首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tristeza is a devastating viral disease in all the citrus growing countries throughout the world and has killed millions of citrus trees in severely affected orchards. The citrus species grafted on sour orange rootstock are affected by this disease. Predominantly, the sweet orange, grapefruit and lime trees grafted on sour orange exhibit severe symptoms like quick decline, vein clearing, pin holing, bark scaling and degeneration leading to variable symptoms. Symptomatic expression of Citrus tristeza virus (CTV) in different hosts has been attributed to virus isolates which are from severe to mild. Different serological and molecular assays have been deployed to differentiate the strains of CTV. Citrus tristeza virus is diversified towards its strains on the basis of biological, serological and molecular characterization. Phenotypic expression is due to genetic alteration and different molecular basis have now been adopted for strain differentiation. This review will give a brief idea about the different CTV isolates, their characterization based on nucleic acid and serological assays. Different methods along with salient features for strain characterization has also been reviewed. This review will also open the new aspects towards formulation of management strategies through different detection techniques.  相似文献   

3.
The systemic movement of citrus tristeza virus (CTV) in sour orange (Citrus aurantium) seedlings and of citrus exocortis viroid (CEVd) in Etrog citron (C. medica) seedlings was studied. The movement of the two pathogens was analysed by detection in sections of roots and stems at different time intervals. Both pathogens were detected initially in the basal parts and the roots and subsequently spread to the shoot. CTV and CEVd moved in young citrus seedlings at similar rates. The findings are consistent with long distance phloem transport of the virus and the viroid. The practical implications of the pattern of systemic movement for diagnosis of infected trees are discussed.  相似文献   

4.
Citrus tristeza virus (CTV) naturally infects only some citrus species and relatives and within these it only invades phloem tissues. Failure to agroinfect citrus plants and the lack of an experimental herbaceous host hindered development of a workable genetic system. A full-genome cDNA of CTV isolate T36 was cloned in binary plasmids and was used to agroinfiltrate Nicotiana benthamiana leaves, with or without coinfiltration with plasmids expressing different silencing-suppressor proteins. A time course analysis in agroinfiltrated leaves indicated that CTV accumulates and moves cell-to-cell for at least three weeks postinoculation (wpi), and then, it moves systemically and infects the upper leaves with symptom expression. Silencing suppressors expedited systemic infection and often increased infectivity. In systemically infected Nicotiana benthamiana plants, CTV invaded first the phloem, but after 7 wpi, it was also found in other tissues and reached a high viral titer in upper leaves, thus allowing efficient transmission to citrus by stem-slash inoculation. Infected citrus plants showed the symptoms, virion morphology, and phloem restriction characteristic of the wild T36 isolate. Therefore, agroinfiltration of Nicotiana benthamiana provided the first experimental herbaceous host for CTV and an easy and efficient genetic system for this closterovirus.  相似文献   

5.
6.
7.
Citrus tristeza virus (CTV) (genus Closterovirus , family Closteroviridae ) causes some of the more important viral diseases of citrus worldwide. The ability to map disease-inducing determinants of CTV is needed to develop better diagnostic and disease control procedures. A distinctive phenotype of some isolates of CTV is the ability to induce seedling yellows (SY) in sour orange, lemon and grapefruit seedlings. In Florida, the decline isolate of CTV, T36, induces SY, whereas a widely distributed mild isolate, T30, does not. To delimit the viral sequences associated with the SY syndrome, we created a number of T36/T30 hybrids by substituting T30 sequences into different regions of the 3' half of the genome of an infectious cDNA of T36. Eleven T36/T30 hybrids replicated in Nicotiana benthamiana protoplasts. Five of these hybrids formed viable virions that were mechanically transmitted to Citrus macrophylla , a permissive host for CTV. All induced systemic infections, similar to that of the parental T36 clone. Tissues from these C. macrophylla source plants were then used to graft inoculate sour orange and grapefruit seedlings. Inoculation with three of the T30/T36 hybrid constructs induced SY symptoms identical to those of T36; however, two hybrids with T30 substitutions in the p23-3' nontranslated region (NTR) (nucleotides 18 394–19 296) failed to induce SY. Sour orange seedlings infected with a recombinant non-SY p23-3' NTR hybrid also remained symptomless when challenged with the parental virus (T36), demonstrating the potential feasibility of using engineered constructs of CTV to mitigate disease.  相似文献   

