首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In contrast to all retroviruses but similar to the hepatitis B virus, foamy viruses (FV) require expression of the envelope protein for budding of intracellular capsids from the cell, suggesting a specific interaction between the Gag and Env proteins. Capsid assembly occurs in the cytoplasm of infected cells in a manner similar to that for the B- and D-type viruses; however, in contrast to these retroviruses, FV Gag lacks an N-terminal myristylation signal and capsids are not targeted to the plasma membrane (PM). We have found that mutation of an absolutely conserved arginine (Arg) residue at position 50 to alanine (R50A) of the simian foamy virus SFV cpz(hu) inhibits proper capsid assembly and abolishes viral budding even in the presence of the envelope (Env) glycoproteins. Particle assembly and extracellular release of virus can be restored to this mutant with the addition of an N-terminal Src myristylation signal (Myr-R50A), presumably by providing an alternate site for assembly to occur at the PM. In addition, the strict requirement of Env expression for capsid budding can be bypassed by addition of a PM-targeting signal to Gag. These results suggest that intracellular capsid assembly may be mediated by a signal akin to the cytoplasmic targeting and retention signal CTRS found in Mason-Pfizer monkey virus and that FV Gag has the inherent ability to assemble capsids at multiple sites like conventional retroviruses. The necessity of Env expression for particle egress is most probably due to the lack of a membrane-targeting signal within FV Gag to direct capsids to the PM for release and indicates that Gag-Env interactions are essential to drive particle budding.  相似文献   

2.
Foamy viruses (FV) are unusual retroviruses that differ in many aspects of their life cycle from the orthoretroviruses such as human immunodeficiency virus. Similar to Mason–Pfizer monkey virus (MPMV), FV assemble into capsids intracellularly. The capsids are then transported to a cellular membrane for acquisition of envelope (Env) glycoproteins and budding. However, unlike MPMV, budding of FV is dependent upon the presence of Env. Previous work suggested that FV Env proteins are localized to the endoplasmic reticulum (ER) where budding takes place. However, very little was known about the details of FV assembly. We have used immunofluorescence and electron microscopy to visualize the intracellular location of FV assembly and budding. We have found that, as in the case of MPMV, FV capsids assemble at a pericentriolar site in the cytoplasm. Surprisingly, FV Env is mostly absent from this site and, contrary to expectations, FV capsid structural protein (Gag) is absent from the ER. Gag and Env only co-localize at the trans -Golgi network, suggesting that Env–Gag interactions that are required for viral egress from the cell, occurs at this site. Finally, inhibitor studies suggest an important role of microtubule networks for foamy viral assembly and budding.  相似文献   

3.
Signal peptides (SP) are key determinants for targeting glycoproteins to the secretory pathway. Here we describe the involvement in particle maturation as an additional function of a viral glycoprotein SP. The SP of foamy virus (FV) envelope glycoprotein is predicted to be unusually long. Using an SP-specific antiserum, we demonstrate that its proteolytic removal occurs posttranslationally by a cellular protease and that the major N-terminal cleavage product, gp18, is found in purified viral particles. Analysis of mutants in proposed signal peptidase cleavage positions and N-glycosylation sites revealed an SP about 148 amino acids (aa) in length. FV particle release from infected cells requires the presence of cognate envelope protein and cleavage of its SP sequence. An N-terminal 15-aa SP domain with two conserved tryptophan residues was found to be essential for the egress of FV particles. While the SP N terminus was found to mediate the specificity of FV Env to interact with FV capsids, it was dispensable for Env targeting to the secretory pathway and FV envelope-mediated infectivity of murine leukemia virus pseudotypes.  相似文献   

4.
Retroviral Gag expression is sufficient for capsid assembly, which occurs through interaction between distinct Gag domains. Human foamy virus (HFV) capsids assemble within the cytoplasm, although their budding, which mainly occurs in the endoplasmic reticulum, requires the presence of homologous Env. Yet little is known about the molecular basis of HFV Gag precursor assembly. Using fusions between HFV Gag and a nuclear reporter protein, we have identified a strong interaction domain in the N terminus of HFV Gag which is predicted to contain a conserved coiled-coil motif. Deletion within this region in an HFV provirus abolishes viral production through inhibition of capsid assembly.  相似文献   

