首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Calcium flux is required for the mammalian sperm acrosome reaction, an exocytotic event triggered by egg binding, which results in a dramatic rise in sperm intracellular calcium. Calcium-dependent membrane fusion results in the release of enzymes that facilitate sperm penetration through the zona pellucida during fertilization. We have characterized inositol 1,4,5-trisphosphate (IP3)-gated calcium channels and upstream components of the phosphoinositide signaling system in mammalian sperm. Peptide antibodies colocalized G alpha q/11 and the beta 1 isoform of phospholipase C (PLC beta 1) to the anterior acrosomal region of mouse sperm. Western blotting using a polyclonal antibody directed against purified brain IP3 receptor (IP3R) identified a specific 260 kD band in 1% Triton X-100 extracts of rat, hamster, mouse and dog sperm. In each species, IP3R immunostaining localized to the acrosome cap. Scatchard analysis of [3H]IP3 binding to rat sperm sonicates revealed a curvilinear plot with high affinity (Kd = 26 nM, Bmax = 30 pmol/mg) and low affinity (Kd = 1.6 microM, Bmax = 550 pmol/mg) binding sites, reflecting among the highest receptor densities in mammalian tissue. Immunoelectron microscopy confirmed the acrosomal localization in rat sperm. The IP3R fractionated with acrosomes by discontinuous sucrose gradient centrifugation and was enriched in the medium of acrosome- reacted sperm. ATP-dependent 45Ca2+ loading of digitonin permeabilized rat sperm was decreased by 45% in the presence of 10 microM IP3. The IP3-mediated release of calcium was blocked by heparin. Thapsigargin, a sequiterpene lactone inhibitor of the microsomal Ca(2+)-ATPase, stimulated the acrosome reaction of mouse sperm to the same extent as the Ca2+ ionophore, A23187. The failure of caffeine and ryanodine to affect calcium accumulation suggested that thapsigargin acted through an IP3-sensitive store. The presence of G alpha q/11, PLC beta 1 and a functional IP3R in the anterior acrosomal region of mammalian sperm, as well as thapsigargin''s induction of the acrosome reaction, implicate IP3-gated calcium release in the mammalian acrosome reaction.  相似文献   

2.
Coordination of lipids within transient receptor potential canonical channels (TRPCs) is essential for their Ca2+ signaling function. Single particle cryo‐EM studies identified two lipid interaction sites, designated L1 and L2, which are proposed to accommodate diacylglycerols (DAGs). To explore the role of L1 and L2 in TRPC3 function, we combined structure‐guided mutagenesis and electrophysiological recording with molecular dynamics (MD) simulations. MD simulations indicate rapid DAG accumulation within both L1 and L2 upon its availability within the plasma membrane. Electrophysiological experiments using a photoswitchable DAG‐probe reveal potentiation of TRPC3 currents during repetitive activation by DAG. Importantly, initial DAG exposure generates a subsequently sensitized channel state that is associated with significantly faster activation kinetics. TRPC3 sensitization is specifically promoted by mutations within L2, with G652A exhibiting sensitization at very low levels of active DAG. We demonstrate the ability of TRPC3 to adopt a closed state conformation that features partial lipidation of L2 sites by DAG and enables fast activation of the channel by the phospholipase C‐DAG pathway.  相似文献   

3.
4.
Though most of the studies have focused on the effects of free fatty acids on T-cell activation, fatty acids incorporated into plasma membrane phospholipids may also affect cell signaling via diacylglycerol (DAG), generally produced by phospholipid hydrolysis. In the present study, we have synthesized a DAG-containing oleic acid and studied its implication in the modulation of calcium signaling in human Jurkat T-cells. 1-palmitoyl-2-oleoyl-sn-glycerol (POG) induced a dose-dependent increase in [Ca2+]i. This effect was due to the presence of oleic acid at the sn-2 position as no differences were observed between POG and 1-stearoly-2-oleoyl-sn-glycerol (SOG). However, the substitution of oleic acid with arachidonic acid at the sn-2 position of the DAG moiety exerted a different response on the increases in [Ca2+]i in these cells. POG-evoked increases in [Ca2+]i were not due to its metabolites. Furthermore, POG-induced increases in [Ca2+]i were due to the opening of TRPC3/TRPC6 channels as silencing of TRPC3 and TRPC6 genes by shRNA abolished calcium entry. Moreover, disruption of lipid rafts with methyl-β-cyclodextrin completely abolished POG-evoked increases in [Ca2+]i. In conclusion, our results demonstrate that oleic acid can influence T-lymphocyte functions, in the conjugated form of DAG, via opening TRPC3/6 channels.  相似文献   