8.
To investigate host functions involved in the tobacco etch potyvirus (TEV) infection process, a tobacco line (V20) with a strain-specific defect in supporting systemic infection was analyzed. Using a modified TEV encoding a reporter protein, beta-glucuronidase (GUS), genome amplification, cell-to-cell movement, and long-distance movement were measured in V20 and a susceptible line, Havana425. Comparable levels of TEV-GUS genome amplification were measured in inoculated protoplasts from both tobacco lines. The rates of cell-to-cell movement of virus in inoculated leaves were nearly identical in V20 and Havana425 between 48 and 72 h postinoculation. In contrast, long-distance movement from leaf to leaf was markedly restricted in V20 relative to Havana425. In situ histochemical analysis of inoculated leaves revealed that infection foci expanded radially over time, providing the potential for contact of virus with veins. Immunocytochemical analysis of V20 tissue from infection foci indicated that TEV-GUS entered the phloem parenchyma or companion cells adjacent to the sieve elements, suggesting that the block in long-distance movement was associated with entry into, or exit from, sieve elements. The genetic basis for the V20 restriction was characterized in a segregation analysis of a cross between V20 and Havana425. The heterozygous F1 progeny displayed the susceptible phenotype, indicating that the V20 restriction was a recessive trait. Segregation in the F2 progeny indicated that the restriction was likely due to the interaction of recessive genes at two nonlinked loci. These data support the hypothesis that long-distance movement requires a set of host functions that are distinct from those involved in cell-to-cell movement.  相似文献   

9.
The effect of citrus tristeza virus (CTV) on bark protems of susceptible citrus species and scion-rootstock combinations was studied by polyaerylamide gel electrophoresis (PAGE). Protein pattern of sour orange bark from CTV-infected trees on this rootstock showed reduced intensity in a protein band, about 20,000 daltons molecular weight, as compared with similar CTV-free trees. This protein modification appears specifically associated with decline induced by tristeza since it was observed on trees of different ages and scion-rootstock combinations, grown in various locations and infected with several CTV isolates, but not on trees exhibiting decline from other causes. The observed protein alteration was localized in the ribosomic fraction. No protein alteration, associated with CTV infection could be found on lemon bark, although this citrus species also behaves as a CTV-susceptible rootstock. Electrophoretic profiles obtained from CTV infected Mexican lime and Etrog citron seedlings also showed reduced intensity in a protein band with the same electrophoretic mobility as the tnodified band of sour orange.  相似文献   

10.
Stem pitting is a common virus-induced disease of perennial woody plants induced by a range of different viruses. The phenotype results from sporadic areas of the stem in which normal xylem and phloem development is prevented during growth of stems. These alterations interfere with carbohydrate transport, resulting in reduced plant growth and yield. Citrus tristeza virus (CTV), a phloem-limited closterovirus, induces economically important stem-pitting diseases of citrus. CTV has three nonconserved genes (p33, p18, and p13) that are not related to genes of other viruses and that are not required for systemic infection of some species of citrus, which allowed us to examine the effect of deletions of these genes on symptom phenotypes. In the most susceptible experimental host, Citrus macrophylla, the full-length virus causes only very mild stem-pitting symptoms. Surprisingly, we found that certain deletion combinations (p33 and p18 and/or p13) induced greatly increased stem-pitting symptoms, while other combinations (p13 or p13 plus p18) resulted in reduced stem pitting. These results suggest that the stem-pitting phenotype, which is one of more economically important disease phenotypes, can result not from a specific sequence or protein but from a balance between the expression of different viral genes. Unexpectedly, using green fluorescent protein-tagged full-length virus and deletion mutants (CTV9Δp33 and CTV9Δp33Δp18Δp13), the virus was found at pitted areas in abnormal locations outside the normal ring of phloem. Thus, increased stem pitting was associated not only with a prevention of xylem production but also with a proliferation of cells that supported viral replication, suggesting that at random areas of stems the virus can elicit changes in cellular differentiation and development.  相似文献   

