首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports a homogeneous modification of microcrystalline cellulose (MCC) in ionic liquids via radiation-induced grafting. Thermosensitive poly (N-isopropylacrylamide) (PNIPAAm) was successfully grafted onto MCC in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ionic liquid using γ-ray irradiation technique at room temperature. The grafting yield (GY) increased with dose up to 40 kGy, while decreased slightly with dose rate from 22 to 102 Gy/min. The results of TGA indicated that cellulose grafted PNIPAAm (cellulose-g-PNIPAAm) had higher thermal stability than that of ungrafted regenerated cellulose (reg-cellulose). The crystalline structure of original MCC was largely destroyed during the dissolution process according to the XRD profiles, and grafting PNIPAAm onto cellulose further decreased the intensity of crystallinity. SEM showed that reg-cellulose and cellulose-g-PNIPAAm films displayed dense and homogeneous morphology. Moreover, the resulting cellulose-g-PNIPAAm exhibited obvious thermal sensitivity with a lower critical solution temperature around 35 °C, which was observed from the swelling behavior in water at different temperatures.  相似文献   

2.
A novel thermosensitive and hydrogel was designed and synthesized by graft copolymerization of N-isopropylacrylamide (NIPAAm) with biodegradable carboxymethylchitosan (CMCS). The influence of the content of CMCS grafted on the properties of the resulted hydrogels was examined. The morphology of the hydrogels was observed by scanning electron microscopy (SEM), their thermal property was characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and deswelling/swelling kinetics upon external temperature changes. In comparison with the conventional PNIPAAm hydrogels, the resulted hydrogels have improved thermosensitive properties, including enlarged water content at room temperature and faster deswelling/swelling rate upon heating. The strategy described here presents a potential alternative to the traditional synthesis techniques for thermosensitive hydrogels.  相似文献   

3.
Thermosensitive poly(N-isopropylacrylamide)-based polymer particles were synthesised, and screened for the adsorption of human immunoglobulin G (hIgG). At pH 9 the adsorption on microgel particles was strongly affected by temperature, approximately 40 mg hIgG/g support (90% of initial hIgG) being adsorbed at 40°C but only 10% of initial hIgG at 25°C. At pH 5 the maximum adsorbed amount (20 mg hIgG/g support) was similar for both temperatures. The adsorption of hIgG on to charged poly(methyl methacrylate)/poly(N-isopropylacrylamide) core-shell latexes was negligible (5–10 mg hIgG/g support) at the same temperature and pH conditions. The lower adsorption of hIgG onto the core-shell particles is explained by steric interactions due to the small size of the shell.  相似文献   

4.
Shi HY  Zhang LM 《Carbohydrate research》2006,341(14):2414-2419
Grafting of poly(N-vinylcaprolactam) side chains onto a hydrophilic dextran backbone was found to provide the dextran with new, thermoresponsive properties in aqueous solutions. Depending on its solution concentration, the resulting dextran derivative could exhibit a temperature-induced phase-transition and critical transition temperature (T(c)). Different anions and cations of added salts, including five potassium salts and five alkali-metal chlorides, were observed to influence the T(c) value of its aqueous solution. Except for potassium iodide, all added salts were found to lower the T(c) value. The addition of the surfactant, cationic cetyltrimethylammonium bromide or anionic sodium dodecyl sulfate, resulted in an increase of the T(c) value. With the help of the Coomassie Brilliant Blue dye as a polarity probe, the formation of hydrophobic aggregates above the T(c) was revealed for this new dextran derivative in aqueous solution.  相似文献   

5.
Two human urinary metabolites of the industrial solvent N,N-dimethylformamide (DMF), N-hydroxymethyl-N-methylformamide (HMMF) and N-acetyl-S-(N-methylcarbamoyl)cysteine (AMCC), were assayed using a new analytical method (gas chromatography and thermionic sensitive detection). Clean-up of urine samples includes a liquid–liquid extraction step followed by a solid-phase extraction step to separate HMMF and AMCC from other urine components. During clean-up, AMCC is converted into ethyl-N-methylcarbamate (EMC), and during gas chromatography, HMMF is degraded in the injector to N-methylformamide (NMF). All the validation data necessary for a quantitative procedure are given. The method was applied to urine samples from workers exposed to DMF and from the general population. The results were confirmed by mass spectrometric determination. For this purpose a further liquid–liquid extraction step was introduced in the clean-up procedure. Background levels of AMCC in the general population were identified.  相似文献   

