首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spingola M  Ares M 《Molecular cell》2000,6(2):329-338
Three introns whose splicing is activated during meiosis in S. cerevisiae contain a Mer1p-dependent splicing enhancer. The enhancer can impose Mer1p-activated splicing upon the constitutively spliced actin intron provided the basal splicing efficiency of actin is first reduced. Of several nonessential splicing factors tested, only the U1 snRNP protein Nam8p is indispensable for Mer1 p-activated splicing. We show that Mer1p associates with the U1 snRNP even in the absence of Nam8p or pre-mRNA. This work defines a yeast splicing enhancer and shows that constitutively expressed and cell type-specific factors combine to regulate splicing of a specific subset of pre-mRNAs including SPO70, MER2, and MER3.  相似文献   

2.
Mer1p activates the splicing of at least three pre-mRNAs (AMA1, MER2, MER3) during meiosis in the yeast Saccharomyces cerevisiae. We demonstrate that enhancer recognition by Mer1p is separable from Mer1p splicing activation. The C-terminal KH-type RNA-binding domain of Mer1p recognizes introns that contain the Mer1p splicing enhancer, while the N-terminal domain interacts with the spliceosome and activates splicing. Prior studies have implicated the U1 snRNP and recognition of the 5′ splice site as key elements in Mer1p-activated splicing. We provide new evidence that Mer1p may also function at later steps of spliceosome assembly. First, Mer1p can activate splicing of introns that have mutated branch point sequences. Secondly, Mer1p fails to activate splicing in the absence of the non-essential U2 snRNP protein Snu17p. Thirdly, Mer1p interacts with the branch point binding proteins Mud2p and Bbp1p and the U2 snRNP protein Prp11p by two-hybrid assays. We conclude that Mer1p is a modular splicing regulator that can activate splicing at several early steps of spliceosome assembly and depends on the activities of both U1 and U2 snRNP proteins to activate splicing.  相似文献   

3.
The U1 snRNP is essential for recognition of the pre-mRNA 5'-splice site and the subsequent assembly of the spliceosome. Yeast U1 snRNP is considerably more complex than its metazoan counterpart, which suggests possible differences between yeast and metazoa in early splicing events. We have comprehensively analyzed the composition of yeast U1 snRNPs using a combination of biochemical, mass spectrometric, and genetic methods. We demonstrate the specific association of four novel U1 snRNP proteins, Snu71p, Snu65p, Nam8p, and Snu56p, that have no known metazoan homologues. A fifth protein, Npl3p, is an abundant cellular component that reproducibly co-purifies with the U1 snRNP, but its association is salt-sensitive. Therefore, we are unable to establish conclusively whether it binds specifically to the U1 snRNP. Interestingly, Nam8p and Npl3p were previously assigned functions in (pre-m)RNA-metabolism; however, so far, no association with U1 snRNP has been demonstrated or proposed. We also show that the yeast SmB protein is a U1 snRNP component. Yeast U1 snRNP therefore contains 16 different proteins, including seven snRNP core proteins, three homologues of the metazoan U1 snRNP-specific proteins, and six yeast-specific U1 snRNP proteins. We have simultaneously continued the characterization of additional mutants isolated in a synthetic lethal (MUD) screen for genes that functionally cooperate with U1 snRNA. Consistent with the biochemical results, mud10, mud15, and mud16 are alleles of SNU56, NAM8, and SNU65, respectively. mud10 and mud15 affect the in vivo splicing efficiency of noncanonical introns. Moreover, mud10p strongly affects the in vitro formation of splicing complexes, and extracts from the mud15 strain contain a U1 snRNP that migrates aberrantly on native gels. Finally, we show that Nam8p/Mud15p contributes to the stability of U1 snRNP.  相似文献   

4.
Meiosis-specific pre-mRNA splicing in budding yeast embraces multiple pre-mRNA targets grouped into regulons defined by their genetic requirements for vegetatively optional splicing factors (e.g., splicing enhancer Mer1 and the U1 snRNP subunit Nam8) or snRNA modifications (trimethylguanosine caps). Here, we genetically demarcate a complete meiotic splicing regulon by the criterion of cDNA bypass of the requirement for the governing splicing regulators to execute sporulation. We thereby show that the Mer1 and Nam8 regulons embrace four essential pre-mRNAs: MER2, MER3, SPO22, and AMA1. Whereas Nam8 also regulates PCH2 splicing, PCH2 cDNA is not needed for sporulation by nam8Δ diploids. Our results show that there are no essential intron-containing RNAs missing from the known roster of Mer1 and Nam8 targets. Nam8 is composed of three RRM domains, flanked by N-terminal leader and C-terminal tail segments. We find that the RRM2 and RRM3 domains, and their putative RNA-binding sites, are essential for yeast sporulation, whereas the leader, tail, and RRM1 modules are not.  相似文献   