5.
Foamy viruses (FV) are unusual among retroviruses since they require both Gag and Env structural proteins for particle egress. Recently significant progress has been made towards the mechanistic understanding of the viral release process, in particular that of retroviruses, and the viral domains and cellular pathways involved. However little is currently known about domains of FV structural proteins and cellular proteins engaged in this process. By mutational analysis of sequence motifs in prototype FV (PFV) Gag, bearing homology to known late assembly (L) domains, a PSAP motif with L domain function that was functionally interchangeable by heterologous L domains was identified. In contrast the inactivation of a PPPI motif had no significant influence on PFV particle release, although mutant viral particles displayed reduced infectivity. Similarly mutation of an evolutionary conserved YXXL motif revealed no classical L-domain function but resulted in release of noninfectious viruslike particles. Biochemical and electron microscopy analysis demonstrated that these mutant particles incorporated all viral structural proteins but contained aberrantly capsid structures, suggesting a role in capsid assembly for this PFV Gag sequence motif. In line with the mutational analysis, overexpression of dominant negative (DN) mutants and wild-type TSG101 but not the DN mutant of AIP-1/ALIX reduced PFV particle release and infectivity. Furthermore, DN mutants of Vps4A, Vps4B, and CHMP3 inhibited PFV egress and infectivity. Taken together these results demonstrate that PFV, like other viruses, requires components of the vacuolar protein sorting (VPS) machinery for egress and enters the VPS pathway through interaction with TSG101.  相似文献   

6.
Among the Retroviridae, foamy viruses (FVs) exhibit an unusual way of particle assembly and a highly specific incorporation of envelope protein into progeny virions. We have analyzed deletions and point mutants of the prototypic FV gag gene for capsid assembly and egress, envelope protein incorporation, infectivity, and ultrastructure. Deletions introduced at the 3' end of gag revealed the first 297 amino acids (aa) to be sufficient for specific Env incorporation and export of particulate material. Deletions introduced at the 5' end showed the region between aa 6 and 200 to be dispensable for virus capsid assembly but required for the incorporation of Env and particle egress. Point mutations were introduced in the 5' region of gag to target residues conserved among FVs from different species. Alanine substitutions of residues in a region between aa 40 and 60 resulted in severe alterations in particle morphology. Furthermore, at position 50, this region harbors the conserved arginine that is presumably at the center of a signal sequence directing FV Gag proteins to a cytoplasmic assembly site.  相似文献   

7.
S S Rhee  E Hunter 《Cell》1990,63(1):77-86
Two different morphogenic processes of retroviral capsid assembly have been observed: the capsid is either assembled at the plasma membrane during the budding process (type C), or preassembled within the cytoplasm (types B and D). We describe here a gag mutant of Mason-Pfizer monkey virus, a type D retrovirus, in which a tryptophan substituted for an arginine in the matrix protein results in efficient assembly of capsids at the plasma membrane through a morphogenic process similar to that of type C retroviruses. We conclude that a type D retrovirus Gag polyprotein contains an additional, dominant signal that prevents immediate transport of precursors from the site of biosynthesis to the plasma membrane. Instead, they are directed to and retained at a cytoplasmic site where a concentration sufficient for self-assembly into capsids occurs. Thus, capsid assembly processes for different retroviruses appear to differ only in the intracellular site to which capsid precursors are directed.  相似文献   

8.
Ono A  Demirov D  Freed EO 《Journal of virology》2000,74(11):5142-5150
The human immunodeficiency virus type 1 (HIV-1) Gag precursor, Pr55(Gag), is necessary and sufficient for the assembly and release of viruslike particles. Binding of Gag to membrane and Gag multimerization are both essential steps in virus assembly, yet the domains responsible for these events have not been fully defined. In addition, the relationship between membrane binding and Gag-Gag interaction remains to be elucidated. To investigate these issues, we analyzed, in vivo, the membrane-binding and assembly properties of a series of C-terminally truncated Gag mutants. Pr55(Gag) was truncated at the C terminus of matrix (MAstop), between the N- and C-terminal domains of capsid (CA146stop), at the C terminus of capsid (p41stop), at the C terminus of p2 (p43stop), and after the N-terminal 35 amino acids of nucleocapsid (NC35stop). The ability of these truncated Gag molecules to assemble and release viruslike particles and their capacity to copackage into particles when coexpressed with full-length Gag were determined. We demonstrate that the amount of truncated Gag incorporated into particles is incrementally increased by extension from CA146 to NC35, suggesting that multiple sites in this region are involved in Gag multimerization. Using membrane flotation centrifugation, we observe that MA shows significantly reduced membrane binding relative to full-length Gag but that CA146 displays steady-state membrane-binding properties comparable to those of Pr55(Gag). The finding that the CA146 mutant, which contains only matrix and the N-terminal domain of capsid, exhibits levels of steady-state membrane binding equivalent to those of full-length Gag indicates that strong Gag-Gag interaction domains are not required for the efficient binding of HIV-1 Gag to membrane.  相似文献   