6.
Human biotransformation of the industrial solvent N,N-dimethylformamide gives raise to N-acetyl-S-(N-methylcarbamoyl)cysteine (AMCC) which has the longest half-life (about 23 h) among urinary metabolites of N,N-dimethylformamide. It could be used for monitoring industrial exposure over several workdays, by measuring it in urine samples collected at the end of the working week. This is consistent with the suggestions of the American Conference of Governmental Industrial Hygienists, which established a limit of 40 mg/l for the year 2000. An easy, cheap and user-friendly method has been developed for determination of urinary AMCC. Unlike currently available methods, it requires neither a time-consuming preparation phase nor gas chromatographic analysis with a nitrogen-phosphorus or mass detector. The method uses high-performance liquid chromatography (HPLC), with an UV detector at 436 nm. A 10-μl volume of urine is added to a carbonate–hydrogen carbonate buffer and mixed with a dabsyl chloride solution in acetonitrile. The reaction between AMCC and the reagent is performed at 70°C for 10 min. The ‘dabsylated’ product is stable for at least 12 h. After brief centrifugation, the solution is ready for HPLC analysis using a C18 column (250×4.6 mm, 5 μm). The method is sensitive (detection limit 1.8 mg/l) and specific. It identified urinary AMCC in urine of 40 subjects not exposed to N,N-dimethylformamide with a median concentration of 3.9 mg/l. In urine samples from 20 workers exposed to N,N-dimethylformamide (5–40.8 mg/m3), AMCC concentrations ranged from 16 to 170 mg/l. Industrial toxicology laboratories with limited instrumentation will be able to use it in the biological monitoring of workers exposed to N,N-dimethylformamide.  相似文献   

7.
N-Acetylcysteine is a thiol antioxidant with expanding clinical importance. A sensitive, rapid method for determining reduced N-acetylcysteine (NAC) concentration in biological samples has been developed which uses a modified reversed-phase high-performance liquid chromatography (HPLC) technique in conjunction with the derivatizing agent N-(1-pyrenyl)maleimide (NPM). The NAC-NPM adduct was analyzed by HPLC with fluorescence detection. The calibration curve for NAC was linear over the range 8–2500 nM and the coefficient of variation obtained for the within-run precision and the between-run precision for 0.5 mM NAC was 1.5% and 2.7%, respectively. Relative recovery of NAC from biological materials ranged between 86% and 96% and the limit of quantitation from biological samples was 32 nM. These results suggest practical advantages relative to other widely-accepted methods of NAC measurement.  相似文献   

8.
The synthesis and study of the structure–activity relationships of cytotoxic compounds based on N-pyridinyl or N-aryl-2-(1-benzylindol-3-yl)glyoxamide skeleton, represented by the lead structures D-24241 and D-24851, are described. The presence of N-(pyridin-4-yl) moiety was crucial for activity and 2-[1-(4-chloro-3-nitrobenzyl)-1H-indol-3-yl]-2-oxo-N-(pyridin-4-yl)acetamide (55), the most potent derivative, showed IC50 = 39 nM, 51 nM and 11 nM against HeLa/KB (human cervix carcinoma), L1210 (murine leukemia) and SKOV3 (human ovarian carcinoma) cell lines proliferation assay, respectively, as active as the lead compounds.  相似文献   

9.
Peanut (Arachis hypogaea) agglutinin (PNA) is extensively used as tumour marker as it strongly recognises the cancer specific T antigen (Galβ1→3GalNAc-), but not its sialylated version. However, an additional specificity towards Galβ1→4GlcNAc (LacNAc), which is not tumour specific, had been attributed to PNA. For correct interpretation of lectin histochemical results we examined PNA sugar specificity using naturally occurring or semi-synthetic glycoproteins, matrix-immobilised galactosides and lectin-binding tissue glycoproteins, rather than mono- or disaccharides as ligands. Dot-blots, transfer blots or polystyrene plate coatings of the soluble glycoconjugates were probed with horse-radish peroxidase (HRP) conjugates of PNA and other lectins of known specificity. Modifications of PNA-binding glycoproteins, including selective removal of O-linked oligosaccharides and treatment with glycosidases revealed that Galβ1→4GlcNAc (LacNAc) was ineffective while terminal α-linked galactose (TAG) as well as exposed T antigen (Galβ1→3 GalNAc-) was excellent as sugar moiety in glycoproteins for their recognition by PNA. When immobilised, melibiose was superior to lactose in PNA binding. Results were confirmed using TAG-specific human serum anti-α-galactoside antibody.  相似文献   