11.
Summary Sour orange (Citrus aurantium L.) rootstock has historically been a widely utilized eitrus rootstock throughout the world due to its wide soil adaptability and superior horticultural performance. However, quick-decline isolates of citrus tristeza virus (CTV) have demolished entire industries of sour orange rootstock in some countries, including Brazil and Venezuela. CTV is presently destroying millions of trees of sour orange rootstock in Florida and threatens the citrus industries of Texas and Mexico, where sour orange is the predominant rootstock. Efforts to replace sour orange rootstock are combining traditional breeding and biotechnology approaches, including somatic hybridization and transformation. Molecular techniques have confirmed that sour orange is probably a hybrid of mandarin and pummelo. A major focus of our program continues to be the somatic hybridization of superior mandarins with pre-selected pummelo parents. Here, we report the regeneration of allotetraploid somatic hybrid plants from seven new mandarin+pummelo combinations and one new sweet orange+pummelo combination. All new somatic hybrids were confirmed by leaf morphology, ploidy analysis via flow cytometry, and random amplified polymorphic DNA analysis to show nuclear contributions from both parents in corresponding hybrids. These new somatic hybrids are being propagated by tissue culture and/or rooted cuttings for further evaluation of disease resistance and horticultural performance in field trials.  相似文献   

12.
Previously, we reported that CCMV(B3a), a hybrid of bromovirus Cowpea chlorotic mottle virus (CCMV) with the 3a cell-to-cell movement protein (MP) gene replaced by that of cowpea-nonadapted bromovirus Brome mosaic virus (BMV), can form small infection foci in inoculated cowpea leaves, but that expansion of the foci stops between 1 and 2 days postinoculation. To determine whether the lack of systemic movement of CCMV(B3a) is due to restriction of local spread at specific leaf tissue interfaces, we conducted more detailed analyses of infection in inoculated leaves. Tissue-printing and leaf press-blotting analyses revealed that CCMV(B3a) was confined to the inoculated cowpea leaves and exhibited constrained movement into leaf veins. Immunocytochemical analyses to examine the infected cell types in inoculated leaves indicated that CCMV(B3a) was able to reach the bundle sheath cells through the mesophyll cells and successfully infected the phloem cells of 50% of the examined veins. Thus, these data demonstrate that the lack of long-distance movement of CCMV(B3a) is not due to an inability to reach the vasculature, but results from failure of the virus to move through the vascular system of cowpea plants. Further, a previously identified 3a coding change (A776C), which is required for CCMV(B3a) systemic infection of cowpea plants, suppressed formation of reddish spots, mediated faster spread of infection, and enabled the virus to move into the veins of inoculated cowpea leaves. From these data, and the fact that CCMV(B3a) directs systemic infection in Nicotiana benthamiana, a permissive systemic host for both BMV and CCMV, we conclude that the bromovirus 3a MP engages in multiple activities that contribute substantially to host-specific long-distance movement through the phloem.  相似文献   