5.
Nam8, a component of yeast U1 snRNP, is optional for mitotic growth but required during meiosis, because Nam8 collaborates with Mer1 to promote splicing of essential meiotic mRNAs AMA1, MER2 and MER3. Here, we identify SPO22 and PCH2 as novel targets of Nam8-dependent meiotic splicing. Whereas SPO22 splicing is co-dependent on Mer1, PCH2 is not. The SPO22 intron has a non-consensus 5' splice site (5'SS) that dictates its Nam8/Mer1-dependence. SPO22 splicing relies on Mer1 recognition, via its KH domain, of an intronic enhancer 5'-AYACCCUY. Mutagenesis of KH and the enhancer highlights Arg214 and Gln243 and the CCC triplet as essential for Mer1 activity. The Nam8-dependent PCH2 pre-mRNA has a consensus 5'SS and lacks a Mer1 enhancer. For PCH2, a long 5' exon and a non-consensus intron branchpoint dictate Nam8-dependence. Our results implicate Nam8 in two distinct meiotic splicing regulons. Nam8 is composed of three RRM domains, flanked by N-terminal leader and C-terminal tail segments. The leader, tail and RRM1 are dispensable for splicing meiotic targets and unnecessary for vegetative Nam8 function in multiple synthetic lethal genetic backgrounds. Nam8 activity is enfeebled by alanine mutations in the putative RNA binding sites of the RRM2 and RRM3 domains.  相似文献   

6.
We describe the purification and characterization of a 16S U5 snRNP from the yeast Saccharomyces cerevisiae and the identification of its proteins. In contrast to the human 20S U5 snRNP, it has a comparatively simple protein composition. In addition to the Sm core proteins, it contains only two of the U5 snRNP specific proteins, Prp8p and Snu114p. Interestingly, the 16S U5 snRNP contains also Aar2p, a protein that was previously implicated in splicing of the two introns of the MATa1 pre-mRNA. Here, we demonstrate that Aar2p is essential and required for in vivo splicing of U3 precursors. However, it is not required for splicing in vitro. Aar2p is associated exclusively with this simple form of the U5 snRNP (Aar2-U5), but not with the [U4/U6.U5] tri-snRNP or spliceosomal complexes. Consistent with this, we show that depletion of Aar2p interferes with later rounds of splicing, suggesting that it has an effect when splicing depends on snRNP recycling. Remarkably, the Aar2-U5 snRNP is invariably coisolated with the U1 snRNP regardless of the purification protocol used. This is consistent with the previously suggested cooperation between the U1 and U5 snRNPs prior to the catalytic steps of splicing. Electron microscopy of the Aar2-U5 snRNP revealed that, despite the comparatively simple protein composition, the yeast Aar2-U5 snRNP appears structurally similar to the human 20S U5 snRNP. Thus, the basic structural scaffold of the Aar2-U5 snRNP seems to be essentially determined by Prp8p, Snu114p, and the Sm proteins.  相似文献   

7.
van Nues RW  Beggs JD 《Genetics》2001,157(4):1451-1467
Mapping of functional protein interactions will help in understanding conformational rearrangements that occur within large complexes like spliceosomes. Because the U5 snRNP plays a central role in pre-mRNA splicing, we undertook exhaustive two-hybrid screening with Brr2p, Prp8p, and other U5 snRNP-associated proteins. DExH-box protein Brr2p interacted specifically with five splicing factors: Prp8p, DEAH-box protein Prp16p, U1 snRNP protein Snp1p, second-step factor Slu7p, and U4/U6.U5 tri-snRNP protein Snu66p, which is required for splicing at low temperatures. Co-immunoprecipitation experiments confirmed direct or indirect interactions of Prp16p, Prp8p, Snu66p, and Snp1p with Brr2p and led us to propose that Brr2p mediates the recruitment of Prp16p to the spliceosome. We provide evidence that the prp8-1 allele disrupts an interaction with Brr2p, and we propose that Prp8p modulates U4/U6 snRNA duplex unwinding through another interaction with Brr2p. The interactions of Brr2p with a wide range of proteins suggest a particular function for the C-terminal half, bringing forward the hypothesis that, apart from U4/U6 duplex unwinding, Brr2p promotes other RNA rearrangements, acting synergistically with other spliceosomal proteins, including the structurally related Prp2p and Prp16p. Overall, these protein interaction studies shed light on how splicing factors regulate the order of events in the large spliceosome complex.  相似文献   