10.
In this study, three kinds of methylated chitosan containing different aromatic moieties were synthesized by two steps, reductive amination and methylation, respectively. The chemical structures of all methylated derivatives, methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride (MDMCMChC), methylated N-(4-N,N-dimethylaminobenzyl) chitosan chloride (MDMBzChC), and methylated N-(4-pyridinylmethyl) chitosan chloride (MPyMeChC) were characterized by ATR–FTIR and 1H NMR spectroscopy. The complexes between the chitosan derivatives and plasmid DNA at different N/P ratios were characterized by gel electrophoresis, dynamic light scattering, and atomic force microscopic techniques. The smallest particle sizes of these complexes were obtained at N/P ratio of 5 and ranged from 95 to 124 nm while the zeta-potentials were in the range of 18–27 mV. Transfection efficiencies of these complexes were investigated by expression of the plasmid DNA encoding green fluorescence protein (pEGFP-C2) on human hepatoma cells (Huh 7 cells) compared to N,N,N-trimethyl chitosan chloride (TMChC). The rank of transfection efficiency was MPyMeChC > MDMBzChC > TMChC > MDMCMChC, respectively. The cytotoxicity of these complexes was also studied by MTT assay where the MPyMeChC complex exhibited less toxicity than other derivatives even at high N/P ratios. Therefore, MPyMeChC demonstrated potential as its safe and efficient gene carrier.  相似文献   

11.
A gas chromatography–electron capture mass spectrometry assay has been developed for the histamine H3 receptor agonist, Nα-methylhistamine (Nα-MH). The assay is linear from 50 pg–10 ng, with a limit of detection of 50 pg/ml for gastric juice and plasma, and 50 pg/sample for bacteria (107–108 CFU) and gastric tissue (5–10 mg wet weight). The limits of quantification are 100 pg/ml for gastric juice (%RSD=1.4) and plasma (%RSD=9.4), and 100 pg/sample for bacteria (%RSD=3.9) and tissue (%RSD=5.8). Nα-MH was not present in human plasma, but low levels (1.4 ng/ml and 0.4 ng/ml) were detected in two samples of human gastric juice obtained from patients infected with Helicobacter pylori.  相似文献   

12.
We report here the development and validation of an LC–MS method for quantitation of loperamide (LOP) and its N-demethyl metabolite (DMLOP) in human plasma. O-Acetyl-loperamide (A-LOP) was synthesized by us for use as an internal standard in the assay. After addition of the internal standard, the compounds of interest were extracted with methyl tert.-butylether and separated by HPLC on a C18 reversed-phase column using an acetonitrile–water gradient containing 20 mM ammonium acetate. The three compounds were well separated by HPLC and no interfering peaks were detected at the usual concentrations found in plasma. Analytes were quantitated using positive electrospray ionization in a triple quadrupole mass spectrometer operating in the MS–MS mode. Selected reaction monitoring was used to quantify LOP (m/z 477→266), DMLOP (m/z 463→252) and A-LOP (m/z 519→266) on ions formed by loss of the 4-(p-chlorophenyl)-4-hydroxy-piperidyl group upon low energy collision-induced dissociation. Calibration curves, which were linear over the range 1.04 to 41.7 pmol/ml (LOP) and 1.55 to 41.9 pmol/ml (DMLOP), were run contemporaneously with each batch of samples, along with low (4.2 pmol/ml), medium (16.7 pmol/ml) and high (33.4 pmol/ml) quality control samples. The lower limit of quantitation (LLQ) of LOP and DMLOP was about 0.25 pmol/ml in plasma. The extraction efficiency of LOP and DMLOP from human plasma was 72.3±1.50% (range: 70.7–73.7%) and 79.4±12.8% (64.9–88.8%), respectively. The intra- and inter-assay variability of LOP and DMLOP ranged from 2.1 to 14.5% for the low, medium and high quality control samples. The method has been used successfully to study loperamide pharmacokinetics in adult humans.  相似文献   