5.
Erythropoietin (Epo) stimulates a significant increase in the intracellular calcium concentration ([Ca(2+)](i)) through activation of the murine transient receptor potential channel TRPC2, but TRPC2 is a pseudogene in humans. TRPC3 expression increases on normal human erythroid progenitors during differentiation. Here, we determined that erythropoietin regulates calcium influx through TRPC3. Epo stimulation of HEK 293T cells transfected with Epo receptor and TRPC3 resulted in a dose-dependent increase in [Ca(2+)](i), which required extracellular calcium influx. Treatment with the phospholipase C (PLC) inhibitor U-73122 or down-regulation of PLCgamma1 by RNA interference inhibited the Epo-stimulated increase in [Ca(2+)](i) in TRPC3-transfected HEK 293T cells and in primary human erythroid precursors, demonstrating a requirement for PLC. TRPC3 associated with PLCgamma, and substitution of predicted PLCgamma Src homology 2 binding sites (Y226F, Y555F, Y648F, and Y674F) on TRPC3 reduced the interaction of TRPC3 with PLCgamma and inhibited the rise in [Ca(2+)](i). Substitution of Tyr(226) alone with phenylalanine significantly reduced the Epo-stimulated increase in [Ca(2+)](i) but not the association of PLCgamma with TRPC3. PLC activation results in production of inositol 1,4,5-trisphosphate (IP(3)). To determine whether IP(3) is involved in Epo activation of TRPC3, TRPC3 mutants were prepared with substitution or deletion of COOH-terminal IP(3) receptor (IP(3)R) binding domains. In cells expressing TRPC3 with mutant IP(3)R binding sites and Epo receptor, interaction of IP(3)R with TRPC3 was abolished, and Epo-modulated increase in [Ca(2+)](i) was reduced. Our data demonstrate that Epo modulates TRPC3 activation through a PLCgamma-mediated process that requires interaction of PLCgamma and IP(3)R with TRPC3. They also show that TRPC3 Tyr(226) is critical in Epo-dependent activation of TRPC3. These data demonstrate a redundancy of TRPC channel activation mechanisms by widely different agonists.  相似文献   

6.
Aires V  Hichami A  Boulay G  Khan NA 《Biochimie》2007,89(8):926-937
We synthesized a diacylglycerol (DAG)-containing arachidonic acid, i.e., 1-stearoyl-2-arachidonyl-sn-glycerol (SAG), and studied its implication in the modulation of canonical transient receptor potential sub-type 6 (TRPC6) channels in stably-transfected HEK-293 cells. SAG induced the influx of Ca(2+), and also of other bivalent cations like Ba(2+) and Sr(2+), in these cells. SAG-evoked Ca(2+) influx was not due to its metabolites as inhibitors of DAG-lipase (RHC80267) and DAG-kinase (R50922) failed to inhibit the response of the same. To emphasise that SAG exerts its action via its DAG configuration, but not due to the presence of stearic acid at sn-1 position, we synthesized 1-palmitoyl-2-arachidonyl-sn-glycerol (PAG). PAG-induced increases in [Ca(2+)](i) were not significantly different from those induced by SAG. For the comparative studies, we also synthesized the DAG-containing docosahexaenoic acid, i.e., 1-stearoyl-2-docosahexaenoyl-sn-glycerol (SDG). We observed that SDG and 1,2-dioctanoyl-sn-glycerol (DOG), a DAG analogue, also evoked increases in [Ca(2+)](i), which were lesser than those evoked by SAG. However, activation of TRPC6 channels by all the DAG molecular species (SAG, DOG and SDG) required Src kinases as the tyrosine kinase inhibitors, PP2 and SU6656, significantly attenuated the increases in [Ca(2+)](i) evoked by these agents. Moreover, disruption of lipid rafts with methyl-beta-cyclodextrin completely abolished SAG-, DOG- and SDG-induced increases in [Ca(2+)](i). The present study shows that SAG as well as SDG and DOG stimulate Ca(2+) influx through the activation of TRPC6 calcium channels which are regulated by Src kinases and intact lipid raft domains.  相似文献   

