首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Transcriptome analysis of the ArgR regulon in Pseudomonas aeruginosa   总被引:2,自引:0,他引:2  
Lu CD  Yang Z  Li W 《Journal of bacteriology》2004,186(12):3855-3861
  相似文献   

4.
5.
6.
The repression of the carAB operon encoding carbamoyl phosphate synthase leads to Lactobacillus plantarum FB331 growth inhibition in the presence of arginine. This phenotype was used in a positive screening to select spontaneous mutants deregulated in the arginine biosynthesis pathway. Fourteen mutants were genetically characterized for constitutive arginine production. Mutations were located either in one of the arginine repressor genes (argR1 or argR2) present in L. plantarum or in a putative ARG operator in the intergenic region of the bipolar carAB-argCJBDF operons involved in arginine biosynthesis. Although the presence of two ArgR regulators is commonly found in gram-positive bacteria, only single arginine repressors have so far been well studied in Escherichia coli or Bacillus subtilis. In L. plantarum, arginine repression was abolished when ArgR1 or ArgR2 was mutated in the DNA binding domain, or in the oligomerization domain or when an A123D mutation occurred in ArgR1. A123, equivalent to the conserved residue A124 in E. coli ArgR involved in arginine binding, was different in the wild-type ArgR2. Thus, corepressor binding sites may be different in ArgR1 and ArgR2, which have only 35% identical residues. Other mutants harbored wild-type argR genes, and 20 mutants have lost their ability to grow in normal air without carbon dioxide enrichment; this revealed a link between arginine biosynthesis and a still-unknown CO2-dependent metabolic pathway. In many gram-positive bacteria, the expression and interaction of different ArgR-like proteins may imply a complex regulatory network in response to environmental stimuli.  相似文献   

7.
8.
9.
The DNA binding proteins ArgR and AhrC are essential for regulation of arginine metabolism in Escherichia coli and Bacillus subtilis, respectively. A unique property of these regulators is that they form hexameric protein complexes, mediating repression of arginine biosynthetic pathways as well as activation of arginine catabolic pathways. The gltS-argE operon of Lactococcus lactis encodes a putative glutamate or arginine transport protein and acetylornithine deacetylase, which catalyzes an important step in the arginine biosynthesis pathway. By random integration knockout screening we found that derepression mutants had ISS1 integrations in, among others, argR and ahrC. Single as well as double regulator deletion mutants were constructed from Lactococcus lactis subsp. cremoris MG1363. The three arginine biosynthetic operons argCJDBF, argGH, and gltS-argE were shown to be repressed by the products of argR and ahrC. Furthermore, the arginine catabolic arcABD1C1C2TD2 operon was activated by the product of ahrC but not by that of argR. Expression from the promoter of the argCJDBF operon reached similar levels in the single mutants and in the double mutant, suggesting that the regulators are interdependent and not able to complement each other. At the same time they also appear to have different functions, as only AhrC is involved in activation of arginine catabolism. This is the first study where two homologous arginine regulators are shown to be involved in arginine regulation in a prokaryote, representing an unusual mechanism of regulation.  相似文献   

10.
The arginine regulatory protein of Pseudomonas aeruginosa, ArgR, is essential for induction of operons that encode enzymes of the arginine succinyltransferase (AST) pathway, which is the primary route for arginine utilization by this organism under aerobic conditions. ArgR also induces the operon that encodes a catabolic NAD(+)-dependent glutamate dehydrogenase (GDH), which converts l-glutamate, the product of the AST pathway, in alpha-ketoglutarate. The studies reported here show that ArgR also participates in the regulation of other enzymes of glutamate metabolism. Exogenous arginine repressed the specific activities of glutamate synthase (GltBD) and anabolic NADP-dependent GDH (GdhA) in cell extracts of strain PAO1, and this repression was abolished in an argR mutant. The promoter regions of the gltBD operon, which encodes GltBD, and the gdhA gene, which encodes GdhA, were identified by primer extension experiments. Measurements of beta-galactosidase expression from gltB::lacZ and gdhA::lacZ translational fusions confirmed the role of ArgR in mediating arginine repression. Gel retardation assays demonstrated the binding of homogeneous ArgR to DNA fragments carrying the regulatory regions for the gltBD and gdhA genes. DNase I footprinting experiments showed that ArgR protects DNA sequences in the control regions for these genes that are homologous to the consensus sequence of the ArgR binding site. In silica analysis of genomic information for P. fluorescens, P. putida, and P. stutzeri suggests that the findings reported here regarding ArgR regulation of operons that encode enzymes of glutamate biosynthesis in P. aeruginosa likely apply to other pseudomonads.  相似文献   

