首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic behavior of kinetochore fiber microtubules has been examined in PtK1 cells during anaphase of mitosis. Cells in anaphase were injected with biotin-tubulin and, at various intervals after injection, fixed for light or electron microscopic immunolocalization of biotin-tubulin-containing microtubules. When cells in early to mid anaphase were injected with biotin-tubulin and fixed 1-2 min later, fluorescence was observed throughout the spindle, including the region of the kinetochore fibers. Electron microscopy of early to mid anaphase cells, after processing with immunogold methods, revealed both labeled and unlabeled microtubules in the kinetochore fibers; some labeled microtubules contacted the kinetochores. When late anaphase cells were injected with biotin-tubulin, and fixed a few minutes later, little fluorescence was observed in the kinetochore fibers. Electron microscopy confirmed that kinetochore fibers in late anaphase cells were refractory to tubulin incorporation. The results of these experiments demonstrate that the kinetochore fiber incorporates new microtubules during early anaphase but that this incorporation ceases in mid to late anaphase. Thus, microtubule turnover within the kinetochore fiber does not abruptly cease at the onset of anaphase and anaphase kinetochore fiber microtubules are more dynamic than previously suspected.  相似文献   

2.
Detailed correlation of in vitro observations with the arrangement of microtubules (MTs) during anaphase-telophase were made on endosperm of Haemanthus katherinae. It is stressed that the general course of events leading to the formation of the phragmoplast is the same in all cells, but considerable variation of details may be found in different objects and even in various cells of the same tissue. The changes of MT arrangement in the interzonal region responsible for formation of the phragmoplast already occur in anaphase. During this stage continuous fibers (composed of numerous MTs) lengthen, become thinner (the number of MTs on a cross-section decreases), and often seem to break. After mid-anaphase, thin fibers begin to oscillate transversely to the axis of the phragmoplast and often are considerably laterally displaced (lateral movements). The longest MTs in the phragmoplast are present during oscillations and lateral movements. The new MTs arise in the phragmoplast regions depleted of MTs as a result of lateral movements (usually geometric central region of the phragmoplast). Clusters of vesicles, which accumulate in relation to MTs which move, fuse and form the cell plate. After the fusion, the number and the length of MTs decrease. Several processes are superimposed and occur simultaneously. Also the cell plate is, as a rule, in different stages of development in various regions of the phragmoplast. The movements of MTs and fusion of the vesicles is complex and the details of these processes are not entirely clear. The data supplied here modify some generally accepted concepts of phragmoplast formation and development. This concerns the center of origin of new MTs, the moment when they arise, and the way they subsequently behave.  相似文献   

3.
Harald Fuge 《Chromosoma》1974,45(3):245-260
Analysis of serial sections oriented parallel to the interpolar spindle axis revealed the following results. Autosomes in anaphase of the 1. meiotic division of Pales ferruginea spermatocytes are attached to the spindle in two ways: 1. The short kinetochoric microtubules (kMTs) diverge and interdigitate with the axial mass of non-kinetochoric microtubules (nkMTs). 2. The chromosome surface shows projections which protrude between the mass of nkMTs. — At the level of anaphase plates the concentration of nkMTs is higher than in the interzone. — The lagging sex chromosomes at the equator become stretched by anaphase forces during autosomal movement. — The mean length of nkMTs in metaphase is 3.0±0.1 μm, in anaphase 2.6±0.1 μm, possibly indicating an overall MT shortening in anaphase. Spindle architecture and aspects of anaphase forces are discussed.  相似文献   

4.
We use liquid crystal polarized light imaging to record the life histories of single kinetochore (K-) fibers in living crane-fly spermatocytes, from their origins as nascent K-fibers in early prometaphase to their fully matured form at metaphase, just before anaphase onset. Increased image brightness due to increased retardance reveals where microtubules are added during K-fiber formation. Analysis of experimentally generated bipolar spindles with only one centrosome, as well as of regular, bicentrosomal spindles, reveals that microtubule addition occurs at the kinetochore-proximal ends of K-fibers, and added polymer expands poleward, giving rise to the robust K-fibers of metaphase cells. These results are not compatible with a model for K-fiber formation in which microtubules are added to nascent fibers solely by repetitive “search and capture” of centrosomal microtubule plus ends. Our interpretation is that capture of centrosomal microtubules—when deployed—is limited to early stages in establishment of nascent K-fibers, which then mature through kinetochore-driven outgrowth. When kinetochore capture of centrosomal microtubules is not used, the polar ends of K-fibers grow outward from their kinetochores and usually converge to make a centrosome-free pole.  相似文献   