9.
Retrovirus assembly involves a complex series of events in which a large number of proteins must be targeted to a point on the plasma membrane where immature viruses bud from the cell. Gag polyproteins of most retroviruses assemble an immature capsid on the cytoplasmic side of the plasma membrane during the budding process (C-type assembly), but a few assemble immature capsids deep in the cytoplasm and are then transported to the plasma membrane (B- or D-type assembly), where they are enveloped. With both assembly phenotypes, Gag polyproteins must be transported to the site of viral budding in either a relatively unassembled form (C type) or a completely assembled form (B and D types). The molecular nature of this transport process and the host cell factors that are involved have remained obscure. During the development of a recombinant baculovirus/insect cell system for the expression of both C-type and D-type Gag polyproteins, we discovered an insect cell line (High Five) with two distinct defects that resulted in the reduced release of virus-like particles. The first of these was a pronounced defect in the transport of D-type but not C-type Gag polyproteins to the plasma membrane. High Five cells expressing wild-type Mason-Pfizer monkey virus (M-PMV) Gag precursors accumulate assembled immature capsids in large cytoplasmic aggregates similar to a transport-defective mutant (MA-A18V). In contrast, a larger fraction of the Gag molecules encoded by the M-PMV C-type morphogenesis mutant (MA-R55W) and those of human immunodeficiency virus were transported to the plasma membrane for assembly and budding of virions. When pulse-labeled Gag precursors from High Five cells were fractionated on velocity gradients, they sedimented more rapidly, indicating that they are sequestered in a higher-molecular-mass complex. Compared to Sf9 insect cells, the High Five cells also demonstrate a defect in the release of C-type virus particles. These findings support the hypothesis that host cell factors are important in the process of Gag transport and in the release of enveloped viral particles.  相似文献   

10.
P P Lee  M L Linial 《Journal of virology》1994,68(10):6644-6654
Lentiviruses, such as human immunodeficiency virus type 1 (HIV-1), assemble at and bud through the cytoplasmic membrane. Both the matrix (MA) domain of Gag and its amino-terminal myristylation have been implicated in these processes. We have created HIV-1 proviruses lacking the entire matrix domain of gag which either lack or contain an amino-terminal myristate addition sequence at the beginning of the capsid domain. Myristate- and matrix-deficient [myr(-)MA(-)] viruses produced after transient transfection are still able to assemble into particles, although the majority do not form at the plasma membrane or bud efficiently. Myristylation of the amino terminus of the truncated Gag precursor permits a much more efficient release of the mutant virions. While myr(-)MA(-) particles were inefficient in proteolytic processing of the Gag precursor, myristylation enabled efficient proteolysis of the mutant Gag. All matrix-deficient viruses are noninfectious. Particles produced by matrix-deficient mutants contain low levels of glycoproteins, indicating the importance of matrix in either incorporation or stable retention of Env. Since matrix-deficient viruses contain a normal complement of viral genomic RNA, a role for MA in genomic incorporation can be excluded. Contrary to previous reports, the HIV-1 genome does not require sequences between the 5' splice donor site and the gag start codon for efficient packaging.  相似文献   