7.
《Cell calcium》2016,60(6):271-279
TRPC proteins form cation channels that integrate and relay cellular signals by mechanisms involving lipid recognition and lipid-dependent gating. The lipohilic/amphiphilic molecules that function as cellular activators or modulators of TRPC proteins span a wide range of chemical structures. In this context, cellular redox balance is likely linked to the lipid recognition/gating features of TRPC channels. Both classical ligand-protein interactions as well as indirect and promiscuous sensory mechanisms have been proposed. Some of the recognition processes are suggested to involve ancillary lipid-binding scaffolds or regulators as well as dynamic protein–protein interactions determined by bilayer architecture. A complex interplay of protein–protein and protein-lipid interactions is likely to govern the gating and/or plasma membrane recruitment of TRPC channels, thereby providing a distinguished platform for signal integration and coincident signal detection. Both the primary molecular event(s) of lipid recognition by TRPC channels as well as the transformation of these events into distinct gating movements is poorly understood at the molecular level, and it remains elusive whether lipid sensing in TRPCs is conferred to a distinct sensor domain. Recent structural information on the molecular action of lipophilic activators in distantly related members of the TRP superfamily encourages speculations on TRPC gating mechanisms involved in lipid recognition/gating. This review aims to provide an update on the current understanding of the lipid–dependent control of TRPC channels with focus on the TRPC lipid sensing, signal-integration hub and a short discussion of potential links to redox signaling.  相似文献   

8.
9.
Enkurin is a novel calmodulin and TRPC channel binding protein in sperm   总被引:2,自引:0,他引:2  
The TRPC cation channel family has been implicated in receptor- or phospholipase C (PLC)-mediated Ca2+ entry into animal cells. These channels are present in mammalian sperm and are assigned a role in ZP3-evoked Ca2+ influx that drives acrosome reactions. However, the mechanisms controlling channel activity and coupling Ca2+ entry through these channels to cellular responses are not well understood. A yeast two-hybrid screen was carried out to identify TRPC-interacting proteins that would be candidate regulators or effectors. We identified a novel protein, enkurin, that is expressed at high levels in the testis and vomeronasal organ and at lower levels in selected other tissues. Enkurin interacts with several TRPC proteins (TRPC1, TRPC2, TRPC5, but not TRPC3) and colocalizes with these channels in sperm. Three protein-protein interaction domains were identified in enkurin: a C-terminal region is essential for channel interaction; an IQ motif binds the Ca2+ sensor, calmodulin, in a Ca2+-dependent manner; and a proline-rich N-terminal region contains predicted ligand sequences for SH3 domain proteins, including the SH3 domain of the p85 regulatory subunit of 1-phosphatidylinositol-3-kinase. We suggest that enkurin is an adaptor that functions to localize a Ca2+ sensitive signal transduction machinery in sperm to a Ca2+-permeable ion channel.  相似文献   

10.
The seven mammalian channels from the classical (TRPC) subfamily of transient receptor potential (TRP) channels are thought to be receptor-operated cation channels activated in a phospholipase C (PLC)-dependent manner. Based on sequence similarity, TRPC channels can be divided into four subgroups. Group 4 comprises TRPC4 and TRPC5, and is most closely related to group 1 (TRPC1). The functional properties observed following heterologous expression of TRPC4 or TRPC5 in mammalian cells are contradictory and, therefore, controversial. In our hands, and in several independent studies, both channels, probably as homotetramers, form receptor-operated, Ca2+-permeable, nonselective cation channels activated independently of inositol 1,4,5-trisphosphate (InsP3) receptor activation or Ca2+ store-depletion. As heteromultimers with TRPC1, TRPC4 and TRPC5 form receptor-operated, Ca2+-permeable, nonselective cation channels with biophysical properties distinct from homomeric TRPC4 or TRPC5. In other studies, TRPC4 and TRPC5 have been shown to be store-operated channels, with moderate to high Ca2+ permeabilities. At present there is no clear explanation for these major differences in functional properties. To date, little is known as to which native cation channels are formed by TRPC4 and TRPC5. Endothelial cells from TRPC4−/− mice lack a highly Ca2+-permeable, store-dependent current, and data support a role for TRPC4 in endothelium-mediated vasorelaxation. A similar current in adrenal cortical cells is reduced by TRPC4 antisense. From similarities in the properties of the currents and expression of appropriate isoforms in the tissues, it is likely that heteromultimers of TRPC1 and TRPC4 or TRPC5 form receptor-operated nonselective cation channels in central neurones, and that TRPC4 contributes to nonselective cation channels in intestinal smooth muscle.  相似文献   