5.
The binding sites on the nicotinic acetylcholine receptor of labels specific for the alpha-, beta-, and delta-subunits were determined by electron image analysis, using tubular crystals of receptors grown from the postsynaptic membranes of Torpedo marmorata electric organ. The labels were alpha-bungarotoxin (which attaches to the acetylcholine binding sites on the pair of alpha-subunits), Fab35 (a monoclonal antibody Fab fragment directed against the main immunogenic region of the alpha-subunit), Fab111 (a monoclonal antibody Fab fragment directed against a cytoplasmic site on the beta-subunit), and wheat germ agglutinin (which binds to N-acetylglucosamine residues on the delta-subunit). These labels, bound to receptors in the crystals, were located by comparing labeled with native structures, averaged in each case over more than 5,000 molecules. From the assignments made, we find that the clockwise arrangement of subunits around the receptor, viewed from the synaptic face, is: alpha, beta, alpha, gamma, and delta; that the main immunogenic region is at (or close to) the side of the alpha-subunit; and that the two acetylcholine binding sites are at the synaptic end of the alpha-subunits, 27-28 A from the central axis and approximately 53 A apart. In the crystal lattice, neighboring molecules are paired so that their delta- and alpha-subunits are juxtaposed, an organization that appears to relate closely to the grouping of receptors in vivo.  相似文献   

6.
Microtubule flux in spindles of insect spermatocytes, long-used models for studies on chromosome behavior during meiosis, was revealed after iontophoretic microinjection of rhodamine-conjugated (rh)-tubulin and fluorescent speckle microscopy. In time-lapse movies of crane-fly spermtocytes, fluorescent speckles generated when rh-tubulin incorporated at microtubule plus ends moved poleward through each half-spindle and then were lost from microtubule minus ends at the spindle poles. The average poleward velocity of approximately 0.7 microm/min for speckles within kinetochore microtubules at metaphase increased during anaphase to approximately 0.9 microm/min. Segregating half-bivalents had an average poleward velocity of approximately 0.5 microm/min, about half that of speckles within shortening kinetochore fibers. When injected during anaphase, rhtubulin was incorporated at kinetochores, and kinetochore fiber fluorescence spread poleward as anaphase progressed. The results show that tubulin subunits are added to the plus end of kinetochore microtubules and are removed from their minus ends at the poles, all while attached chromosomes move poleward during anaphase A. The results cannot be explained by a Pac-man model, in which 1) kinetochore-based, minus end-directed motors generate poleward forces for anaphase A and 2) kinetochore microtubules shorten at their plus ends. Rather, in these cells, kinetochore fiber shortening during anaphase A occurs exclusively at the minus ends of kinetochore microtubules.  相似文献   

7.
Spindles in anaphase of dividing primary spermatocytes of the grasshopper, Mongolotettix japonicus, were examined with a sensitive polarizing microscope combined with a time-lapse video recorder and a cinematographic apparatus. The pole-to-pole distance of the meiotic spindles was increased and the kinetochore fibers were more birefringent in the presence of 40% D2O. However, the rate of shortening of the kinetochore fibers in anaphase was not affected by D2O. This indicates that D2O did not inhibit microtubule disassembly in anaphase, supporting the earlier observations (3, 18) that D2O did not "stabilize" the spindle microtubules at concentrations below 45%. We confirmed that D2O, at the concentration mentioned above, neither promotes nor inhibits the anaphase A. However, the overall sequence of anaphase was considerably extended in the presence of D2O, presumably due to the increased pole-to-pole distance.  相似文献   

