-cellulose. The molecular weight of erythrocyte transketolase, as determined by polyacrylamide gel electrophoresis, appeared to be about 140,000. The pH optimum for activity was between 7.6 and 7.8 and the optimum temperature for activity was 50 degrees C. The Km values for xylulose-5-phosphate, ribose-5-phosphate and fructose-6-phosphate were 2.0 x 10(-4) M, 3.2 x 10(-4) M and 2.0 x 10(-3) M, respectively.  相似文献   

12.
1. Measurements were made of the non-oxidative reactions of the pentose phosphate cycle in liver (transketolase, transaldolase, ribulose 5-phosphate epimerase and ribose 5-phosphate isomerase activities) in a variety of hormonal and nutritional conditions. In addition, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were measured for comparison with the oxidative reactions of the cycle; hexokinase, glucokinase and phosphoglucose isomerase activities were also included. Starvation for 2 days caused significant lowering of activity of all the enzymes of the pentose phosphate cycle based on activity in the whole liver. Re-feeding with a high-carbohydrate diet restored all the enzyme activities to the range of the control values with the exception of that of glucose 6-phosphate dehydrogenase, which showed the well-known ;overshoot' effect. Re-feeding with a high-fat diet also restored the activities of all the enzymes of the pentose phosphate cycle and of hexokinase; glucokinase activity alone remained unchanged. Expressed as units/g. of liver or units/mg. of protein hexokinase, glucose 6-phosphate dehydrogenase, transketolase and pentose phosphate isomerase activities were unchanged by starvation; both 6-phosphogluconate dehydrogenase and ribulose 5-phosphate epimerase activities decreased faster than the liver weight or protein content. 2. Alloxan-diabetes resulted in a decrease of approx. 30-40% in the activities of 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase and transketolase; in contrast with this glucose 6-phosphate dehydrogenase, transaldolase and phosphoglucose isomerase activities were unchanged. Treatment of alloxan-diabetic rats with protamine-zinc-insulin for 3 days caused a very marked increase to above normal levels of activity in all the enzymes of the pentose phosphate pathway except ribulose 5-phosphate epimerase, which was restored to the control value. Hexokinase activity was also raised by this treatment. After 7 days treatment of alloxan-diabetic rats with protamine-zinc-insulin the enzyme activities returned towards the control values. 3. In adrenalectomized rats the two most important changes were the rise in hexokinase activity and the fall in transketolase activity; in addition, ribulose 5-phosphate epimerase activity was also decreased. These effects were reversed by cortisone treatment. In addition, in cortisone-treated adrenalectomized rats glucokinase activity was significantly lower than the control value. 4. In thyroidectomized rats both ribose 5-phosphate isomerase and transketolase activities were decreased; in contrast with this transaldolase activity did not change significantly. Hypophysectomy caused a 50% fall in transketolase activity that was partially reversed by treatment with thyroxine and almost fully reversed by treatment with growth hormone for 8 days. 5. The results are discussed in relation to the hormonal control of the non-oxidative reactions of the pentose phosphate cycle, the marked changes in transketolase activity being particularly outstanding.  相似文献   

13.
14.
The pathway of pentose synthesis in glucose-grown cells of Lactobacillus casei was ascertained. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were present in glucose-grown cells, while transaldolase and transketolase were present only in traces. This suggested that only the oxidative arm of this pathway was operative in glucose-grown cells. On the other hand, in ribose-grown cells, transaldolase was induced with a concomitant suppression of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. These results were confirmed by the detection of labelled CO2 produced by L. casei grown on [1-14C]glucose. The activities of the enzymes of the oxidative pentose phosphate pathway as also the rate of CO2 formation were higher in the exponential phase of growth as compared to the stationary phase, when the requirement of the cells for pentoses for the formation of DNA and RNA was higher.  相似文献   

15.
1. Measurements were made of the activities of enzymes of the pentose phosphate cycle, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase, transketolase and transaldolase, as well as of the related or competing enzymes glucokinase, hexokinase, phosphoglucose isomerase and phosphoglucomutase, in control rats and in rats bearing the growth-hormone- and prolactin-secreting pituitary tumour MtTW5, to study the effect of high endogenous concentrations of growth hormone on this pathway in liver. 2. There was a twofold increase in liver weight. Glucokinase activity/g. of liver decreased to half the control value in the experimental group, although on a total liver basis it remained unchanged. Hexokinase activity increased in parallel with the liver weight, so that the total activity was doubled in rats with a high endogenous concentration of growth hormone. No differences in response were found between heat-stable and heat-labile forms of hexokinase. 3. The activity/g. of liver of the two oxidative enzymes of the pathway decreased slightly in the experimental group, but this was offset by the increase in liver weight, and the resultant effect was a 50% increase in the total activity. 4. Of the non-oxidative enzymes of the cycle the most marked increase on a total liver basis was in ribose 5-phosphate isomerase activity, to 2.5 times the control value. Ribulose 5-phosphate epimerase activity showed the smallest increase. Transketolase and transaldolase activities were also increased. The latter is the rate-limiting enzyme of the non-oxidative reactions of the cycle in these animals. 5. The results are discussed in relation to the glycolytic pathway and synthesis of glycogen, and more particularly to the increased requirement for ribose 5-phosphate for RNA synthesis.  相似文献   

