首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对离体玉米胚脱水耐性的变化以及不同脱水速率对其脱水耐性的影响进行了研究。授粉后16d的玉米胚能耐轻微脱水,含水量从1.45降低到0.28gH2Og-1DW时胚的萌发率为100%,但含水量低于0.1gH2Og-1DW时胚死亡。胚的脱水耐性随着发育逐渐加强,表现为电解质渗漏速率逐渐降低,萌发率和幼苗干重逐渐增加。授粉后20d胚内超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性较高,过氧化氢酶(CAT)活性较低;授粉后24d,这些酶的活性与授粉后20d的正好相反。脂质过氧化产物丙二醛(MDA)在种子发育过程中呈下降趋势。不同脱水速率明显地影响胚的脱水耐性:在慢速脱水到含水量0.1~0.18gH2Og-1DW时,胚的萌发率和幼苗干重比快速脱水高,电解质渗漏速率比快速脱水低;在快速脱水条件下胚中的SOD、APX活性和MDA含量也比慢速脱水高;CAT活性的变化不明显。  相似文献   

2.
Age structure of nematode populations around maize growing in sandy soils in Iowa was studied at soil depths of 0-15and 15-30 cm for 2 years. Numbers of Longidorus breviannulatus were generally greater at 0-15 cm than at 15-30 cm deep until mid to late season. The decline in numbers of females as the season progressed indicates that fecundity slowed and is evidence of only one generation per year. Peak populations of Pratylenchus scribneri and Xiphinema americanum occurred in late August or early September. Adults of Hoplolaimus galeatus were few in the roots but common in the soil, indicating that fertilization occurred mostly in the soil. Numbers of P. scribneri were generally greater at the lower depth, especially late in the season. Community diversity (H'') was less when nematode biomass was used instead of numbers. Numbers of H. galeatus did not decline over the winter. Numbers of L. breviannulatus, P. scribneri, and X. americanum declined significantly over the winter, but not between spring cultivation and planting.  相似文献   

3.
Phototropins are plant blue-light photoreceptors containing two light-, oxygen-, or voltage-sensitive (LOV) domains and a C-terminal kinase domain. The two LOV domains bind noncovalently flavin mononucleotide as a chromophore. We investigated the photocycle of fast-recovery mutant LOV2-I403V from Arabidopsis phototropin 2 by step-scan Fourier transform infrared spectroscopy. The reaction of the triplet excited state of flavin with cysteine takes place with a time constant of 3 μs to yield the covalent adduct. Our data provide evidence that the flavin is unprotonated in the productive triplet state, disfavoring an ionic mechanism of bond formation. An intermediate adduct species was evident that displayed changes in secondary structure in the helix or loop region, and relaxed with a time constant of 120 μs. In milliseconds, the final adduct state is formed by further alterations of secondary structure, including β-sheets. A comparison with wild-type adduct spectra shows that the mutation does not interfere with the functionality of the domain. All signals originate from within the LOV domain, because the construct does not comprise the adjacent Jα helix required for signal transduction. The contribution of early and late adduct intermediates to signal transfer to the Jα helix outside of the domain is discussed.  相似文献   

4.
5.
6.
Subcellular responses to infection by Race 3 of Heterodera glycines in susceptible (''Lee'') and resistant (''Forrest'' and ''Bedford'') soybean cultivars were compared. Syncytial formation, initiated in susceptible as well as resistant soybean cultivars, was characterized by wall perforations, dense cytoplasm, and increased endoplasmic reticulum, In susceptible plants, syncytia developed continuously until nematode maturity. This included hypertrophy of nuclei, increase of rough endoplasmic reticulum in early stages of infection, and formation of wall ingrowths at a late stage of infection. In the resistant reaction in Forrest, a necrotic layer surrounded syncytium component cells demarcating them from surrounding normal cells and leading to syncytial necrosis. Wall appositions were prominently formed near the necrotic layer, and the cytoplasm of the syncytium component cells was extremely condensed. The whole syncytium became necrotic at a late stage of infection. Bedford had nuclear degeneration prior to cytoplasmic degradation. Chromatin was often scattered throughout the syncytial cytoplasm. Finally the whole syncytium became degenerated with plasmalemma completely detached from the syncytial cell walls. The differences in resistant responses reflect a difference in genetic composition of the soybean cultivars tested.  相似文献   