8.
We have isolated and microsequenced Snu17p, a novel yeast protein with a predicted molecular mass of 17 kDa that contains an RNA recognition motif. We demonstrate that Snu17p binds specifically to the U2 small nuclear ribonucleoprotein (snRNP) and that it is part of the spliceosome, since the pre-mRNA and the lariat-exon 2 are specifically coprecipitated with Snu17p. Although the SNU17 gene is not essential, its knockout leads to a slow-growth phenotype and to a pre-mRNA splicing defect in vivo. In addition, the first step of splicing is dramatically decreased in extracts prepared from the snu17 deletion (snu17Delta) mutant. This defect is efficiently reversed by the addition of recombinant Snu17p. To investigate the step of spliceosome assembly at which Snu17p acts, we have used nondenaturing gel electrophoresis. In Snu17p-deficient extracts, the spliceosome runs as a single slowly migrating complex. In wild-type extracts, usually at least two distinct complexes are observed: the prespliceosome, or B complex, containing the U2 but not the U1 snRNP, and the catalytically active spliceosome, or A complex, containing the U2, U6, and U5 snRNPs. Northern blot analysis and affinity purification of the snu17Delta spliceosome showed that it contains the U1, U2, U6, U5, and U4 snRNPs. The unexpected stabilization of the U1 snRNP and the lack of dissociation of the U4 snRNP suggest that loss of Snu17p inhibits the progression of spliceosome assembly prior to U1 snRNP release and after [U4/U6.U5] tri-snRNP addition.  相似文献   

9.
10.
Brenner TJ  Guthrie C 《Genetics》2005,170(3):1063-1080
Snu114 is the only GTPase required for mRNA splicing. As a homolog of elongation factor G, it contains three domains (III-V) predicted to undergo a large rearrangement following GTP hydrolysis. To assess the functional importance of the domains of Snu114, we used random mutagenesis to create conditionally lethal alleles. We identified three main classes: (1) mutations that are predicted to affect GTP binding and hydrolysis, (2) mutations that are clustered in 10- to 20-amino-acid stretches in each of domains III-V, and (3) mutations that result in deletion of up to 70 amino acids from the C terminus. Representative mutations from each of these classes blocked the first step of splicing in vivo and in vitro. The growth defects caused by most alleles were synthetically exacerbated by mutations in PRP8, a U5 snRNP protein that physically interacts with Snu114, as well as in genes involved in snRNP biogenesis, including SAD1 and BRR1. The allele snu114-60, which truncates the C terminus, was synthetically lethal with factors required for activation of the spliceosome, including the DExD/H-box ATPases BRR2 and PRP28. We propose that GTP hydrolysis results in a rearrangement between Prp8 and the C terminus of Snu114 that leads to release of U1 and U4, thus activating the spliceosome for catalysis.  相似文献   

11.
Snu114 is a U5 snRNP protein essential for pre-mRNA splicing. Based on its homology with the ribosomal translocase EF-G, it is thought that GTP hydrolysis by Snu114 induces conformational rearrangements in the spliceosome. We recently identified allele-specific genetic interactions between SNU114 and genes encoding three other U5 snRNP components, Prp8 and two RNA-dependent ATPases, Prp28 and Brr2, required for destabilization of U1 and U4 snRNPs prior to catalysis. To shed more light onto the function of Snu114, we have now directly analyzed snRNP and spliceosome assembly in SNU114 mutant extracts. The Snu114-60 C-terminal truncation mutant, which is synthetically lethal with the ATPase mutants prp28-1 and brr2-1, assembles spliceosomes but subsequently blocks U4 snRNP release. Conversely, mutants in the GTPase domain fail to assemble U5 snRNPs. These mutations prevent the interaction of Snu114 with Prp8 as well as with U5 snRNA. Since Prp8 is thought to regulate the activity of the DEAD-box ATPases, this strategy of snRNP assembly could ensure that Prp8 activity is itself regulated by a GTP-dependent mechanism.  相似文献   