11.
12.
S M Park  C D Lu    A T Abdelal 《Journal of bacteriology》1997,179(17):5309-5317
Pseudomonas aeruginosa ArgR, a regulatory protein that plays a major role in the control of certain biosynthetic and catabolic arginine genes, was purified to homogeneity. ArgR was shown to be a dimer of two equal subunits, each with a molecular mass of 37,000 Da. Determination of the amino-terminal amino acid sequence showed it to be identical to that predicted from the derived sequence for the argR gene. DNase I footprinting showed that ArgR protects a region of 45 to 47 bp that overlaps the promoters for the biosynthetic car and argF operons, indicating that ArgR exerts its negative control on the expression of these operons by steric hindrance. Studies were also carried out with the aru operon, which encodes enzymes of the catabolic arginine succinyl-transferase pathway. Quantitative S1 nuclease experiments showed that expression of the first gene in this operon, aruC, is initiated from an arginine-inducible promoter. Studies with an aruC::lacZ fusion showed that this promoter is under the control of ArgR. DNase I experiments indicated that ArgR protects two 45-bp binding sites upstream of aruC; the 3' terminus for the downstream binding site overlaps the -35 region for the identified promoter. Gel retardation experiments yielded apparent dissociation constants of 2.5 x 10(-11), 4.2 x 10(-12), and 7.2 x 10(-11) M for carA, argF, and aruC operators, respectively. Premethylation interference and depurination experiments with the car and argF operators identified a common sequence, 5'-TGTCGC-3', which may be important for ArgR binding. Alignment of ArgR binding sites reveals that the ArgR binding site consists of two half-sites, in a direct repeat arrangement, with the consensus sequence TGTCGCN8AAN5.  相似文献   

13.
14.
15.
16.
The ast operon, encoding enzymes of the arginine succinyltransferase (AST) pathway, was cloned from Salmonella typhimurium, and the nucleotide sequence for the upstream flanking region was determined. The control region contains several regulatory consensus sequences, including binding sites for NtrC, cyclic AMP receptor protein (CRP), and ArgR. The results of DNase I footprintings and gel retardation experiments confirm binding of these regulatory proteins to the identified sites. Exogenous arginine induced AST under nitrogen-limiting conditions, and this induction was abolished in an argR derivative. AST was also induced under carbon starvation conditions; this induction required functional CRP as well as functional ArgR. The combined data are consistent with the hypothesis that binding of one or more ArgR molecules to a region between the upstream binding sites for NtrC and CRP and two putative promoters plays a pivotal role in modulating expression of the ast operon in response to nitrogen or carbon limitation.  相似文献   

17.
18.
19.
钝齿棒杆菌(Corynebacterium crenatum)AS.M7是筛选获得的一株高产精氨酸生产菌株。ArgR是精氨酸合成过程中的一种调控蛋白。为进一步验证其在钝齿棒杆菌中对精氨酸合成量的影响,利用特异性引物,分别扩增标准菌C. creantum AS 1.542和诱变菌C. creantum AS.M7的argR全长基因,测序后比较二者的差异;结果表明标准菌argR基因ORF全长516 bp,编码一个含172个氨基酸残基的蛋白;而诱变菌argR基因的109位碱基由C替换为T,导致ArgR蛋白在钝齿诱变菌中表达被提前终止。同时,将来源于标准菌的argR基因连接到穿梭表达载体pXMJ19中,电击转化至诱变菌C. crenatum AS.M7 得到重组菌株,用摇瓶发酵的方法观测重组菌产精氨酸量的变化。SDS-PAGE和Western blot分析证明标准菌的argR基因在诱变菌中得到了表达。对重组诱变菌产精氨酸量进行了测定,结果显示:产精氨酸能力由原来7.8 mg/ml下降至2.5 mg/ml,下降了约67.9%。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号