13.
Poly(N-vinylimidazole), PVIm, gels were prepared by γ-irradiation polymerization of N-vinylimidazole in aqueous solutions. These affinity gels with a water swelling ratio of 1800% for plain polymeric gel and between 30 and 80% for Cu(II) and Co(II)-chelated gels at pH 6.0 in phosphate buffer were used in glucose oxidase (GOx) adsorption–desorption studies. Different amounts of Cu(II) and Co(II) ions (maximum 3.64 mmol/g dry gel for Cu(II) and 1.72 mmol/g dry gel for Co(II)) were loaded onto the gels by changing the initial concentration of Cu(II) and Co(II) ions, and pH. GOx adsorption on these gels from aqueous solutions containing different amount of GOx at different pH was investigated in batch reactors. Immobilized glucose oxidase activity onto the poly(N-vinylimidazole), and Cu(II) and Co(II)-chelated poly(N-vinylimidazole) were investigated with changing pH and the initial glucose oxidase concentration. Maximum activity of immobilized glucose oxidase onto the PVIm, Cu(II) and Co(II)-chelated PVIm gels was investigated and pH dependence was observed to be at pH 6.5 for free enzyme, pH 7.0 for PVIm, pH 7.5 for Cu(II) and Co(II)-chelated PVIm gels, respectively. The stability of the immobilized enzyme is very high for all gels and the residual activity was higher than 93% in the first 10 days.  相似文献   

14.
The capillary electrophoresis (CE)-based separation of five N-(substituted)-glycine (NSG)–peptoid mixtures with a wide range of physical and chemical properties was studied. A CE separation, initially developed using a single representative peptoid mixture, with a backround electrolyte (BGE) modified by the addition of both methyl-β-cyclodextrin and heptane sulfonic acid was found to provide good separations of most of the combinatorial mixtures investigated. For those mixtures not separated well by this procedure, the use of SDS micelles in conjunction with methyl-β-cyclodextrin resulted in dramatic improvements in the separation. While no single set of separation conditions proved sufficient for all of the NSG–peptoid combinatorial mixtures, the two methods were able to provide separation sufficient for characterization of a set of mixtures with a wide range of physical and chemical properties. The efficiency of the CE-based separation of the combinatorial mixtures studied was compared to a reversed-phase liquid chromatographic method using gradient elution.  相似文献   

15.
The partition behaviour of cutinase on poly(ethylene glycol) (PEG)–hydroxypropyl starch aqueous two-phase systems was characterized. The effect of molecular mass of PEG, the pH of the system and tie-line length on cutinase partition coefficient and cutinase yield to the top phase was investigated for systems prepared with a purified hydroxypropyl starch (Reppal PES 100) and a crude one (HPS). The effect of the presence of different salts, such as sodium chloride, sodium sulphate and ammonium sulphate, on cutinase partition was also studied. The results lead to the conclusion that aqueous two-phase systems composed of PEG and hydroxypropyl starch are not efficient in the purification of cutinase. In the majority of cases, the partition coefficients were very close to 1, with pH being the factor which affects most cutinase partition. Partition coefficients were significantly improved when salts were added to the systems. For PEG 4000–Reppal PES 100 [at pH 4.0; 0.5 M (NH4)2SO4], the partition coefficient for cutinase was 3.7, while a value of 12 was obtained for PEG 4000–HPS (at pH 4.0; 1 M NaCl). An isoelectric point (pI) of 7.8 was confirmed for cutinase by constructing a cross partition graphic from the results obtained in the experiments with different salts.  相似文献   

16.
In an effort to regulate the behavior of mammalian cell entrapped in a gel, the gels were functionalized with the putative cell-binding (-Arg-Gly-Asp-) (RGD) domain. The adhesion molecules composed of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides and the cell recognition ligands were inculcated into the thermo-reversible hydrogel composed of N-isopropylacrylamide, with a small amount of succinyl poly(ethylene glycol) (PEG) acrylate (MW 2000) used as the biomimetic extracellular matrix (ECM). The GRGDS-containing p(NiPAAm-co-PEG) copolymer gel was examined in vitro for its ability to promote cell spreading and to increase the viability of the cells by introducing PEG spacers. ECM poorly adhered to hydrogel lacking adhesion molecules permitting only a 20% spread of the seeded cells after 10 days. When the PEG spacer arms, which were immobilized by a peptide linkage, had been integrated into the hydrogel, the conjugation of RGD improved cell spreading by 600% in a 10-day trial.  相似文献   

