首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This brief communication reports the observation that calcium influx appears to be a requirement in the serum-induction of ornithine decarboxylase (ODC) activity in cultured aortic endothelial cells. Addition of 35% fetal calf serum causes an increase in endothelial ODC activity within three hours to levels that are 16 times those of baseline. Preincubation of EC with lanthanum chloride (LaCl) or the addition of ethylene glycol (β-aminoethyl ether)-N-N′ tetraacetic acid (EGTA) to the medium inhibits the serum-induction of ODC. The displacement of the lanthanum ions with EGTA reverses the inhibition which demonstrates the viability of the LaCl3-pretreated cells, and lends support to the view that calcium may be involved in the induction of ODC.  相似文献   

2.
3.
Any one of five amino acis (alanine, asparagine, glutamine, glycine, and serine) is an essential requirement for the induction of ornithine decarboxylase (EC 4.1.1.17) in cultured chinese hamster ovary (CHO) cells maintained with a salts/glucose, medium. Each of these amino acids induced a striking activation of ornithine decarboxylase in the presence of dibutyryl cyclic AMP and luteinizing hormone. The effect of the other amino acids was considerably less or negligible. The active amino acids at optimal concentrations (10 mM) induced only a 10-20 fold enhancement of enzyme activity alone, while in the presence of dibutyryl cyclic AMP, ornithine decarboxylase activity was increased 40-50 fold within 7-8 h. Of the hormones and drugs tested, luteinizing hormone resulted in the highest (300-500 fold) induction of ornithine decarboxylase with optimal concentrations of dibutyryl cyclic AMP and asparagnine. Omission of dibutyryl cyclic AMP reduced this maximal activation to one half while optimal levels of luteinizing hormone alone caused no enhancement of ornithine decarboxylase activity. The induction of ornithine decarboxylase elicited by dibutyryl cyclic AMP, amino acid and luteinizing hormone was diminished about 50% with inhibitors of RNA and protein synthesis. The specific amino acid requirements for ornithine decarboxylase induction in chinese hamster ovary cells was similar to the requirements for induction in two other transformed cell lines. Understanding the mechanism of enzyme induction requires an identification of the essential components of the regulatory system. The essential requirement for enzyme induction is one of five amino acids. The induction of ornithine decarboxylase by dibutyryl cyclic AMP and luteinizing hormone was additive in the presence of an active amino acid.  相似文献   

4.
The activity of the polyamine biosynthetic enzyme, ornithine decarboxylase (ODC), has been shown to be rapidly modulated by a variety of growth regulatory molecules. In this report the effect of the growth modulatory peptide, tumor necrosis factor, on ODC activity was examined on two cell lines which express equivalent TNF binding properties, but differ in their growth response when exposed to this factor. TNF treatment of WI-38 fibroblasts stimulated both their growth and induced ODC activity 5-10-fold when measured 6-24 h after TNF incubation. TNF induced cytotoxicity in ME-180 cervical carcinoma cells and, interestingly, stimulated both ODC activity (3-6-fold) and putrescine accumulation when measured prior to the onset of cytotoxicity. Induction of ODC was TNF concentration-dependent and paralleled the concentration-dependency for cytotoxicity. Based upon studies with cycloheximide, de novo protein biosynthesis was required for TNF-mediated ODC induction in ME-180 cells. The effects of other growth inhibitory peptides and growth factors were analyzed for their combined effect on ODC activity in TNF-treated or untreated ME-180 cells. Interferon gamma treatment had no significant effect on basal ODC activity but inhibited TNF-mediated ODC induction by approximately 50%. EGF treatment resulted in a potent stimulation of ODC activity which was not affected by TNF pre-treatment or coadministration on ME-180 cells. These results suggest that TNF has properties which are similar to those of a growth factor and distinct from those of other growth inhibitory peptides. The early growth factor-like actions of TNF occur on both normal fibroblasts and some tumor cells and evidence suggests that these effects are antagonistic to the antiproliferative effects of TNF.  相似文献   

5.
6.
1. In vivo, adrenergic agonists promote an increase of ornithine decarboxylase activity (ODC) in chicken spleen, as opposed to a decrease in thymus and bursa of Fabricius. The increase is not due to the cell fraction separated on Lymphoprep, i.e. the spleen cells, but it could be due to the macrophages. 2. With spleen cells in culture, a marked increase of ODC activity is observed during the first 3 hr, followed by a decrease. 3. cAMP drastically decreases after 10 min in culture. 4. Adrenergic agonists promote a decrease of activity, both alpha and beta receptors being involved in these modifications. TPA promotes partial desensitization. 5. Selenite, which in vivo has the same effect as epinephrine, enhances ODC activity in culture. Propranolol partially counteracts this effect, while prazosin has a synergistic effect. TPA partially desensitizes spleen cells to selenite.  相似文献   