12.
13.
14.
The driving forces behind the many RNA conformational changes occurring in the spliceosome are not well understood. Here we characterize an evolutionarily conserved human U5 small nuclear ribonucleoprotein (snRNP) protein (U5-116kD) that is strikingly homologous to the ribosomal elongation factor EF-2 (ribosomal translocase). A 114 kDa protein (Snu114p) homologous to U5-116kD was identified in Saccharomyces cerevisiae and was shown to be essential for yeast cell viability. Genetic depletion of Snu114p results in accumulation of unspliced pre-mRNA, indicating that Snu114p is essential for splicing in vivo. Antibodies specific for U5-116kD inhibit pre-mRNA splicing in a HeLa nuclear extract in vitro. In HeLa cells, U5-116kD is located in the nucleus and colocalizes with snRNP-containing subnuclear structures referred to as speckles. The G domain of U5-116kD/Snu114p contains the consensus sequence elements G1-G5 important for binding and hydrolyzing GTP. Consistent with this, U5-116kD can be cross-linked specifically to GTP by UV irradiation of U5 snRNPs. Moreover, a single amino acid substitution in the G1 sequence motif of Snu114p, expected to abolish GTP-binding activity, is lethal, suggesting that GTP binding and probably GTP hydrolysis is important for the function of U5-116kD/Snu114p. This is to date the first evidence that a G domain-containing protein plays an essential role in the pre-mRNA splicing process.  相似文献   

15.
Rds3p is a well-conserved 12-kDa protein with five CxxC zinc fingers that has been implicated in the activation of certain drug transport genes and in the pre-mRNA splicing pathway. Here we show that Rds3p resides in the yeast spliceosome and is essential for splicing in vitro. Rds3p purified from yeast stably associates with at least five U2 snRNP proteins, Cus1p, Hsh49p, Hsh155p, Rse1p, and Ist3p/Snu17p, and with the Yra1p RNA export factor. A mutation upstream of the first Rds3p zinc finger causes the conditional release of the putative branchpoint nucleotide binding protein, Ist3p/Snu17p, and weakens Rse1p interaction with the Rds3p complex. The resultant U2 snRNP particle migrates exceptionally slowly in polyacrylamide gels, suggestive of a disorganized structure. U2 snRNPs depleted of Rds3p fail to form stable prespliceosomes, although U2 snRNA stability is not affected. Metabolic depletion of Yra1p blocks cell growth but not splicing, suggesting that Yra1p association with Rds3p relates to Yra1p's role in RNA trafficking. Together these data establish Rds3p as an essential component of the U2 snRNP SF3b complex and suggest a new link between the nuclear processes of pre-mRNA splicing and RNA export.  相似文献   

16.
The 25S [U4/U6.U5] tri-snRNP (small nuclear ribonucleoprotein) is a central unit of the nuclear pre-mRNA splicing machinery. The U4, U5 and U6 snRNAs undergo numerous rearrangements in the spliceosome, and knowledge of all of the tri-snRNP proteins is crucial to the detailed investigation of the RNA dynamics during the spliceosomal cycle. Here we characterize by mass spectrometric methods the proteins of the purified [U4/U6.U5] tri-snRNP from the yeast Saccharomyces cerevisiae. In addition to the known tri-snRNP proteins (only one, Lsm3p, eluded detection), we identified eight previously uncharacterized proteins. These include four Sm-like proteins (Lsm2p, Lsm5p, Lsm6p and Lsm7p) and four specific proteins named Snu13p, Dib1p, Snu23p and Snu66p. Snu13p comprises a putative RNA-binding domain. Interestingly, the Schizosaccharomyces pombe orthologue of Dib1p, Dim1p, was previously assigned a role in cell cycle progression. The role of Snu23p, Snu66p and, additionally, Spp381p in pre-mRNA splicing was investigated in vitro and/or in vivo. Finally, we show that both tri-snRNPs and the U2 snRNP are co-precipitated with protein A-tagged versions of Snu23p, Snu66p and Spp381p from extracts fractionated by glycerol gradient centrifugation. This suggests that these proteins, at least in part, are also present in a [U2.U4/U6.U5] tetra-snRNP complex.  相似文献   