11.
The Gag protein of the mouse mammary tumor virus (MMTV) is the chief determinant of subcellular targeting. Electron microscopy studies show that MMTV Gag forms capsids within the cytoplasm and assembles as immature particles with MMTV RNA and the Y box binding protein-1, required for centrosome maturation. Other betaretroviruses, such as Mason-Pfizer monkey retrovirus (M-PMV), assemble adjacent to the pericentriolar region because of a cytoplasmic targeting and retention signal in the Matrix protein. Previous studies suggest that the MMTV Matrix protein may also harbor a similar cytoplasmic targeting and retention signal. Herein, we show that a substantial fraction of MMTV Gag localizes to the pericentriolar region. This was observed in HEK293T, HeLa human cell lines and the mouse derived NMuMG mammary gland cells. Moreover, MMTV capsids were observed adjacent to centrioles when expressed from plasmids encoding either MMTV Gag alone, Gag-Pro-Pol or full-length virus. We found that the cytoplasmic targeting and retention signal in the MMTV Matrix protein was sufficient for pericentriolar targeting, whereas mutation of the glutamine to alanine at position 56 (D56/A) resulted in plasma membrane localization, similar to previous observations from mutational studies of M-PMV Gag. Furthermore, transmission electron microscopy studies showed that MMTV capsids accumulate around centrioles suggesting that, similar to M-PMV, the pericentriolar region may be a site for MMTV assembly. Together, the data imply that MMTV Gag targets the pericentriolar region as a result of the MMTV cytoplasmic targeting and retention signal, possibly aided by the Y box protein-1 required for the assembly of centrosomal microtubules.  相似文献   

12.
The Gag polyprotein of human immunodeficiency virus (HIV) (Pr55Gag) contains sufficient information to direct particle assembly events when expressed within tissue culture cells. HIV Gag proteins normally form particles at a plasma membrane assembly site, in a manner analogous to that of the type C avian and mammalian leukemia/sarcoma viruses. It has not previously been demonstrated that immature HIV capsids can form without budding through an intact cellular membrane. In this study, a rabbit reticulocyte lysate translation reaction was used to recreate HIV capsid formation in vitro. Production of HIV-1 Pr55Gag and of a matrix-deleted Gag construct resulted in the formation of a subset of Gag protein structures with an equilibrium density of 1.15 g/ml. Gel filtration chromatography revealed these Gag protein structures to be larger than 2 x 10(6) Da, consistent with the formation of large multimers or capsids. These Gag protein structures were protease sensitive in the absence of detergent, indicating that they did not contain a complete lipid envelope. Spherical structures were detected by electron microscopy within the reticulocyte lysate reaction mixtures and appeared essentially identical to immature HIV capsids or retrovirus-like particles. These results demonstrate that the HIV Gag protein is capable of producing immature capsids in a cell-free reaction and that such capsids lack a complete lipid envelope.  相似文献   

13.
Mason-Pfizer monkey virus (M-PMV), the prototypical type D retrovirus, assembles immature capsids within the cytoplasm of the cell prior to plasma membrane interaction. Several mutants of M-PMV Gag have been described which display altered transport, assembly, or both. In this report, we describe the use of an in vitro synthesis and assembly system to distinguish between defects in intracellular transport and the process of assembly itself for two previously described gag gene mutants. Matrix domain mutant R55W converts the type D morphogenesis of M-PMV particles into type C and has been hypothesized to alter the transport of Gag, redirecting it to the plasma membrane where assembly subsequently occurs. We show here that R55W can assemble in both the in vitro translation-assembly system and within inclusion bodies in bacteria and thus has retained the capacity to assemble in the cytoplasm. This supports the concept that R55 is located within a domain responsible for the transport of Gag to an intracellular site for assembly. In contrast, deletions within the p12 domain of M-PMV Gag had previously been shown to affect the efficiency of particle formation such that under low-level expression conditions, Gag would fail to assemble. We demonstrate here that the efficiency of assembly in the in vitro system mirrors that seen in cells under expression conditions similar to that of an infection. These results argue that the p12 domain of this D-type retrovirus plays a critical role in the membrane-independent assembly of immature capsids.  相似文献   