8.
Harald Fuge 《Chromosoma》1980,76(3):309-328
The region between the kinetochores of syntelically oriented autosomes and the pole in meta- and anaphase of Pales ferruginea spermatocytes was studied by means of serial sections. Microtubule (MT) were counted and measured, and the spindle region was reconstructed by superimposition of successive micrographs. Kinetochoric (kMTs) and non-kinetochoric microtubules (nkMTs) interdigitate with one another forming a bundle which is often arrow-shaped due to an inclination of nkMTs (skew nkMTs) with respect to the kinetochore-pole axis. The average length of MT in the bundle decreases towards anaphase while the average number increases. The extent of MT disorder in anaphase half-spindles is higher than in metaphase. The number of kMTs inserted in the kinetochore was found to remain unchanged from meta- to early anaphase. Some of the kMTs become divergent in anaphase. The relative proportion of skew nkMTs within the kMT/nkMT bundle is higher in anaphase. It is proposed that the morphological changes observed to occur from meta- to anaphase are due to fragmentation of kMTs followed by disorientation of the MTs pieces. Some aspects of the physical properties of the half-spindles are discussed.  相似文献   

9.
Summary InSaprolegnia, kinetochore microtubules persist throughout the mitotic nuclear cycle but, whilst present at leptotene, they disappear coincidently with the formation of synaptonemal complexes at pachytene and reform at metaphase I. In some other fungi chromosomal segregation is random in meiosis and non-random in mitosis. The attachment of chromosomes to persistent kinetochore microtubules in mitosis, but not meiosis, inSaprolegnia provides a plausible explanation for such behaviour. At metaphase I each bivalent is connected to the spindle by 2 laterally paired kinetochore microtubules whereas at metaphase II (as in mitosis) each univalent bears only one kinetochore microtubule, thus showing that all kinetochores are fully active at all stages of meiosis.  相似文献   

10.
The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells   总被引:1,自引:0,他引:1  
Conly L. Rieder 《Chromosoma》1981,84(1):145-158
When metaphase PtK1 cells are cooled to 6–8 ° C for 4–6 h the free, polar, and astral spindle microtubules (MTs) disassemble while the MTs of each kinetochore fiber cluster together and persist as bundles of cold-stable MTs. These cold-stable kinetochore fibers are similar to untreated kinetochore fibers in both their length (i.e., 5–6 m) and in the number of kinetochore-associated MTs (i.e., 20–45) of which they are comprised. Quantitative information concerning the lengths of MTs within these fibers was obtained by tracking individual MTs between serial transverse sections. Approximately 1/2 of the kinetochore MTs in each fiber were found to run uninterrupted into the polar region of the spindle. It can be inferred from this and other data that a substantial number of MTs run uninterrupted between the kinetochore and the polar region in untreated metaphase PtK1 cells.  相似文献   

11.
Fabian L  Forer A 《Protoplasma》2007,231(3-4):201-213
Summary. We tested whether the mechanisms of chromosome movement during anaphase in locust (Locusta migratoria L.) spermatocytes might be similar to those described for crane-fly spermatocytes. Actin and myosin have been implicated in anaphase chromosome movements in crane-fly spermatocytes, as indicated by the effects of inhibitors and by the localisations of actin and myosin in spindles. In this study, we tested whether locust spermatocyte spindles also utilise actin and myosin, and whether actin is involved in microtubule flux. Living locust spermatocytes were treated with inhibitors of actin (latrunculin B and cytochalasin D), myosin (BDM), or myosin phosphorylation (Y-27632 and ML-7). We added drugs (individually) during anaphase. Actin inhibitors alter anaphase: chromosomes either completely stop moving, slow, or sometimes accelerate. The myosin inhibitor, BDM, also alters anaphase: in most cases, the chromosomes drastically slow or stop. ML-7, an inhibitor of MLCK, causes chromosomes to stop, slow, or sometimes accelerate, similar to actin inhibitors. Y-27632, an inhibitor of Rho-kinase, drastically slows or stops anaphase chromosome movements. The effects of the drugs on anaphase movement are reversible: most of the half-bivalents resumed movement at normal speed after these drugs were washed out. Actin and myosin were present in the spindles in locations consistent with their possible involvement in force production. Microtubule flux along kinetochore fibres is an actin-dependent process, since LatB completely removes or drastically reduces the gap in microtubule acetylation at the kinetochore. These results suggest that actin and myosin are involved in anaphase chromosome movements in locust spermatocytes. Correspondence: A. Forer, Biology Department, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.  相似文献   