13.
To get an insight into the host RNA silencing defense induced by Citrus tristeza virus (CTV) and into the counter defensive reaction mediated by its three silencing suppressors (p25, p20 and p23), we have examined by deep sequencing (Solexa-Illumina) the small RNAs (sRNAs) in three virus-host combinations. Our data show that CTV sRNAs: (i) represent more than 50% of the total sRNAs in Mexican lime and sweet orange (where CTV reaches relatively high titers), but only 3.5% in sour orange (where the CTV titer is significantly lower), (ii) are predominantly of 21–22-nt, with a biased distribution of their 5′ nucleotide and with those of (+) polarity accumulating in a moderate excess, and (iii) derive from essentially all the CTV genome (ca. 20 kb), as revealed by its complete reconstruction from viral sRNA contigs, but adopt an asymmetric distribution with a prominent hotspot covering approximately the 3′-terminal 2,500 nt. These results suggest that the citrus homologues of Dicer-like (DCL) 4 and 2 most likely mediate the genesis of the 21 and 22 nt CTV sRNAs, respectively, and show that both ribonucleases act not only on the genomic RNA but also on the 3′ co-terminal subgenomic RNAs and, particularly, on their double-stranded forms. The plant sRNA profile, very similar and dominated by the 24-nt sRNAs in the three mock-inoculated controls, was minimally affected by CTV infection in sour orange, but exhibited a significant reduction of the 24-nt sRNAs in Mexican lime and sweet orange. We have also identified novel citrus miRNAs and determined how CTV influences their accumulation.  相似文献   

14.
15.
16.
Monocot-adapted brome mosaic virus (BMV) and dicot-adapted cowpea chlorotic mottle virus (CCMV) are closely related bromoviruses with tripartite RNA genomes. Although RNAs 1 and 2 together are sufficient for RNA replication in protoplasts, systemic infection also requires RNA3, which encodes the coat protein and the nonstructural 3a movement protein. We have previously shown with bromoviral reassortants that host specificity determinants in both viruses are encoded by RNA3 as well as by RNA1 and/or RNA2. Here, to test their possible role in host specificity, the 3a movement protein genes were precisely exchanged between BMV and CCMV. The hybrid viruses, but not 3a deletion mutants, systemically infected Nicotiana benthamiana, a permissive host for both parental viruses. The hybrids thus retain basic competence for replication, packaging, cell-to-cell spread, and long-distance (vascular) spread. However, the hybrids failed to systemically infect either barley or cowpea, selective hosts for parental viruses. Thus, the 3a gene and/or its encoded 3a protein contributes to host specificity of both monocot- and dicot-adapted bromoviruses. Tests of inoculated cowpea leaves showed that the spread of the CCMV hybrid containing the BMV 3a gene was blocked at a very early stage of infection. Moreover, the BMV hybrid containing the CCMV 3a gene appeared to spread farther than wt BMV in inoculated cowpea leaves. Several pseudorevertants directing systemic infection in cowpea leaves were obtained from plants inoculated with the CCMV(BMV 3a) hybrid, suggesting that the number of mutations required to adapt the hybrid to dicots is small.  相似文献   

17.
Citrus tristeza virus (CTV) induces in the field the decline and death of citrus varieties grafted on sour orange (SO) rootstock, which has forced the use of alternative decline‐tolerant rootstocks in affected countries, despite the highly desirable agronomic features of the SO rootstock. Declining citrus plants display phloem necrosis below the bud union. In addition, SO is minimally susceptible to CTV compared with other citrus varieties, suggesting partial resistance of SO to CTV. Here, by silencing different citrus genes with a Citrus leaf blotch virus‐based vector, we have examined the implication of the RNA silencing and salicylic acid (SA) defence pathways in the resistance of SO to CTV. Silencing of the genes RDR1, NPR1 and DCL2/DCL4, associated with these defence pathways, enhanced virus spread and accumulation in SO plants in comparison with non‐silenced controls, whereas silencing of the genes NPR3/NPR4, associated with the hypersensitive response, produced a slight decrease in CTV accumulation and reduced stunting of SO grafted on CTV‐infected rough lemon plants. We also found that the CTV RNA silencing suppressors p20 and p23 also suppress the SA signalling defence, with the suppressor activity being higher in the most virulent isolates.  相似文献   