14.
The molecular mechanism by which retroviral Gag proteins are directed to the plasma membrane for the formation of particles (budding) is unknown, but it is widely believed that the MA domain, located at the amino terminus, plays a critical role. Consistent with this idea, we found that small deletions in this segment of the Rous sarcoma virus Gag protein completely blocked particle formation. The mutant proteins appear to have suffered only localized structural damage since they could be rescued (i.e., packaged into particles) when coexpressed with Gag proteins that are competent for particle formation. To our surprise, the effects of the MA deletions could be completely suppressed by fusing as few as seven residues of the myristylated amino terminus of the oncoprotein p60src to the beginning of the mutant Gag proteins. Particles produced by the chimeras were of the same density as the wild type. Two myristylated peptides having sequences distinct from that of p60src were entirely unable to suppress MA deletions, indicating that myristate alone is not a sufficient membrane targeting signal. We hypothesize that the amino terminus of p60src suppresses the effects of MA deletions by diverting the Rous sarcoma virus Gag protein from its normal site of assembly to the Src receptor for particle formation.  相似文献   

15.
Mason-Pfizer monkey virus (M-PMV) preassembles immature capsids in the cytoplasm prior to transporting them to the plasma membrane. Expression of the M-PMV Gag precursor in bacteria results in the assembly of capsids indistinguishable from those assembled in mammalian cells. We have used this system to investigate the structural requirements for the assembly of Gag precursors into procapsids. A series of C- and N-terminal deletion mutants progressively lacking each of the mature Gag domains (matrix protein [MA]-pp24/16-p12-capsid protein [CA]-nucleocapsid protein [NC]-p4) were constructed and expressed in bacteria. The results demonstrate that both the CA and the NC domains are necessary for the assembly of macromolecular arrays (sheets) but that amino acid residues at the N terminus of CA define the assembly of spherical capsids. The role of these N-terminal domains is not based on a specific amino acid sequence, since both MA-CA-NC and p12-CA-NC polyproteins efficiently assemble into capsids. Residues N terminal of CA appear to prevent a conformational change in which the N-terminal proline plays a key role, since the expression of a CA-NC protein lacking this proline results in the assembly of spherical capsids in place of the sheets assembled by the CA-NC protein.  相似文献   

16.
Mason-Pfizer monkey virus (M-PMV) represents the prototype type D retrovirus, characterized by the assembly of intracytoplasmic A-type particles within the infected-cell cytoplasm. These immature particles migrate to the plasma membrane, where they are released by budding. The gag gene of M-PMV encodes a novel protein, p12, just 5' of the major capsid protein (CA) p27 on the polyprotein precursor. The function of p12 is not known, but an equivalent protein is found in mouse mammary tumor virus and is absent from the type C retroviruses. In order to determine whether the p12 protein plays a role in the intracytoplasmic assembly of capsids, a series of in-frame deletion mutations were constructed in the p12 coding domain. The mutant gag genes were expressed by a recombinant vaccinia virus-T7 polymerase-based system in CV-1 cells or in the context of the viral genome in COS-1 cells. In both of these high-level expression systems, mutant Gag precursors were competent to assemble but were not infectious. In contrast, when stable transfectant HeLa cell lines were established, assembly of the mutant precursors into capsids was drastically reduced. Instead, the polyprotein precursors remained predominantly soluble in the cytoplasm. These results show that while p12 is not required for the intracytoplasmic assembly of M-PMV capsids, under the conditions of low-level protein biosynthesis seen in virus-infected cells, it may assist in the stable association of polyprotein precursors for capsid assembly. Moreover, the presence of the p12 coding domain is absolutely required for the infectivity of M-PMV virions.  相似文献   