7.
8.
Proteus mirabilis isolates commonly have decreased susceptibility to imipenem. Previously, we found P. mirabilis hfq mutant was more resistant to imipenem and an outer membrane protein (OMP) could be involved. Therefore, we investigated the role of this OMP in carbapenem susceptibility. By SDS-PAGE we found this OMP (named ImpR) was increased in hfq mutant and LC-MS/MS revealed it to be the homologue of Salmonella YbfM, which is a porin for chitobiose and subject to MicM (a small RNA) regulation. We demonstrated that ImpR overexpression resulted in increased carbapenem MICs in the laboratory strain and clinical isolates. Chitobiose induced expression of chb (a chitobiose utilization operon). Real-time RT-PCR and SDS-PAGE were performed to elucidate the relationship of hfq, impR, chb and MicM in P. mirabilis. We found MicM RNA was decreased in hfq mutant and chbBC-intergenic region (chbBC-IGR) overexpression strain (chbIGRov), while impR mRNA was increased in hfq mutant, micM mutant and chbIGRov strain. In addition, mutation of hfq or micM and overexpression of chbBC-IGR increased ImpR protein level. Accordingly, chitobiose made wild-type have higher levels of ImpR protein and are more resistant to carbapenems. Hfq- and MicM-complemented strains restored wild-type MICs. Mutation of both impR and hfq eliminated the increase in carbapenem MICs observed in hfq mutant and ImpR-complementation of hfq/impR double mutant resulted in MICs as hfq mutant, indicating that the ImpR-dependent decreased carbapenem susceptibility of hfq mutant. These indicate MicM was antisense to impR mRNA and was negatively-regulated by chbBC-IGR. Together, overexpression of ImpR contributed to the decreased carbapenem susceptibility in P. mirabilis.  相似文献   

9.
Heterochromatin protein 1 (HP1) is a conserved component of the highly compact chromatin of higher eukaryotic centromeres and telomeres. Cytogenetic experiments in Drosophila have shown that HP1 localization into this chromatin is perturbed in mutants for the origin recognition complex (ORC) 2 subunit. ORC has a multisubunit DNA-binding activity that binds origins of DNA replication where it is required for origin firing. The DNA-binding activity of ORC is also used in the recruitment of the Sir1 protein to silence nucleation sites flanking silent copies of the mating-type genes in Saccharomyces cerevisiae. A fraction of HP1 in the maternally loaded cytoplasm of the early Drosophila embryo is associated with a multiprotein complex containing Drosophila melanogaster ORC subunits. This complex appears to be poised to function in heterochromatin assembly later in embryonic development. Here we report the identification of a novel component of this complex, the HP1/ORC-associated protein. This protein contains similarity to DNA sequence-specific HMG proteins and is shown to bind specific satellite sequences and the telomere-associated sequence in vitro. The protein is shown to have heterochromatic localization in both diploid interphase and mitotic chromosomes and polytene chromosomes. Moreover, the gene encoding HP1/ORC-associated protein was found to display reciprocal dose-dependent variegation modifier phenotypes, similar to those for mutants in HP1 and the ORC 2 subunit.  相似文献   