18.
Several studies have reported markers linked to a putative resistance gene from Poncirus trifoliata (Ctv-R) located at linkage group 4 that confers resistance against one of the most important citrus pathogens, citrus tristeza virus (CTV). To be successful in both marker-assisted selection and transformation experiments, its accurate mapping is needed. Several factors may affect its localization, among them two are considered here: the definition of resistance and the genetic background of progeny.Two progenies derived from P. trifoliata, by self-pollination and by crossing with sour orange (Citrus aurantium), a citrus rootstock well-adapted to arid and semi-arid areas, were used for linkage group-4 marker enrichment. Two new methodologies were used to enrich this region with expressed sequences. The enrichment of group 4 resulted in the fusion of several C. aurantium linkage groups. The new one A(7+3+4) is now saturated with 48 markers including expressed sequences. Surprisingly, sour orange was as resistant to the CTV isolate tested as was P. trifoliata, and three hybrids that carry Ctv-R, as deduced from its flanking markers, are susceptible to CTV. The new linkage maps were used to map Ctv-R under the hypothesis of monogenic inheritance. Its position on linkage group 4 of P. trifoliata differs from the location previously reported in other progenies. The genetic analysis of virus-plant interaction in the family derived from C. aurantium after a CTV chronic infection showed the segregation of five types of interaction, which is not compatible with the hypothesis of a single gene controlling resistance. Two major issues are discussed: another type of genetic analysis of CTV resistance is needed to avoid the assumption of monogenic inheritance, and transferring Ctv-R from P. trifoliata to sour orange might not avoid the CTV decline of sweet orange trees.Communicated by C. Möllers  相似文献   

19.
Zou  Xiuping  Bai  Xiaojing  Wen  Qingli  Xie  Zhu  Wu  Liu  Peng  Aihong  He  Yongrui  Xu  Lanzhen  Chen  Shanchun 《Journal of Plant Growth Regulation》2019,38(4):1516-1528

Huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus (Las), is the most devastating disease of citrus worldwide. Tolerance to HLB has been observed in some citrus varieties, but its molecular mechanisms are not well understood. Methyl salicylate (MeSA), involved in salicylic acid (SA) signaling, is a critical mobile signal for plant systematic acquired resistance (SAR). This study compared the response of tolerant sour pomelo (Citrus grandis Osbeck) and susceptible Jincheng orange (Citrus sinensis Osbeck) to Las infection. During 18 months of resistance evaluation, sour pomelo displayed significantly delayed and milder symptoms, and tolerated higher levels of Las growth, compared with Jincheng orange. High levels of MeSA were detected in sour pomelo and MeSA responded positively to Las infection. Little MeSA was found in Jincheng orange regardless of Las infection. Correspondingly, the SA content in sour pomelo was significantly higher than that in Jincheng orange. During Las infection, SA levels decreased significantly in sour pomelo but increased in Jincheng orange. These data indicated that MeSA was correlated with tolerance to HLB in citrus. Gene expression analysis showed that CsSAMT1 and CsSABP2-1, involved in the interconversion of MeSA and SA, were related to MeSA accumulation in sour pomelo, and sour pomelo possesses a strong SAR response. Our study indicates that MeSA-mediated SAR plays an important role in citrus tolerance to HLB. This study provides new insights into HLB tolerance in citrus and useful guidance for improving citrus resistance to HLB by manipulation of MeSA signaling in the future.

  相似文献   

20.
Plant virus transport: motions of functional equivalence   总被引:1,自引:0,他引:1  
Plant virus cell-to-cell movement and subsequent systemic transport are governed by a series of mechanisms involving various virus and plant factors. Specialized virus encoded movement proteins (MPs) control the cell-to-cell transport of viral nucleoprotein complexes through plasmodesmata. MPs of different viruses have diverse properties and each interacts with specific host factors that also have a range of functions. Most viruses are then transported via the phloem as either nucleoprotein complexes or virions, with contributions from host and virus proteins. Some virus proteins contribute to the establishment and maintenance of systemic infection by inhibiting RNA silencing-mediated degradation of viral RNA. In spite of all the different movement strategies and the viral and host components, there are possible functional commonalities in virus-host interactions that govern viral spread through plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号