17.
Type C retroviruses assemble at the plasma membrane of the infected cell. Attachment of myristic acid to the N terminus of the Gag precursor polyprotein has been shown to be essential for membrane localization and virus morphogenesis. Here, we report that the matrix (MA) protein contains regions that in conjunction with myristylation are important for Gag protein stability and the assembly of murine leukemia viruses. We identified these domains by generating a series of Akv murine leukemia virus mutants carrying small in-frame deletions within the coding region of the MA protein encompassing 129 amino acids. Studies show that mutants with deletions within the segment encoding the first 102 amino acids were all replication defective, whereas the C-terminal residues 103 to 124 seem not to have any critical function in virus maturation. Cells expressing the replication-defective genomes did not release any detectable Gag proteins. In one mutant, deletion of 3 amino acids in the N terminus resulted in an inefficiently myristylated, stable Gag polyprotein. The remaining defect genomes encoded unstable Gag proteins, although they were modified with myristic acid. The results suggest that the matrix domain plays an important role in stabilizing the Gag polyprotein.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) particle formation and the subsequent initiation of protease-mediated maturation occur predominantly on the plasma membrane. However, the mechanism by which HIV-1 assembly is targeted specifically to the plasma membrane versus intracellular membranes is largely unknown. Previously, we observed that mutations between residues 84 and 88 of the matrix (MA) domain of HIV-1 Gag cause a retargeting of virus particle formation to an intracellular site. In this study, we demonstrate that the mutant virus assembly occurs in the Golgi or in post-Golgi vesicles. These particles undergo core condensation in a protease-dependent manner, indicating that virus maturation can occur not only on the plasma membrane but also in the Golgi or post-Golgi vesicles. The intracellular assembly of mutant particles is dependent on Gag myristylation but is not influenced by p6(Gag) or envelope glycoprotein expression. Previous characterization of viral revertants suggested a functional relationship between the highly basic domain of MA (amino acids 17 to 31) and residues 84 to 88. We now demonstrate that mutations in the highly basic domain also retarget virus particle formation to the Golgi or post-Golgi vesicles. Although the basic domain has been implicated in Gag membrane binding, no correlation was observed between the impact of mutations on membrane binding and Gag targeting, indicating that these two functions of MA are genetically separable. Plasma membrane targeting of Gag proteins with mutations in either the basic domain or between residues 84 and 88 was rescued by coexpression with wild-type Gag; however, the two groups of MA mutants could not rescue each other. We propose that the highly basic domain of MA contains a major determinant of HIV-1 Gag plasma membrane targeting and that mutations between residues 84 and 88 disrupt plasma membrane targeting through an effect on the basic domain.  相似文献   

19.
Retroviral capsid assembly can occur by either of two distinct morphogenic processes: in type C viruses, the capsid assembles and buds at the plasma membrane, while in type B and D viruses, the capsid assembles within the cytoplasm and is then transported to the plasma membrane for budding. We have previously reported that a single-amino-acid substitution of a tryptophan for an arginine in the matrix protein (MA) of Mason-Pfizer monkey virus (MPMV) converts its capsid assembly from that of a type D retrovirus to that of the type C viruses (S. S. Rhee and E. Hunter, Cell 63:77-86, 1990). Here we identify a region of 18 amino acids within the MA of MPMV that is responsible for type D-specific morphogenesis. Insertion of these 18 amino acids into the MA of type C Moloney murine leukemia virus causes it to assemble an immature capsid in the cytoplasm. Furthermore, fusion of the MPMV MA to the green fluorescent protein resulted in altered intracellular targeting and a punctate accumulation of the fusion protein in the cytoplasm. These 18 amino acids, which are necessary and sufficient to target retroviral Gag polyproteins to defined sites in the cytoplasm, appear to define a novel mammalian cytoplasmic targeting/retention signal.  相似文献   

20.
Foamy viruses (FVs) are highly fusogenic, and their replication induces massive syncytium formation in infected cell cultures which is believed to be mediated by expression of the envelope (Env) protein. The FV Env is essential for virus particle egress. The unusually long putative membrane-spanning domain (MSD) of the transmembrane subunit carries dispersed charged amino acids and has an important function for particle envelopment. To better understand the capsid-envelope interaction and Env-mediated cell fusion, we generated a variety of FV MSD mutations. C-terminal deletions revealed the cytoplasmic domain to be dispensable but the full-length MSD to be required for fusogenic activity. The N-terminal 15 amino acids of the MSD were found to be sufficient for membrane anchorage and promotion of FV particle release. Expression of wild-type Env protein rarely induced syncytia due to intracellular retention. Coexpression with FV Gag-Pol resulted in particle export and a dramatic increase in fusion activity. A nonconservative mutation of K(959) in the middle of the putative MSD resulted in increased fusogenic activity of Env in the absence of Gag-Pol due to enhanced cell surface expression as well as structural changes in the mutant proteins. Coexpression with Gag-Pol resulted in a further increase in the fusion activity of mutant FV Env proteins. Our results suggest that an interaction between the viral capsid and Env is required for FV-induced giant-cell formation and that the positive charge in the MSD is an important determinant controlling intracellular transport and fusogenic activity of the FV Env protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号