11.
Ca(2+) signaling regulates many important physiological events within a diverse set of living organisms. In particular, sustained Ca(2+) signals play an important role in controlling cell proliferation, cell differentiation and the activation of immune cells. Two key elements for the generation of sustained Ca(2+) signals are store-operated and receptor-operated Ca(2+) channels that are activated downstream of phospholipase C (PLC) stimulation, in response to G-protein-coupled receptor or growth factor receptor stimulation. One goal of this review is to help clarify the role of canonical transient receptor potential (TRPC) proteins in the formation of native store-operated and native receptor-operated channels. Toward that end, data from studies of endogenous TRPC proteins will be reviewed in detail to highlight the strong case for the involvement of certain TRPC proteins in the formation of one subtype of store-operated channel, which exhibits a low Ca(2+)-selectivity, in contrast to the high Ca(2+)-selectivity exhibited by the CRAC subtype of store-operated channel. A second goal of this review is to highlight the growing body of evidence indicating that native store-operated and native receptor-operated channels are formed by the heteromultimerization of TRPC subunits. Furthermore, evidence will be provided to argue that some TRPC proteins are able to form multiple channel types.  相似文献   

12.
The acrosomal vesicle of mouse sperm is a calcium store   总被引:7,自引:0,他引:7  
Subsequent to binding to the zona pellucida, mammalian sperm undergo a regulated sequence of events that ultimately lead to acrosomal exocytosis. Like most regulated exocytotic processes, a rise in intracellular calcium is sufficient to trigger this event although the precise mechanism of how this is achieved is still unclear. Numerous studies on mouse sperm have indicated that a voltage-operated Ca2+ channel plays some immediate role following sperm binding to the zona pellucida glycoprotein ZP3. However, there is also evidence that the mammalian sperm acrosome contains a high density of IP3 receptors, suggesting that the exocytotic event involves the release of Ca2+ from the acrosome. The release of Ca2+ from the acrosome may directly trigger exocytosis or may activate store-operated Ca2+ channels in the plasma membrane. To test the hypothesis that the acrosome is an intracellular store we loaded mammalian sperm with the membrane permeant forms of three Ca2+-sensitive fluorescent indicator dyes: fura-2, indo-1, and Calcium Green-5N. Fluorescence microscopy revealed that the sperm were labeled in all intracellular compartments. When fura-2 labeled sperm were treated with 150 microM MnCl2 to quench all fluorescence in the cytosol, or when the sperm were labeled with the low affinity dye Calcium Green-5N, there was a large Ca2+ signal in the acrosome. Consistent with the acrosome serving as an intracellular Ca2+ reservoir, the addition of 20 microM thapsigargin, a potent inhibitor of the smooth endoplasmic reticular Ca2+-ATPase (SERCA), to populations of capacitated sperm resulted in nearly 100% acrosomal exocytosis within 60 min (tau1/2 approximately 10 min), in the absence of extracellular Ca2+. Additionally, treatment of sperm with 100 microM thimerosal, an IP3 receptor agonist, also resulted in acrosomal exocytosis. Taken together, these data suggest that the mouse sperm acrosome is a Ca2+ store that regulates its own exocytosis through an IP3 Ca2+ mobilization pathway.  相似文献   