17.
A comparative study of different derivatization procedures has been performed in order to improve the stability of the reaction products o-phthalaldehyde–N-acetylcysteine (OPA–NAC) polyamines. Procedures such as solution derivatization, solution derivatization followed by retention on a packing support, derivatization on different packing supports and on-column derivatization, have been optimized and compared. The degradation rate constant (k) of the derivative was dependent on the procedure used and on the analyte. For the spermine (the most unstable isoindol tested) k was 8±2×10−2 min−1 in solution versus 7.7±1.1×10−4 min−1 on the (C18) solid support. The results obtained showed that forming the derivative on the packing support (C18) gave the best results following this procedure: conditioning the cartridges with borate buffer (1 ml, 0.5 M, pH 8), retention of the analyte, addition of 0.8 ml of OPA–NAC reagent, 0.2 ml borate buffer 0.8 M (pH 8) and elution of the isoindol with 3 ml of MeOH–borate buffer (9:1). The different derivatization procedures have been used to study the stability of the reaction products OPA–NAC polyamines formed in urine matrix using spermine as model compound. Similar results were obtained for standard solutions and urine samples.  相似文献   

18.
Advanced glycation end products (AGEs) are believed to play a significant role in the development of diabetic complications. In this study, we measured the levels of autoantibodies against several AGE structures in healthy human plasma and investigated the physiological role of the autoantibodies. A high titer of the autoantibody against Nε-(carboxyethyl)lysine (CEL) was detected in human plasma compared with other AGE structures such as CML and pentosidine. The purified human anti-CEL autoantibody reacted with CEL-modified human serum albumin (CEL-HSA), but not CML-HSA. A rabbit polyclonal anti-CEL antibody, used as a model autoantibody against CEL, accelerated the uptake of CEL-HSA by macrophages, but did not enhance the uptake of native HSA. Furthermore, when 125I-labeled CEL-HSA was injected into the tail vein of mice, accumulation of 125I-CEL-HSA in the liver was accelerated by co-injection of the rabbit anti-CEL antibody. These results demonstrate that the autoantibody against CEL in plasma may play a role in the macrophage uptake of CEL-modified proteins.  相似文献   

19.
N-Succinyl-chitosan (NSC), a pH-sensitive polymer of reversibly soluble–insoluble characteristics with pH change, was prepared by modification of the chitosan backbone with succinic anhydride and employed as carrier for alliinase immobilization. The obtained NSC is soluble at pH above 4.8 and insoluble at pH below 4.4. The characteristics of NSC were evaluated using Fourier transform IR spectrophotometer, the X-ray diffraction spectrometry and thermogravimetric analyzer. Under an optimized condition (glutaraldehyde 0.8% (v/v), 31.2 U alliinase), the enzyme immobilization yield was 75.6%. The maximum activity of NSCA was achieved at 40 °C, pH 7, while the free enzyme exhibited maximum activity at 30 °C, pH 6. The Michaelis–Menten constant of NSCA was lower than that of free alliinase, indicating higher affinity of immobilized enzyme toward its substrate. The NSCA retained 85% of its initial activity even after being recycled 5 times. The immobilized alliinase in reversibly soluble NSC is suitable to catalyze the conversion of alliin to allicin, as active ingredient of pharmaceutical compositions and food additive.  相似文献   

20.
The accumulation of poly(3-hydroxyalkanoates) in Rhodobacter sphaeroides   总被引:2,自引:0,他引:2  
In recent years industrial interest has been focussed on the evaluation of poly(3-hydroxyalkanoates) (PHA) as potentially biodegradable plastics for a wide range of technical applications. Studies have been carried out in order to optimize growth and culture conditions for the intracellular formation of PHA in the phototrophic, purple, non-sulfur bacterium Rhodobacter sphaeroides. Its potential to produce polyesters other than poly(3-hydroxybutyrate) (PHB) was investigated. On an industrial scale, the use of photosynthetic bacteria could harness sunlight as an energy source for the production of these materials. R. sphaeroides was grown anaerobically in the light on different carbon sources. Under nitrogenlimiting conditions a PHA content of up to 60 to 70% of the cellular dry weight was detected. In all of the cases studied, the storage polymer contained approximately 98 mol% of 3-hydroxybutyrate (HB) and 2 mol% 3-hydroxyvalerate (HV) monomer units. Decreasing light intensities did not stimulate PHA formation. Compared to Rhodospirillum rubrum (another member of the family of Rhodospirillaceae), R. sphaeroides showed a limited flexibility in its ability to form PHA with varying monomer unit compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号