10.
11.
Complement component C5a is a potent pro-inflammatory agent inducing chemotaxis of leukocytes toward sites of infection and injury. C5a mediates its effects via its G protein-coupled C5a receptor (C5aR). Although under normal conditions highly beneficial, excessive levels of C5a can be deleterious to the host and have been related to numerous inflammatory diseases. A natural inhibitor of the C5aR is chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS). CHIPS is a 121-residue protein excreted by S. aureus. It binds the N terminus of the C5aR (residues 1-35) with nanomolar affinity and thereby potently inhibits C5a-mediated responses in human leukocytes. Therefore, CHIPS provides a starting point for the development of new anti-inflammatory agents. Two O-sulfated tyrosine residues located at positions 11 and 14 within the C5aR N terminus play a critical role in recognition of C5a, but their role in CHIPS binding has not been established so far. By isothermal titration calorimetry, using synthetic Tyr-11- and Tyr-14-sulfated and non-sulfated C5aR N-terminal peptides, we demonstrate that the sulfate groups are essential for tight binding between the C5aR and CHIPS. In addition, the NMR structure of the complex of CHIPS and a sulfated C5aR N-terminal peptide reveals the precise binding motif as well as the distinct roles of sulfated tyrosine residues sY11 and sY14. These results provide a molecular framework for the design of novel CHIPS-based C5aR inhibitors.The human complement system is a key component of the innate host defense directed against invading pathogens. Complement component C5a is a 74-residue glycoprotein generated via complement activation by cleavage of the α-chain of its precursor C5. C5a is a strong chemoattractant involved in the recruitment of neutrophils and monocytes, activation of phagocytes, release of granule-based enzymes, and in the generation of oxidants (1, 2). C5a exerts its effect by activating the C5a receptor (C5aR).3 Although this is a highly efficient process, excessive or erroneous activation of the C5aR can have deleterious effects on host tissues. C5a has been implicated in the pathogenesis of many inflammatory and immunological diseases, including rheumatoid arthritis, inflammatory bowel disease, immune complex disease, and reperfusion injury (3, 4). Consequently, there is an active ongoing search for compounds that suppress C5a-mediated inflammatory responses.Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) is a 121-residue protein excreted by S. aureus, which efficiently inhibits the activation of neutrophils and monocytes by formylated peptides and C5a (5, 6). CHIPS specifically binds to the formylated peptide receptor (FPR) and the C5aR with nanomolar affinity (Kd = 35.4 ± 7.7 nm and 1.1 ± 0.2 nm, respectively) (7), thereby suppressing the inflammatory response of the host. A CHIPS fragment lacking residues 1-30 (designated CHIPS31-121) has the same activity in blocking the C5aR compared with wild-type CHIPS (8). CHIPS31-121 is a compact protein comprising an α-helix packed onto a four-stranded anti-parallel β-sheet (8). C5a has an entirely different fold (PDB ID code 1KJS) and is comprised of an anti-parallel bundle of four α-helices stabilized by three disulfide bonds (9, 10). Preliminary experiments indicated that CHIPS binds exclusively to the extracellular N-terminal portion of the C5aR (7). In contrast, the binding of C5a by its receptor involves two separate binding sites: C5a residues located in the region between 12-46 (11, 12) bind to a primary binding site partly coinciding with the binding site of CHIPS, while the C terminus of C5a (residues 69-74) binds to the activation domain of the C5aR located in the receptor core (13). Because of their dissimilarity in sequence and structure, the binding sites of CHIPS and C5a are not identical (11). The present working model is that CHIPS interferes with the primary binding site of C5a located at the N terminus of the C5aR, thereby preventing the C-terminal tail of C5a from contacting the activation domain of the C5aR and blocking downstream signaling. Currently, the development of C5aR inhibitors has been focused primarily on mimicking C5a in order to directly interrupt C5a-mediated C5aR signaling (3, 4, 14). Understanding the interactions between CHIPS and the C5aR may provide valuable insights toward the development of new C5aR antagonists.Postma et al. (15) proposed that residues involved in CHIPS binding are located between residues 10-18 of the C5aR. Specifically, the acidic residues Asp-10, Asp-15, and Asp-18 and residue Gly-12 appear to be critical for binding. High affinity binding was observed between 125I-labeled CHIPS and the N-terminal portion of the C5aR (residues 1-38) expressed on the cell surface of HEK293 cells (Kd = 29.7 ± 4.4 nm). In contrast, very moderate affinity between CHIPS and a synthetic C5aR N-terminal peptide (residues 1-37; Kd = 40 ± 19 μm), measured by isothermal titration calorimetry (ITC), was recently reported by Wright et al. (16). The discrepancy in the magnitude of these dissociation constants may be explained by the presence of two sulfate groups on tyrosine 11 and 14 of the C5aR N terminus expressed on the cell surface of HEK293 cells, which are absent in the synthetic C5aR peptide utilized by Wright et al. (16). Farzan et al. (17) stressed the critical role of these sulfate groups in activation of the C5aR by C5a. Previous mutational studies employing FITC-labeled CHIPS, however, suggested that the sulfate groups had only a limited effect on the binding affinity (15).To resolve these discrepancies, we set out to chemically synthesize several sulfated and unsulfated peptides representing the N terminus of the human C5aR. We have measured the binding affinities of these peptides to CHIPS31-121 by ITC and used the C5aR peptide with the highest affinity to determine the structure of the complex between CHIPS31-121 and the C5aR N terminus by NMR spectroscopy.  相似文献   