12.
Summary— kinetochore spindle fibers in meiosis I and II grasshopper spermatocytes were cut with a heterochromatic ultraviolet (UV) microbeam converging on the specimen to form a slit-shaped microspot 1.5 × 8 μm or 3 × 8 μm. A total exposure of 3 × 10?8 joules per μm2 was administered within 0.8–2.4 s, which was sufficient for severing. The cells were observed with a high extinction polarizing microscope or phase contrast optics and a record made by time-lapse video microscopy, continuously before, during and after the irradiation. When kinetochore fibers were irradiated i anaphase with UV, an area of reduced birefringence (ARB) was produced at the exposed site. The newly created + ends of the microtubules rapidly disassembled poleward, at a constant speed of 17 μm/min. The — ends at the edge of ARB also depolymerized at a slower rate. When a kinetochore fiber was cut with UV in early anaphase at which time its associated chromosome had not disjoined from the partner chromosome, the chromosome of the irradiated kinetochore fiber moved rapidly back to its partner. The speed during this movement was faster than the normal poleward chromosome movement in anaphase by an order to magnitude or more. When a kinetochore and its associated kinetochore fiber were included in the irradiation are, the effects were more pronounced than the effects of irradiation on a kinetochore fiber alone; the direction of the line connecting the irradiated half-bivalent with the partner half-bivalent deviated so much from the longitudinal axis of the original spindle with time that the division assumed a tripolar figure.  相似文献   

13.
During prometaphase and metaphase of mitosis, tubulin subunit incorporation into kinetochore microtubules occurs proximal to the kinetochore, at the plus-ends of kinetochore microtubules. During anaphase, subunit loss from kinetochore fiber microtubules is also thought to occur mainly from microtubule plus-ends, proximal to the kinetochore. Thus, the kinetochore can mediate both subunit addition and loss while maintaining an attachment to kinetochore microtubules. To examine the relationship between chromosome motion and tubulin subunit assembly in anaphase, we have injected anaphase cells with biotin-labeled tubulin subunits. The pattern of biotin-tubulin incorporation was revealed using immunoelectron and confocal fluorescence microscopy of cells fixed after injection; chromosome motion was analyzed using video records of living injected cells. When anaphase cells are examined approximately 30 s after injection with biotin-tubulin, bright "tufts" of fluorescence are detected proximal to the kinetochores. Electron microscopic immunocytochemistry further reveals that these tufts of biotin-tubulin-containing microtubules are continuous with unlabeled kinetochore fiber microtubules. Biotin-tubulin incorporation proximal to the kinetochore in anaphase cells is detected after injection of 3-30 mg/ml biotin-tubulin, but not in cells injected with 0.3 mg/ml biotin-tubulin. At intermediate concentrations of biotin-tubulin (3-5 mg/ml), incorporation at the kinetochore can be detected within 15 s after injection; by approximately 1 min after injection discrete tufts of fluorescence are no longer detected, although some incorporation throughout the kinetochore fiber and into nonkinetochore microtubules is observed. At higher concentrations of injected biotin-tubulin (13 mg/ml), incorporation at the kinetochore is more extensive and occurs for longer periods of time than at intermediate concentrations. Incorporation of biotin-tubulin proximal to the kinetochore can be detected in cells injected during anaphase A, but not during anaphase B. Analysis of video records of microinjection experiments reveals that kinetochore proximal incorporation of biotin-tubulin is accompanied by a transient reversal of chromosome-to-pole motion. Chromosome motion is not altered after injection of 0.3 mg/ml biotin-tubulin or 5 mg/ml BSA. These results demonstrate that kinetochore microtubules in anaphase cells can elongate in response to the elevation of the tubulin concentration and that kinetochores retain the ability to mediate plus-end-dependent assembly of KMTs and plus-end-directed chromosome motion after anaphase onset.  相似文献   