13.
Mutation of a single residue within the recently identified lipid (diacylglycerol) recognition window of TRPC3 (G652A) was found to abolish channel activation via endogenous lipid mediators while retaining sensitivity to the non-lipid activator GSK1702934A (abb. GSK). The mechanism of this change in chemical sensing by TRPC3 was analysed by whole-cell and single channel electrophysiology as well as Ca2+ imaging. Currents initiated by GSK or the structural (benzimidazole) analog BI-2 were significantly larger in cells expressing the G652A mutant as compared to wild type (WT) channels. Whole cell patch-clamp experiments revealed that enhanced sensitivity to benzimidazoles was not due to augmented potency but reflected enhanced efficacy of benzimidazoles. Single channel analysis demonstrated that neither unitary conductance nor I-V characteristics were altered by the G652A mutation, precluding altered pore architecture as the basis of enhanced efficacy. These experiments uncovered a distinct gating pattern of BI-2-activated G652A mutant channels, featuring a unique, long-lived open state. Moreover, G652A mutant channels lacked PLC/diacylglycerol mediated cross-desensitization for GSK activation as typically observed for TRPC3. Lack of desensitization in G652A channels enabled large GSK/BI-2-induced Ca2+ signals in conditions that fully desensitized TRPC3 WT channels. We demonstrate that the lipid-recognition window of TRPC3 determines both sensitivity to lipid mediators and chemical gating by benzimidazoles. TRPC3 mutations within this lipid interaction site are suggested as a basis for chemogenetic targeting of TRPC3-signaling.  相似文献   

14.
The mechanism of receptor-induced activation of the ubiquitously expressed family of mammalian canonical transient receptor potential (TRPC) channels has been the focus of intense study. Primarily responding to phospholipase C (PLC)-coupled receptors, the channels are reported to receive modulatory input from diacylglycerol, endoplasmic reticulum inositol 1,4,5-trisphosphate receptors and Ca2+ stores. Analysis of TRPC5 channels transfected within DT40 B cells and deletion mutants thereof revealed efficient activation in response to PLC-beta or PLC-gamma activation, which was independent of inositol 1,4,5-trisphoshate receptors or the content of stores. In both HEK293 cells and DT40 cells, TRPC5 and TRPC3 channel responses to PLC activation were highly analogous, but only TRPC3 and not TRPC5 channels responded to the addition of the permeant diacylglycerol (DAG) analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG). However, OAG application or elevated endogenous DAG, resulting from either DAG lipase or DAG kinase inhibition, completely prevented TRPC5 or TRPC4 activation. This inhibitory action of DAG on TRPC5 and TRPC4 channels was clearly mediated by protein kinase C (PKC), in distinction to the stimulatory action of DAG on TRPC3, which is established to be PKC-independent. PKC activation totally blocked TRPC3 channel activation in response to OAG, and the activation was restored by PKC-blockade. PKC inhibition resulted in decreased TRPC3 channel deactivation. Store-operated Ca2+ entry in response to PLC-coupled receptor activation was substantially reduced by OAG or DAG-lipase inhibition in a PKC-dependent manner. However, store-operated Ca2+ entry in response to the pump blocker, thapsigargin, was unaffected by PKC. The results reveal that each TRPC subtype is strongly inhibited by DAG-induced PKC activation, reflecting a likely universal feedback control on TRPCs, and that DAG-mediated PKC-independent activation of TRPC channels is highly subtype-specific. The profound yet distinct control by PKC and DAG of the activation of TRPC channel subtypes is likely the basis of a spectrum of regulatory phenotypes of expressed TRPC channels.  相似文献   

15.
In many cell types agonist-receptor activation leads to a rapid and transient release of Ca(2+) from intracellular stores via activation of inositol 1,4,5 trisphosphate (InsP(3)) receptors (InsP(3)Rs). Stimulated cells activate store- or receptor-operated calcium channels localized in the plasma membrane, allowing entry of extracellular calcium into the cytoplasm, and thus replenishment of intracellular calcium stores. Calcium entry must be finely regulated in order to prevent an excessive intracellular calcium increase. Junctate, an integral calcium binding protein of endo(sarco)plasmic reticulum membrane, (a) induces and/or stabilizes peripheral couplings between the ER and the plasma membrane, and (b) forms a supramolecular complex with the InsP(3)R and the canonical transient receptor potential protein (TRPC) 3 calcium entry channel. The full-length protein modulates both agonist-induced and store depletion-induced calcium entry, whereas its NH(2) terminus affects receptor-activated calcium entry. RNA interference to deplete cells of endogenous junctate, knocked down both agonist-activated calcium release from intracellular stores and calcium entry via TRPC3. These results demonstrate that junctate is a new protein involved in calcium homeostasis in eukaryotic cells.  相似文献   