12.
13.
The apicomplexan, Cryptosporidium parvum, possesses a bacterial-type lactate dehydrogenase (CpLDH). This is considered to be an essential enzyme, as this parasite lacks the Krebs cycle and cytochrome-based respiration, and mainly–if not solely, relies on glycolysis to produce ATP. Here, we provide evidence that in extracellular parasites (e.g., sporozoites and merozoites), CpLDH is localized in the cytosol. However, it becomes associated with the parasitophorous vacuole membrane (PVM) during the intracellular developmental stages, suggesting involvement of the PVM in parasite energy metabolism. We characterized the biochemical features of CpLDH and observed that, at lower micromolar levels, the LDH inhibitors gossypol and FX11 could inhibit both CpLDH activity (K i = 14.8 μM and 55.6 μM, respectively), as well as parasite growth in vitro (IC50 = 11.8 μM and 39.5 μM, respectively). These observations not only reveal a new function for the poorly understood PVM structure in hosting the intracellular development of C. parvum, but also suggest LDH as a potential target for developing therapeutics against this opportunistic pathogen, for which fully effective treatments are not yet available.  相似文献   

14.
Diapause is a common feature in several arthropod species that are subject to unfavorable growing seasons. The range of environmental cues that trigger the onset and termination of diapause, in addition to associated hormonal, biochemical, and molecular changes, have been studied extensively in recent years; however, such information is only available for a few insect species. Diapause and cold hardening usually occur together in overwintering arthropods, and can be characterized by recording changes to the wealth of molecules present in the tissue, hemolymph, or whole body of organisms. Recent technological advances, such as high throughput screening and quantification of metabolites via chromatographic analyses, are able to identify such molecules. In the present work, we examined the survival ability of diapausing and non-diapausing females of the two-spotted spider mite, Tetranychus urticae, in the presence (0 or 5°C) or absence of cold acclimation. Furthermore, we examined the metabolic fingerprints of these specimens via gas chromatography-mass spectrophotometry (GC-MS). Partial Least Square Discriminant Analysis (PLS-DA) of metabolites revealed that major metabolic variations were related to diapause, indicating in a clear cut-off between diapausing and non-diapausing females, regardless of acclimation state. Signs of metabolic depression were evident in diapausing females, with most amino acids and TCA cycle intermediates being significantly reduced. Out of the 40 accurately quantified metabolites, seven metabolites remained elevated or were accumulated in diapausing mites, i.e. cadaverine, gluconolactone, glucose, inositol, maltose, mannitol and sorbitol. The capacity to accumulate winter polyols during cold-acclimation was restricted to diapausing females. We conclude that the induction of increased cold hardiness in this species is associated with the diapause syndrome, rather than being a direct effect of low temperature. Our results provide novel information about biochemical events related to the cold hardening process in the two-spotted spider mite.  相似文献   

15.
Mitochondria are affected by low temperature during seedling establishment in maize (Zea mays L.). We evaluated the associated changes in the mitochondrial properties of populations selected for high (C4-H) and low (C4-L) germination levels at 9.5°C. When seedlings of the two populations were grown at 14°C (near the lower growth limit), the mitochondrial inner membranes of C4-H showed a higher percentage of 18-carbon unsaturated fatty acids, a higher fluidity, and a higher activity of cytochrome c oxidase. We found a positive relationship between these properties and the activity of a mitochondrial peroxidase, allowing C4-H to reduce lipid peroxidation relative to C4-L. The specific activity of reconstituted ATP/ADP translocase was positively associated with this peroxidase activity, suggesting that translocase activity is also affected by chilling. The level of oxidative stress and defense mechanisms are differently expressed in tolerant and susceptible populations when seedlings are grown at a temperature near the lower growth limit. Thus, the interaction between membrane lipids and cytochrome c oxidase seems to play a key role in maize chilling tolerance. Furthermore, the divergent-recurrent selection procedure apparently affects the allelic frequencies of genes controlling such an interaction.  相似文献   