14.
15.
Spindle assembly is essential for the equal distribution of genetic material to the daughter cells during mitosis. The process of spindle assembly is complicated and involves multiple levels of molecular regulation. It is generally accepted that mitotic spindles are emanated from the centrosomes and are assembled in the vicinity of chromosomes. However, the molecular mechanism involved in the spindle assembly during mitosis remains unclear. In this study, we have provided several lines of evidence to show that Drosophila Mars is required for the assembly and stabilization of kinetochore microtubules. In an immunocytochemical study, we show that Mars is mainly localized on the kinetochore microtubules during mitosis. Using RNA interference to deplete the Mars expression in Drosophila S2 cells resulted in the malformation of mitotic spindle that mainly lacked the kinetochore microtubules. The spindle defect resulted in mitotic delays by increasing the percentage of uncongressed chromosomes both in vitro and in vivo. In summary, this study has extended our previous study of Mars in cell cycle regulation and provided further evidence showing that Mars is required for the assembly of kinetochore microtubules.  相似文献   

16.
To investigate the association of calmodulin (CaM) with microtubules (MTs) in the mitotic apparatus (MA), the distributions of both CaM and tubulin were examined in mitotic PtK1 cells in which MT subclasses had been selectively removed or altered by treatment with cold or with the MT inhibitor, nocodazole. A fluorescent CaM conjugate with tetramethylrhodamine isothiocyanate (CaM-TRITC) was microinjected into living cells, and the CaM distribution in the living cell was compared to the distribution of MTs indicated by tubulin immunofluorescence. In cells which had been treated for 2 h at 0 to 4 degrees C or with a low (0.03 micrograms/ml) dose of nocodazole, the only MTs remaining appeared to be kinetochore MTs (kMTs). The distribution of microinjected CaM-TRITC in these cells was indistinguishable from that found in untreated cells and appeared to be colocalized with the kMTs. In cells which were treated with a high (3.0 micrograms/ml) dose of nocodazole, only short MTs remained. When CaM-TRITC was injected into these cells, it formed a somewhat punctate distribution near the chromosomes and, after tubulin immunofluorescence processing, colocalized with what appeared to be remnants of kMTs. We believe that these observations support the hypothesis that CaM exists in the MA in a structural association with kMTs.  相似文献   

17.
18.
To examine the dependence of poleward force at a kinetochore on the number of kinetochore microtubules (kMTs), we altered the normal balance in the number of microtubules at opposing homologous kinetochores in meiosis I grasshopper spermatocytes at metaphase with a focused laser microbeam. Observations were made with light and electron microscopy. Irradiations that partially damaged one homologous kinetochore caused the bivalent chromosome to shift to a new equilibrium position closer to the pole to which the unirradiated kinetochore was tethered; the greater the dose of irradiation, the farther the chromosome moved. The number of kMTs on the irradiated kinetochore decreased with severity of irradiation, while the number of kMTs on the unirradiated kinetochore remained constant and independent of chromosome-to-pole distance. Assuming a balance of forces on the chromosome at congression equilibrium, our results demonstrate that the net poleward force on a chromosome depends on the number of kMTs and the distance from the pole. In contrast, the velocity of chromosome movement showed little dependence on the number of kMTs. Possible mechanisms which explain the relationship between the poleward force at a kinetochore, the number of kinetochore microtubules, and the lengths of the kinetochore fibers at congression equilibrium include a "traction fiber model" in which poleward force producers are distributed along the length of the kinetochore fibers, or a "kinetochore motor-polar ejection model" in which force producers located at or near the kinetochore pull the chromosomes poleward along the kMTs and against an ejection force that is produced by the polar microtubule array and increases in strength toward the pole.  相似文献   

19.
20.
Different prometaphase stages of Pales ferruginea spermatocytes were serially sectioned and the regions between kinetochores and poles analysed by counting and measuring spindle microtubules. These regions are characterized by an intermingling of kinetochoric (kMTs) and non-kinetochoric microtubules (nkMTs). A considerable proportion of nkMTs is skewed with respect to kMTs, thus being responsible for microtubule disorder in these spindle areas. The degree of disorder expressed by the percentage of skew microtubules was found to decrease from early prometaphase to metaphase, parallel with an increase in kMT number. A possible causal relation between pulling forces and morphological changes in the spindle is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号