共查询到14条相似文献,搜索用时 0 毫秒
1.
We have determined the crystal structure of the bi-functional deaminase/reductase enzyme from Escherichia coli (EcRibD) that catalyzes two consecutive reactions during riboflavin biosynthesis. The polypeptide chain of EcRibD is folded into two domains where the 3D structure of the N-terminal domain (1-145) is similar to cytosine deaminase and the C-terminal domain (146-367) is similar to dihydrofolate reductase. We showed that EcRibD is dimeric and compared our structure to tetrameric RibG, an ortholog from Bacillus subtilis (BsRibG). We have also determined the structure of EcRibD in two binary complexes with the oxidized cofactor (NADP(+)) and with the substrate analogue ribose-5-phosphate (RP5) and superposed these two in order to mimic the ternary complex. Based on this superposition we propose that the invariant Asp200 initiates the reductive reaction by abstracting a proton from the bound substrate and that the pro-R proton from C4 of the cofactor is transferred to C1 of the substrate. A highly flexible loop is found in the reductase active site (159-173) that appears to control cofactor and substrate binding to the reductase active site and was therefore compared to the corresponding Met20 loop of E. coli dihydrofolate reductase (EcDHFR). Lys152, identified by comparing substrate analogue (RP5) coordination in the reductase active site of EcRibD with the homologous reductase from Methanocaldococcus jannaschii (MjaRED), is invariant among bacterial RibD enzymes and could contribute to the various pathways taken during riboflavin biosynthesis in bacteria and yeast. 相似文献
2.
Escherichia coli (E. coli) that produces adhesin F18 is the main pathogen responsible for porcine post-weaning diarrhea and edema disease. The receptor for E. coli F18 has not been described in pigs, however the alpha (1,2)-fucosyltransferase (FUT1) gene on chromosome 6 has been proposed as a candidate. The objective of this study, therefore, was to investigate the relationship between FUT1 gene expression and E. coli F18 receptor in Sutai pigs of different ages (8-, 18-, 30- and 35-day-old). FUT1 gene expression was detected in 11 pig tissues with the highest level in lung, and expressed consistently at the four time points. In most tissues, FUT1 gene expression levels decreased from days 8 to 18, then continually increased on days 30 and 35, with expression around weaning time higher than that on day 8. Gene ontology and pathway analysis showed that FUT1 was involved in 32 biological processes, mainly those integral to the membrane, or involved in glycosylation, as well as regulation of binding, interestingly participating in three pathways related to glycosphingolipid biosynthesis. From this analysis and the high linkage disequilibrium between the FUT1 gene and the E. coli F18 receptor locus, we can speculate that higher expression of the FUT1 gene in small intestine is beneficial to the formation of receptors to the E. coli F18 strain and is related to the sensitivity to the pathogen. 相似文献
3.
Sakasegawa S Hagemeier CH Thauer RK Essen LO Shima S 《Protein science : a publication of the Protein Society》2004,13(12):3161-3171
NAD(+)-dependent glycerol-3-phosphate dehydrogenase (G3PDH) is generally absent in archaea, because archaea, unlike eukaryotes and eubacteria, utilize glycerol-1-phosphate instead of glycerol-3-phosphate for the biosynthesis of membrane lipids. Surprisingly, the genome of the hyperthermophilic archaeon Archaeoglobus fulgidus comprises a G3PDH ortholog, gpsA, most likely due to horizontal gene transfer from a eubacterial organism. Biochemical characterization proved G3PDH-like activity of the recombinant gpsA gene product. However, unlike other G3PDHs, the up to 85 degrees C thermostable A. fulgidus G3PDH exerted a 15-fold preference for NADPH over NADH. The A. fulgidus G3PDH bears the hallmarks of adaptation to halotolerance and thermophilicity, because its 1.7-A crystal structure showed a high surface density for negative charges and 10 additional intramolecular salt bridges compared to a mesophilic G3PDH structure. Whereas all amino acid residues required for dihydroxyacetone phosphate binding and reductive catalysis are highly conserved, the binding site for the adenine moiety of the NAD(P) cosubstrate shows a structural variation that reflects the observed NADPH preference, for example, by a putative salt bridge between R49 and the 2'-phosphate. 相似文献
4.
5.