17.
The U5 small nuclear ribonucleoprotein particle (snRNP) forms the heart of the spliceosome which is required for intron removal from pre‐mRNA. The proteins Prp8, Snu114 and Brr2 all assemble with the U5 small nuclear RNA (snRNA) to produce the U5 snRNP. Successful assembly of the U5 snRNP, then incorporation of this snRNP into the U4/U6.U5 tri‐snRNP and the spliceosome, is essential for producing an active spliceosome. We have investigated the requirements for Prp8, Snu114 and Brr2 association with the U5 snRNA to form the U5 snRNP in yeast. Mutations were constructed in the highly conserved loop 1 and internal loop 1 (IL1) of the U5 snRNA and their function assessed in vivo. The influence of these U5 mutations on association of Prp8, Snu114 and Brr2 with the U5 snRNA were then determined. U5 snRNA loop 1 and both sides of IL1 in U5 were important for association of Prp8, Snu114 and Brr2 with the U5 snRNA. Mutations in the 3′ side of U5 IL1 resulted in the greatest reduction of Prp8, Snu114 and Brr2 association with the U5 snRNA. Genetic screening of brr2 and U5 snRNA mutants revealed synthetic lethal interactions between alleles in Brr2 and the 3′ side of U5 snRNA IL1 which reflects reduced association between Brr2 and U5 IL1. We propose that the U5 snRNA IL1 is a platform for protein binding and is required for Prp8, Brr2 and Snu114 association with the U5 snRNA to form the U5 snRNP. J. Cell. Biochem. 114: 2770–2784, 2013. © 2013 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.  相似文献   

18.
In Saccharomyces cerevisiae, Cwc21p is a protein of unknown function that is associated with the NineTeen Complex (NTC), a group of proteins involved in activating the spliceosome to promote the pre-mRNA splicing reaction. Here, we show that Cwc21p binds directly to two key splicing factors—namely, Prp8p and Snu114p—and becomes the first NTC-related protein known to dock directly to U5 snRNP proteins. Using a combination of proteomic techniques we show that the N-terminus of Prp8p contains an intramolecular fold that is a Snu114p and Cwc21p interacting domain (SCwid). Cwc21p also binds directly to the C-terminus of Snu114p. Complementary chemical cross-linking experiments reveal reciprocal protein footprints between the interacting Prp8 and Cwc21 proteins, identifying the conserved cwf21 domain in Cwc21p as a Prp8p binding site. Genetic and functional interactions between Cwc21p and Isy1p indicate that they have related functions at or prior to the first catalytic step of splicing, and suggest that Cwc21p functions at the catalytic center of the spliceosome, possibly in response to environmental or metabolic changes. We demonstrate that SRm300, the only SR-related protein known to be at the core of human catalytic spliceosomes, is a functional ortholog of Cwc21p, also interacting directly with Prp8p and Snu114p. Thus, the function of Cwc21p is likely conserved from yeast to humans.  相似文献   

19.
20.
We present here the first insights into the organization of proteins on the RNA in the U5 snRNP of Saccharomyces cerevisiae. Photo-crosslinking with uniformly labeled U5 RNA in snRNPs reconstituted in vitro revealed five contacting proteins, Prp8p, Snu114p, p30, p16, and p10, contact by the three smaller proteins requiring an intact Sm site. Site-specific crosslinking showed that Snu114p contacts the 5' side of internal loop 1, whereas Prp8p interacts with five different regions of the 5' stem-loop, but not with the Sm site or 3' stem-loop. Both internal loops in the 5' domain are essential for Prp8p to associate with the snRNP, but the conserved loop 1 is not, although this is the region to which Prp8p crosslinks most strongly. The extensive contacts between Prp8p and the 5' stem-loop of U5 RNA support the hypothesis that, in spliceosomes, Prp8p stabilizes loop 1-exon interactions. Moreover, data showing that Prp8p contacts the exons even in the absence of loop 1 indicate that Prp8p may be the principal anchoring factor for exons in the spliceosome. This and the close proximity of the spliceosomal translocase, Snu114p, to U5 loop 1 and Prp8p support and extend the proposal that Snu114p mimics U5 loop 1 during a translocation event in the spliceosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号