7.
Summary Antiserum elicited to ornithine decarboxylase (ODC) purified from murine RAW 264 macrophage-like cells has been employed to localize ODC in cultured murine cells. The antiserum immunoprecipitated 100% of the ODC activity from the cultured cells. The specificity of the antiserum was demonstrated by the immunoprecipitation from 35S-methionine metabolically-labeled cell extracts of a single protein which migrated upon SDS-gel electrophoresis coincident with authentic ODC. Indirect immunofluorescence experiments were performed on paraformaldehyde-fixed RAW 264 cells and JB6 epidermal cells using the rabbit anti-ODC antiserum and FITC-conjugated goat anti-rabbit IgG. Little immunofluorescence was apparent in non-stimulated cells. Intense immunofluorescence was detectable in stimulated cells at times of peak cellular ODC activity. Antigenically-reactive ODC was localized diffusely in the cytoplasm and was absent in the nuclei of RAW 264 cells, whereas in the JB6 cells the immunodetectable enzyme protein was localized in a punctate pattern in both the cytoplasm and nucleoplasm and was absent in the nucleolus. The appearance and disappearance of immunoreactive ODC in both cell types after stimulation was consistent with the alterations in ODC activity.  相似文献   

8.
Ornithine decarboxylase activity was inhibited by the antizyme inhibitor protein in extracts from C6-2B rat glioma cells. Antizyme activity in C6-2B cells was increased 3- to 10-fold by micromolar concentrations of putrescine, spermidine and spermine. The calcium chelator EGTA (pCa 6.4) inhibited basal and polyamine-stimulated antizyme activity, and this inhibition was prevented by concurrent incubation with calcium, but not with magnesium. EGTA appeared to block antizyme synthesis, because the half-life values of antizyme activity in the presence of EGTA or cycloheximide were similar (121-143 min). Also, calcium readdition rapidly reversed EGTA inhibition of antizyme activity by a mechanism which could be blocked by cycloheximide. The ability of EGTA to inhibit spermidine-stimulated antizyme activity was not due to reduced spermidine uptake, because EGTA actually stimulated [3H]spermidine accumulation in the trichloroacetic acid-soluble fraction of C6-2B cells after 3 h.  相似文献   

9.
10.
11.
12.
Crystals of truncated (Δ425-461) pyridoxal-5′-phosphate (PLP)-dependent mouse ornithine decarboxylase (mOrnDC′) have been obtained that diffract to 2.2 Å resolution (P21212, a = 119.5 Å, b = 74.3 Å, c = 46.1 Å). OrnDC produces putrescine, which is the precursor for the synthesis of polyamines in eukaryotes. Regulation of activity and understanding of the mechanism of action of this enzyme may aid in the development of compounds against cancer. mOrnDC is a member of group IV PLP-dependent decarboxylases, for which there are no known representative structures.  相似文献   

13.
14.
Ornithine decarboxylase (ODC) activity of C3H/10T1/2 cells reflects their response to conflicting actions of many tumor promoters and tumor suppressors. In cultured C3H/10T1/2 cells, addition of vanadate (50 nM) increased ODC activity. Over the range 0.05-5 microM, vanadate increased ODC levels in a dose dependent manner to 11 times control levels. The presence of retinoic acid (5 microM) or the absence of fetal calf serum blocked the stimulation by vanadate.  相似文献   

15.
Partially purified ornithine decarboxylase, isolated from the liver of thioacetamide-treated rats, is stable in the absence of added low-molecular-mass thiols or other reducing agents. However, under these conditions, the enzyme is rapidly inactivated upon incubation with L-ornithine or L-2-methylornithine. The inactivation process follows first-order kinetics, and saturation kinetics are observed. Rapid recovery of activity is observed after subsequent addition of dithiothreitol. As distinct from L-ornithine, D-ornithine, putrescine, spermidine, or spermine do not produce inactivation of ornithine decarboxylase. Very similar results are obtained with pure ornithine decarboxylase isolated from androgen-stimulated mouse kidney, stabilized with a rat liver extract.  相似文献   

16.
Summary The thymus of young rats contained a high basal activity of ornithine decarboxylase (ODC). Treatment with zinc sulphate caused a slight increase of thymic ODC activity within 6 hours and a more marked enhancement (three-fold) in the spleen 24 h after treatment. In spite of the high activity of thymic ODCin vivo, ODC was not detectable in primary cultures of rat thymocytes, but was early and largely induced after treatment with Concanavalin A (Con A). The presence of 0.1 mM zinc in the medium increased the response of ODC to Con A. This effect of zinc in mitogen activated thymocytes may be due to the stabilization of ODC, which was found to decay with a half life of 65 min after the block of protein synthesis with cycloheximide. On the contrary in absence of zinc the half life of the enzyme was 40 min, as in the rat thymus in vivo.Zinc alone, at 0.1 mM concentration, did not affect ODC activity in resting thymocytes during the early times, but the metal was able to cause an increase of the enzyme activity after 4–6 days of culture. Other heavy metals such as mercury, cadmium and copper provoked a late increase of ODC activity, but their action was evident only at dosages which were toxic for the cells.  相似文献   

17.
18.
19.
20.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号