In the ancient organisms, methanogenic archaea, lacking the canonical cysteinyl-tRNA synthetase, Cys-tRNA(Cys) is produced by an indirect pathway, in which O-phosphoseryl-tRNA synthetase ligates O-phosphoserine (Sep) to tRNA(Cys) and Sep-tRNA:Cys-tRNA synthase (SepCysS) converts Sep-tRNA(Cys) to Cys-tRNA(Cys). In this study, the crystal structure of SepCysS from Archaeoglobus fulgidus has been determined at 2.4 A resolution. SepCysS forms a dimer, composed of monomers bearing large and small domains. The large domain harbors the seven-stranded beta-sheet, which is typical of the pyridoxal 5'-phosphate (PLP)-dependent enzymes. In the active site, which is located near the dimer interface, PLP is covalently bound to the side-chain of the conserved Lys209. In the proximity of PLP, a sulfate ion is bound by the side-chains of the conserved Arg79, His103, and Tyr104 residues. The active site is located deep within the large, basic cleft to accommodate Sep-tRNA(Cys). On the basis of the surface electrostatic potential, the amino acid residue conservation mapping, the position of the bound sulfate ion, and the substrate amino acid binding manner in other PLP-dependent enzymes, a binding model of Sep-tRNA(Cys) to SepCysS was constructed. One of the three strictly conserved Cys residues (Cys39, Cys42, or Cys247), of one subunit may play a crucial role in the catalysis in the active site of the other subunit. 相似文献
6.
Ribonuclease HIII (Bst-RNase HIII) from the moderate thermophile Bacillus stearothermophilus is a type 2 RNase H but shows poor amino acid sequence identity with another type 2 RNase H, RNase HII. It is composed of 310 amino acid residues and acts as a monomer. Bst-RNase HIII has a large N-terminal extension with unknown function and a unique active-site motif (DEDE), both of which are characteristics common to RNases HIII. To understand the role of these N-terminal extension and active-site residues, the crystal structure of Bst-RNase HIII was determined in both metal-free and metal-bound forms at 2.1-2.6 angstroms resolutions. According to these structures, Bst-RNase HIII consists of the N-terminal domain and C-terminal RNase H domain. The structures of the N and C-terminal domains were similar to those of TATA-box binding proteins and archaeal RNases HII, respectively. The steric configurations of the four conserved active-site residues were very similar to those of other type 1 and type 2 RNases H. Single Mn and Mg ions were coordinated with Asp97, Glu98, and Asp202, which correspond to Asp10, Glu48, and Asp70 of Escherichia coli RNase HI, respectively. The mutational studies indicated that the replacement of either one of these residues with Ala resulted in a great reduction of the enzymatic activity. Overproduction, purification, and characterization of the Bst-RNase HIII derivatives with N and/or C-terminal truncations indicated that the N-terminal domain and C-terminal helix are involved in substrate binding, but the former contributes to substrate binding more greatly than the latter. 相似文献
7.
Aeromonas hydrophila is both a human and animal pathogen, and the cytotoxic enterotoxin (Act) is a crucial virulence factor of this bacterium because of its associated hemolytic, cytotoxic, and enterotoxic activities. Previously, to define the role of some regulatory genes in modulating Act production, we showed that deletion of a glucose-inhibited division gene (gidA) encoding tRNA methylase reduced Act levels, while overproduction of DNA adenine methyltransferase (Dam) led to a concomitant increase in Act-associated biological activities of a diarrheal isolate SSU of A. hydrophila. Importantly, there are multiple GATC binding sites for Dam within an upstream sequence of the gidA gene and one such target site in the act gene upstream region. We showed the dam gene to be essential for the viability of A. hydrophila SSU, and, therefore, to better understand the interaction of the encoding genes, Dam and GidA, in act gene regulation, we constructed a gidA in-frame deletion mutant of Escherichia coli GM28 (dam+) and GM33 (?dam) strains. We then tested the expressional activity of the act and gidA genes by using a promoterless pGlow-TOPO vector containing a reporter green fluorescent protein (GFP). Our data indicated that in GidA+ strains of E. coli, constitutive methylation of the GATC site(s) by Dam negatively regulated act and gidA gene expression as measured by GFP production. However, in the ?gidA strains, irrespective of the presence or absence of constitutively active Dam, we did not observe any alteration in the expression of the act gene signifying the role of GidA in positively regulating Act production. To determine the exact mechanism of how Dam and GidA influence Act, a real-time quantitative PCR (RT-qPCR) assay was performed. The analysis indicated an increase in gidA and act gene expression in the A. hydrophila Dam-overproducing strain, and these data matched with Act production in the E. coli GM28 strain. Thus, the extent of DNA methylation caused by constitutive versus overproduction of Dam, as well as possible conformation of DNA influence the expression of act and gidA genes in A. hydrophila SSU. Our results indicate that the act gene is under the control of both Dam and GidA modification methylases, and Dam regulates Act production via GidA. 相似文献
8.