16.
The intraacrosomal calcium pool plays a direct role in acrosomal exocytosis   总被引:9,自引:0,他引:9  
The acrosome reaction is a unique type of regulated exocytosis. The single secretory granule of the sperm fuses at multiple points with the overlying plasma membrane. In the past few years we have characterized several aspects of this process using streptolysin O-permeabilized human spermatozoa. Here we show that Rab3A triggers acrosomal exocytosis in the virtual absence of calcium in the cytosolic compartment. Interestingly, exocytosis is blocked when calcium is depleted from intracellular stores. By using a membrane-permeant fluorescent calcium probe, we observed that the acrosome actually behaves as a calcium store. Depleting calcium from this compartment by using a light-sensitive chelator prevents secretion promoted by Rab3A. UV inactivation of the chelator restores exocytosis. Rab3A-triggered exocytosis is blocked by calcium pump and inositol 1,4,5-trisphosphate (IP(3))-sensitive calcium channel inhibitors. Calcium measurements inside and outside the acrosome showed that Rab3A promotes a calcium efflux from the granule. Interestingly, release of calcium through IP(3)-sensitive calcium channels was necessary even when exocytosis was initiated by increasing free calcium in the extraacrosomal compartment in both permeabilized and intact spermatozoa. Our results show that a calcium efflux from the acrosome through IP(3)-sensitive channels is necessary downstream Rab3A activation during the membrane fusion process leading to acrosomal exocytosis.  相似文献   

17.
Stimulation of receptor-operated (ROCs) and store-operated (SOCs) Ca2+-permeable cation channels by vasoconstrictors has many important physiological functions in vascular smooth muscle. The present review indicates that ROCs and SOCs with diverse properties in different blood vessels are likely to be explained by composition of different subunits from the canonical transient receptor potential (TRPC) family of cation channel proteins. In addition we illustrate that activation of native TRPC ROCs and SOCs involves different phospholipase-mediated transduction pathways linked to generation of diacylglycerol (DAG). Moreover we describe recent novel data showing that the endogenous phospholipid phosphoinositol 4,5-bisphosphate (PIP2) has profound and contrasting actions on TRPC ROCs and SOCs. Optimal activation of a native TRPC6 ROC by angiotensin II (Ang II) requires both depletion of PIP2 and generation of DAG which leads to stimulation of TRPC6 via a PKC-independent mechanism. The data also indicate that PIP2 has a marked constitutive inhibitory action of TRPC6 and DAG and PIP2 are physiological antagonists on TRPC6 ROCs. In contrast PIP2 stimulates TRPC1 SOCs and has an obligatory role in activation of these channels by store-depletion which requires PKC-dependent phosphorylation of TRPC1 proteins. Finally, we conclude that interactions between PIP2 bound to TRPC proteins at rest, generation of DAG and PKC-dependent phosphorylation of TRPC proteins have a fundamental role in activation mechanisms of ROCs and SOCs in vascular smooth muscle.  相似文献   