16.
肿瘤细胞的一大重要特征是代谢水平的改变。戊糖磷酸途径作为细胞产生NADPH和五碳糖的主要通路,在肿瘤发生发展过程中发挥着重要功能。转酮酶是戊糖磷酸途径中的关键酶之一,越来越多的研究表明其与癌症病人预后具有显著相关性。作为肿瘤诊断、治疗的潜在靶标,转酮酶具有重要的研究价值。我们就目前癌症研究中对转酮酶的研究进展做简要综述。  相似文献   

17.
W. Jessup  M. W. Fowler 《Planta》1977,137(1):71-76
In sycamore cells grown on nitrate as opposed to glutamate there is a higher pentose phosphate pathway carbon flux relative to glycolysis in the early stages of cell growth when nitrate assimilation is most active. The high pentose phosphate pathway activity compared with glycolysis in nitrate grown cells is accompanied by enhanced levels of hexokinase, pyruvate kinase, glucose-6-phosphate de-hydrogenase, 6-phosphogluconate dehydrogenase and transketolase. There is no significant increase in activity of the solely glycolytic enzyme, phosphofructokinase. It is suggested that the increased pentose phosphate pathway activity in nitrate grown cells is correlated with a demand by nitrite assimilation for NADPH.II=Jessup and Fowler, 1976 b  相似文献   

18.
1. The pentose phosphate pathway in Krebs ascites cells was investigated for regulatory reactions. For comparison, the glycolytic pathway was studied simultaneously. 2. Activities of the pentose phosphate pathway enzymes were low in contrast with those of the enzymes of glycolysis. The K(m) values of glucose 6-phosphate dehydrogenase for both substrate and cofactor were about four times the reported upper limit for the enzyme from normal tissues. Fructose 1,6-diphosphate and NADPH competitively inhibited 6-phosphogluconate dehydrogenase. 3. About 28% of the hexokinase activity was in the particulate fraction of the cells. The soluble enzyme was inhibited by fructose 1,6-diphosphate and ribose 5-phosphate, but not by 3-phosphoglycerate. The behaviour of the partially purified soluble enzyme in vitro in a system simulating the concentrations of ATP, glucose 6-phosphate and P(i) found in vivo is reported. 4. Kinetics of metabolite accumulation during the transient state after the addition of glucose to the cells indicated two phases of glucose phosphorylation, an initial rapid phase followed abruptly by a slow phase extending into the steady state. 5. Of the pentose phosphate pathway intermediates, accumulation of 6-phosphogluconate, sedoheptulose 7-phosphate and fructose 6-phosphate paralleled the accumulation of glucose 6-phosphate. Erythrose 4-phosphate reached the steady-state concentration by 2min., whereas the pentose phosphates accumulated linearly. 6. The mass-action ratios of the pentose phosphate pathway reactions were calculated. The transketolase reaction was at equilibrium by 30sec. and then progressively shifted away from equilibrium towards the steady-state ratio. The glucose 6-phosphate dehydrogenase was far from equilibrium at all times. 7. Investigation of the flux of [(14)C]glucose carbon confirmed the existence of an operative pentose phosphate pathway in ascites cells, contributing 1% of the total flux in control cells and 10% in cells treated with phenazine methosulphate. 8. The pentose phosphate formed by way of the direct oxidative route and estimated from the (14)CO(2) yields represented 20% of the total accumulated pentose phosphate, the other 80% being formed by the non-oxidative reactions of the pentose phosphate pathway. 9. The pentose phosphate pathway appears to function as two separate pathways, both operating towards pentose phosphate formation. Control of the two pathways is discussed.  相似文献   

19.
This review highlights recent research on the properties and functions of the enzyme transketolase, which requires thiamin diphosphate and a divalent metal ion for its activity. The transketolase-catalysed reaction is part of the pentose phosphate pathway, where transketolase appears to control the non-oxidative branch of this pathway, although the overall flux of labelled substrates remains controversial. Yeast transketolase is one of several thiamin diphosphate dependent enzymes whose three-dimensional structures have been determined. Together with mutational analysis these structural data have led to detailed understanding of thiamin diphosphate catalysed reactions. In the homodimer transketolase the two catalytic sites, where dihydroxyethyl groups are transferred from ketose donors to aldose acceptors, are formed at the interface between the two subunits, where the thiazole and pyrimidine rings of thiamin diphosphate are bound. Transketolase is ubiquitous and more than 30 full-length sequences are known. The encoded protein sequences contain two motifs of high homology; one common to all thiamin diphosphate-dependent enzymes and the other a unique transketolase motif. All characterised transketolases have similar kinetic and physical properties, but the mammalian enzymes are more selective in substrate utilisation than the nonmammalian representatives. Since products of the transketolase-catalysed reaction serve as precursors for a number of synthetic compounds this enzyme has been exploited for industrial applications. Putative mutant forms of transketolase, once believed to predispose to disease, have not stood up to scrutiny. However, a modification of transketolase is a marker for Alzheimer’s disease, and transketolase activity in erythrocytes is a measure of thiamin nutrition. The cornea contains a particularly high transketolase concentration, consistent with the proposal that pentose phosphate pathway activity has a role in the removal of light-generated radicals.  相似文献   

20.
Transketolase from baker's yeast is rapidly inactivated in the presence of 1-ethyl-3 (3'-dimethylaminopropyl)-carbodiimide or Woodward's reagent K. In both cases the kinetics of inactivation is biphasic, which agrees with the presence of two active centers in the enzyme molecule differing in their sensitivity to the inhibitors. There is some evidence that inactivation of transketolase is due to modification of carboxyl groups of enzyme. Complete inactivation is achieved by modification of one carboxyl per active site of the enzyme. The experimental results suggest that the carboxyl group is essential for the enzymatic activity of transketolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号