Timothy M. Allison Jeffrey A. Yeoman Richard D. Hutton Fiona C. Cochrane Geoffrey B. Jameson Emily J. Parker 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(7):1526-1536
3-Deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS) catalyzes the reaction between phosphoenol pyruvate and d-arabinose 5-phosphate to generate KDO8P. This reaction is part of the biosynthetic pathway to 3-deoxy-d-manno-octulosonate, a component of the lipopolysaccharide of the Gram-negative bacterial cell wall. Two distinct groups of KDO8PSs exist, differing by the absolute requirement of a divalent metal ion. In this study Acidithiobacillus ferrooxidans KDO8PS has been expressed and purified and shown to require a divalent metal ion, with Mn2+, Co2+ and Cd2+ (in decreasing order) being able to restore activity to metal-free enzyme. Cd2+ significantly enhanced the stability of the enzyme, raising the Tm by 14 °C. d-Glucose 6-phosphate and d-erythrose 4-phosphate were not substrates for A. ferrooxidans KDO8PS, whereas 2-deoxy-d-ribose 5-phosphate was a poor substrate and there was negligible activity with d-ribose 5-phosphate. The 243AspGlyPro245 motif is absolutely conserved in the metal-independent group of synthases, but the Gly and Pro sites are variable in the metal-dependent enzymes. Substitution of the putative metal-binding Asp243 to Ala in A. ferrooxidans KDO8PS gave inactive enzyme, whereas substitutions Asp243Glu or Pro245Ala produced active enzymes with altered metal-dependency profiles. Prior studies indicated that exchange of a metal-binding Cys for Asn converts metal-dependent KDO8P synthase into a metal-independent form. Unexpectedly, this mutation in A. ferrooxidans KDO8P synthase (Cys21Asn) gave inactive enzyme. This finding, together with modest activity towards 2-deoxy-d-ribose 5-phosphate suggests similarities between the A. ferrooxidans KDO8PS and the related metal-dependent 3-deoxy-d-arabino-heptulosonate phosphate synthase, and highlights the importance of the AspGlyPro loop in positioning the substrate for effective catalysis in all KDO8P synthases. 相似文献
9.
Coudevylle N Antoine M Bouguet-Bonnet S Mutzenhardt P Boschi-Muller S Branlant G Cung MT 《Journal of molecular biology》2007,366(1):193-206
Methionine sulfoxide reductases (Msr) reduce methionine sulfoxide (MetSO)-containing proteins, back to methionine (Met). MsrAs are stereospecific for the S epimer whereas MsrBs reduce the R epimer of MetSO. Although structurally unrelated, the Msrs characterized so far display a similar catalytic mechanism with formation of a sulfenic intermediate on the catalytic cysteine and a concomitant release of Met, followed by formation of at least one intramolecular disulfide bond (between the catalytic and a recycling cysteine), which is then reduced by thioredoxin. In the case of the MsrA from Escherichia coli, two disulfide bonds are formed, i.e. first between the catalytic Cys51 and the recycling Cys198 and then between Cys198 and the second recycling Cys206. Three crystal structures including E. coli and Mycobacterium tuberculosis MsrAs, which, for the latter, possesses only the unique recycling Cys198, have been solved so far. In these structures, the distances between the cysteine residues involved in the catalytic mechanism are too large to allow formation of the intramolecular disulfide bonds. Here structural and dynamical NMR studies of the reduced wild-type and the oxidized (Cys51-Cys198) forms of C86S/C206S MsrA from E. coli have been carried out. The mapping of MetSO substrate-bound C51A MsrA has also been performed. The data support (1) a conformational switch occurring subsequently to sulfenic acid formation and/or Met release that would be a prerequisite to form the Cys51-Cys198 bond and, (2) a high mobility of the C-terminal part of the Cys51-Cys198 oxidized form that would favor formation of the second Cys198-Cys206 disulfide bond. 相似文献
10.
A new crystal structure of the dimeric cysteine synthase CysM from Mycobacterium tuberculosis reveals an open and a closed conformation of the enzyme. In the closed conformation the five carboxy-terminal amino acid residues are inserted into the active site cleft. Removal of this segment results in a decreased lifetime of the α-aminoacrylate reaction intermediate, an increased sensitivity to oxidants such as hydrogen peroxide, and loss of substrate selectivity with respect to the sulfur carrier thiocarboxylated CysO. These results highlight features of CysM that might be of particular importance for cysteine biosynthesis under oxidative stress in M. tuberculosis. 相似文献
11.