18.
Store-operated Ca(2+) channels (SOCs) mediate receptor-stimulated Ca(2+) influx. Accumulating evidence indicates that members of the transient receptor potential (TRP) channel family are components of SOCs in mammalian cells. Agonist stimulation activates SOCs and TRP channels directly and by inducing translocation of channels in intracellular vesicles to the plasma membrane (PM). The mechanism of TRP channel translocation in response to store depletion and agonist stimulation is not known. Here we use TRPC3 as a model to show that IP(3) and the scaffold Homer 1 (H1) regulate the rate of translocation and retrieval of TRPC3 from the PM. In resting cells, TRPC3 exists in TRPC3-H1b/c-IP(3)Rs complexes that are located in part at the PM and in part in intracellular vesicles. Binding of IP(3) to the IP(3)Rs dissociates the interaction between IP(3)Rs and H1 but not between H1 and TRPC3 to form IP(3)Rs-TRPC3-H1b/c. TIRFM and biotinylation assays show robust receptor- and store-dependent translocation of the TRPC3 to the PM and their retrieval upon termination of cell stimulation. The translocation requires depletion of stored Ca(2+) and is prevented by inhibition of the IP(3)Rs. In HEK293, dissociating the H1b/c-IP(3)R complex with H1a results in TRPC3 translocation to the PM, where it is spontaneously active. The TRPC3-H1b/c-IP(3)Rs complex is reconstituted by infusing H1c into these cells. Reconstitution is inhibited by IP(3). Deletion of H1 in mice markedly reduces the rates of translocation and retrieval of TRPC3. Conversely, infusion of H1c into H1(-/-) cells eliminates spontaneous channel activity and increases the rate of channel activation by agonist stimulation. The effects of H1c are inhibited by IP(3). These findings together with our earlier studies demonstrating gating of TRPC3 by IP(3)Rs were used to develop a model in which assembly of the TRPC3-H1b/c-IP(3)Rs complexes by H1b/c mediates both the translocation of TRPC3-containing vesicles to the PM and gating of TRPC3 by IP(3)Rs.  相似文献   

19.
The present study was initiated to gain some information about the tissue distribution of transient receptor potential proteins of C-type (TRPC), a family of voltage-independent cation channels, at the beginning of neurogenesis in the telencephalon of embryonic mice. The mRNAs of all known TRPCs (TRPC1–TRPC7) could be found in the cortex at E13. TRPC1, TRPC3 and TRPC5 were the main isoforms, whereas the mRNAs for TRPC2, TRPC4, TRPC6 and TRPC7 were less abundant. The distribution throughout the cortical wall of TRPC1, TRPC3 and TRPC6 was studied by means of immuno-histochemistry. The data collected pointed to a heterogeneous expression of the channels. Three groups were identified. The first one comprises TRPC1, specifically found in the preplate but only in some post-mitotic neurons. It was mainly observed in a subset of cells distinct from the Cajal-Retzius cells. The second group is composed of TRPC3. It was found in non-neuronal cells and also in dividing (5-bromo-2′-deoxyuridine-positive) cells, indicating that TRPC3 is present in precursor cells. The third group contains TRPC6 detected in neuronal and in dividing non-neuronal cells. Double immunostaining experiments showed that TRPC3-positive cells also express TRPC6. Collectively, this report highlights a specific TRPC expression pattern in the immature cortical wall. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. S. Boisseau and C. Kunert-Keil have contributed equally to this work.  相似文献   

20.
The TRPC3 channel, an intensively studied member of the widely expressed transient receptor potential (TRP) family, is a Ca(2+)-conducting channel activated in response to phospholipase C-coupled receptors. Despite scrutiny, the receptor-induced mechanism to activate TRPC3 channels remains unclear. Evidence indicates TRPC3 channels interact directly with intracellular inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) and that channel activation is mediated through coupling to InsP(3)Rs. TRPC3 channels were expressed in DT40 chicken B lymphocytes in which all three InsP(3)R genes were deleted (DT40InsP(3)R-k/o). Endogenous B-cell receptors (BCR) coupled through Syk kinase to phospholipase C-gamma (PLC-gamma) activated the expressed TRPC3 channels in both DT40w/t and DT40InsP(3)R-k/o cells. The diacylglycerol (DAG) analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) also activated TRPC3 channels independently of InsP(3)Rs. BCR-induced TRPC3 activation was blocked by the PLC enzymic inhibitor, U-73122, and also blocked by wortmannin-induced PLC substrate depletion. Neither U-73122 nor wortmannin modified either OAG-induced TRPC3 activation or store-operated channel activation in DT40 cells. Cotransfection of cells with both G protein-coupled M5 muscarinic receptors and TRPC3 channels resulted in successful M5 coupling to open TRPC3 channels mediated by PLC-beta. We conclude that TRPC3 channels are activated independently of InsP(3)Rs through DAG production resulting from receptor-mediated activation of either PLC-gamma or PLC-beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号