16.
17.
18.
The Cytochrome P450 2B6 (CYP2B6) enzyme makes a small contribution to hepatic nicotine metabolism relative to CYP2A6, but CYP2B6 is the primary enzyme responsible for metabolism of the smoking cessation drug bupropion. Using CYP2A6 genotype as a covariate, we find that a non-coding polymorphism in CYP2B6 previously associated with smoking cessation (rs8109525) is also significantly associated with nicotine metabolism. The association is independent of the well-studied non-synonymous variants rs3211371, rs3745274, and rs2279343 (CYP2B6*5 and *6). Expression studies demonstrate that rs8109525 is also associated with differences in CYP2B6 mRNA expression in liver biopsy samples. Splicing assays demonstrate that specific splice forms of CYP2B6 are associated with haplotypes defined by variants including rs3745274 and rs8109525. These results indicate differences in mRNA expression and splicing as potential molecular mechanisms by which non-coding variation in CYP2B6 may affect enzymatic activity leading to differences in metabolism and smoking cessation.  相似文献   

19.
Shigella flexneri 3a is one of the five major strains of the Shigella genus responsible for dysentery, especially among children, in regions of high poverty and poor sanitation. The outer membrane proteins (OMP) of this bacterium elicit immunological responses and are considered a prime target for vaccine development. When injected into mice they elicit a protective immunological response against a lethal dose of the pathogen. The OMPs from S. flexneri 3a were isolated and resolved by two-dimension-SDS-PAGE. Two 38-kDa spots were of particular interest since in our earlier studies OMPs of such molecular mass were found to interact with umbilical cord sera. These two spots were identified as OmpC by ESI-MS/MS spectrometry. By DNA sequencing, the ompC gene from S. flexneri 3a was identical to ompC from S. flexneri 2a [Gene Bank: 24113600]. A 3D model of OmpC was built and used to predict B-cell type (discontinuous) antigenic epitopes. Six epitopes bearing the highest score were selected and the corresponding peptides were synthesized. Only the peptides representing loop V of OmpC reacted strongly with the umbilical cord serum immunoglobulins. To determine which amino acids are essential for the antigenic activity of the epitope, the loop V was scanned with a series of dodecapeptides. The peptide RYDERY was identified as a minimal sequence for the loop V epitope. Truncation at either the C- or N-terminus rendered this peptide inactive. Apart from C-terminal tyrosine, substitution of each of the remaining five amino acids with glycine, led to a precipitous loss of immunological activity. This peptide may serve as a ligand in affinity chromatography of OmpC-specific antibodies and as a component of a vaccine designed to boost human immune defenses against enterobacterial infections.  相似文献   

20.
The heat shock protein of Toxoplasma gondii (TgHSP70) is a parasite virulence factor that is expressed during T. gondii stage conversion. To verify the effect of dexamethasone (DXM)-induced infection reactivation in the TgHSP70-specific humoral immune response and the presence of the protein in the mouse brain, we produced recombinant TgHSP70 and anti-TgHSP70 IgY antibodies to detect the protein, the specific antibody and levels of immune complexes (ICs) systemically, as well as the protein in the brain of resistant (BALB/c) and susceptible (C57BL/6) mice. It was observed higher TgHSP70-specific antibody titers in serum samples of BALB/c compared with C57BL/6 mice. However, the susceptible mice presented the highest levels of TgHSP70 systemically and no detection of specific ICs. The DXM treatment induced increased parasitism and lower inflammatory changes in the brain of C57BL/6, but did not interfere with the cerebral parasitism in BALB/c mice. Additionally, DXM treatment decreased the serological TgHSP70 concentration in both mouse lineages. C57BL/6 mice presented high expression of TgHSP70 in the brain with the progression of infection and under DXM treatment. Taken together, these data indicate that the TgHSP70 release into the bloodstream depends on the death of the parasites mediated by the host immune response, whereas the increased TgHSP70 expression in the brain depends on the multiplication rate of the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号