The relative contributions of chain topology and amino acid sequence in directing the folding of a (betaalpha)(8) TIM barrel protein of unknown function encoded by the Bacillus subtilis iolI gene (IOLI) were assessed by reversible urea denaturation and a combination of circular dichroism, fluorescence and time-resolved fluorescence anisotropy spectroscopy. The equilibrium reaction for IOLI involves, in addition to the native and unfolded species, a stable intermediate with significant secondary structure and stability and self-associated forms of both the native and intermediate states. Global kinetic analysis revealed that the unfolded state partitions between an off-pathway refolding intermediate and the on-pathway equilibrium intermediate early in folding. Comparisons with the folding mechanisms of two other TIM barrel proteins, indole-3-glycerol phosphate synthase from the thermophile Sulfolobus solfataricus (sIGPS) and the alpha subunit of Escherichia coli tryptophan synthase (alphaTS), reveal striking similarities that argue for a dominant role of the topology in both early and late events in folding. Sequence-specific effects are apparent in the magnitudes of the relaxation times and relative stabilities, in the presence of additional monomeric folding intermediates for alphaTS and sIGPS and in rate-limiting proline isomerization reactions for alphaTS. 相似文献
12.
The three-dimensional structure of a Salmonella enterica hypothetical protein YihS is significantly similar to that of N-acyl-d-glucosamine 2-epimerase (AGE) with respect to a common scaffold, an α6/α6-barrel, although the function of YihS remains to be clarified. To identify the function of YihS, Escherichia coli and S. enterica YihS proteins were overexpressed in E. coli, purified, and characterized. Both proteins were found to show no AGE activity but showed cofactor-independent aldose-ketose isomerase activity involved in the interconversion of monosaccharides, mannose, fructose, and glucose, or lyxose and xylulose. In order to clarify the structure/function relationship of YihS, we determined the crystal structure of S. enterica YihS mutant (H248A) in complex with a substrate (d-mannose) at 1.6 Å resolution. This enzyme-substrate complex structure is the first demonstration in the AGE structural family, and it enables us to identify active-site residues and postulate a reaction mechanism for YihS. The substrate, β-d-mannose, fits well in the active site and is specifically recognized by the enzyme. The substrate-binding site of YihS for the mannose C1 and O5 atoms is architecturally similar to those of mutarotases, suggesting that YihS adopts the pyranose ring-opening process by His383 and acidifies the C2 position, forming an aldehyde at the C1 position. In the isomerization step, His248 functions as a base catalyst responsible for transferring the proton from the C2 to C1 positions through a cis-enediol intermediate. On the other hand, in AGE, His248 is thought to abstract and re-adduct the proton at the C2 position of the substrate. These findings provide not only molecular insights into the YihS reaction mechanism but also useful information for the molecular design of novel carbohydrate-active enzymes with the common scaffold, α6/α6-barrel. 相似文献
13.
The X-ray structure of the ligand-binding core of the kainate receptor GluR5 (GluR5-S1S2) in complex with (S)-glutamate was determined to 1.95 A resolution. The overall GluR5-S1S2 structure comprises two domains and is similar to the related AMPA receptor GluR2-S1S2J. (S)-glutamate binds as in GluR2-S1S2J. Distinct features are observed for Ser741, which stabilizes a highly coordinated network of water molecules and forms an interdomain bridge. The GluR5 complex exhibits a high degree of domain closure (26 degrees) relative to apo GluR2-S1S2J. In addition, GluR5-S1S2 forms a novel dimer interface with a different arrangement of the two protomers compared to GluR2-S1S2J. 相似文献
14.
The allosteric enzyme aspartate transcarbamoylase (ATCase) exists in two conformational states. The enzyme, in the absence of substrates is primarily in the low-activity T state, is converted to the high-activity R state upon substrate binding, and remains in the R state until substrates are exhausted. These conformational changes have made it difficult to obtain structural data on R-state active-site complexes. Here we report the R-state structure of ATCase with the substrate Asp and the substrate analog phosphonoactamide (PAM) bound. This R-state structure represents the stage in the catalytic mechanism immediately before the formation of the covalent bond between the nitrogen of the amino group of Asp and the carbonyl carbon of carbamoyl phosphate. The binding mode of the PAM is similar to the binding mode of the phosphonate moiety of N-(phosphonoacetyl)-l-aspartate (PALA), the carboxylates of Asp interact with the same residues that interact with the carboxylates of PALA, although the position and orientations are shifted. The amino group of Asp is 2.9 A away from the carbonyl oxygen of PAM, positioned correctly for the nucleophilic attack. Arg105 and Leu267 in the catalytic chain interact with PAM and Asp and help to position the substrates correctly for catalysis. This structure fills a key gap in the structural determination of each of the steps in the catalytic cycle. By combining these data with previously determined structures we can now visualize the allosteric transition through detailed atomic motions that underlie the molecular mechanism. 相似文献