首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of the multifunctional alpha 2 beta 2 anthranilate synthase complex of Neurospora crassa with elastase produced two fragments of the complex, one possessing anthranilate synthase activity and the other having both indole-3-glycerol phosphate (InGP) synthase and N-(5'-phosphoribosyl)anthranilate (PRA) isomerase activities. Sequencing the NH2 terminus of the InGP synthase-PRA isomerase fragment revealed that cleavage was between positions 237 and 238 of the beta-subunit within a segment of the polypeptide chain which links the glutamine-binding (G) domain with the InGP synthase-PRA isomerase domains. The fragment containing anthranilate synthase activity has a molecular weight of 98,000, as estimated by gel filtration, and is composed of an apparently intact alpha-subunit (70 kDa) associated with the G-domain fragment (29 kDa) derived from the beta-subunit. The alpha X G-domain complex was resistant to further degradation by elastase. When either the alpha 2 beta 2 complex or the alpha X G-domain complex was incubated with trypsin, the alpha-subunit was degraded to a 66-kDa alpha-fragment with reduced enzymatic activity, which was resistant to further cleavage. In contrast, incubation of alpha-subunit alone with either elastase or trypsin resulted in its complete degradation, indicating that association of the alpha-subunit with either G-domain or beta-subunit protected the alpha-subunit from this extensive degradation. A model for the anthranilate synthase complex is proposed in which the trifunctional beta-subunit forms a dimer by the self-association of the InGP synthase-PRA isomerase domains; the G-domain is connected to the InGP synthase-PRA isomerase domain by a relatively disordered region of the peptide chain which, in the alpha 2 beta 2 complex, remains susceptible to proteases; and neither alpha-subunit nor G-domain significantly self-associates.  相似文献   

2.
Summary The trifunctional TRP1 gene from Neurospora crassa (N-TRP1) was subcloned into the yeast-Escherichia coli shuttle vector YEp13 and expressed in Saccharomyces cerevisiae. The three activities of the N-TRP1 gene product were detected in yeast mutants that lacked either N-(5-phosphoribosyl) anthranilate (PRA) isomerase or both the glutamine amidotransferase function of anthranilate synthase and indole-3-glycerol phosphate (InGP) synthase. The protein was detected on immunoblots only as the full length 83 kda product indicating that the trifunctional gene product was expressed in yeast primarily in a fully active, undegraded form. By placing the subcloned N-TRP1 gene under the control of the inducible PHO5 promoter from yeast, the expression of all three activities was increased to more than ten fold that of wild-type yeast and the overproduced protein could be visualized by SDS-polyacrylamide gel electrophoresis of crude extract and Coomassie Blue staining. Using the expression system described the effect of selective deletion of regions of the coding sequence of the N-TRP1 gene on expression of the three activities was tested. Expression of either the F- or C-domains, catalyzing respectively the PRA isomerase or InGP synthase activities, did not depend on the presence of the other domain in the active polypeptide. Furthermore, normal dimer formation occurred with a protein active for InGP synthase in a deletion derivative lacking most of the PRA isomerase domain, ruling out the hypothesis that interaction between the active site regions for PRA isomerase and InGP synthase accounted for dimer formation in the trifunctional product.Abbreviations PRA N-(5'-phosphoribosyl)anthranilate - InGP indole-3-glycerol phosphate - SDS sodium dodecyl sulfate  相似文献   

3.
Two of the enzymes responsible for tryptophan biosynthesis in Bacillus subtilis have been extensively purified. These proteins are indole-3-glycerol phosphate synthase and N-(5'-phosphoribosyl) anthranilate isomerase. By comparison to the non-differentiating enteric bacteria in which these two enzymes are fused into a single polypeptide, the isolation of the indoleglycerol phosphate synthase and phosphoribosyl anthranilate isomerase from B. subtilis has demonstrated that the two proteins are separate species in this organism. The two enzymes were clearly separable by anion-exchange chromatography without any significant loss of activity. Molecular weights were determined for both enzymes by gel filtration and sodium dodecyl sulfate-slab gel electrophoresis, and indicated that the indoleglycerol phosphate synthase is the slightly larger of the two proteins. The minimum molecular weight for indoleglycerol phosphate synthase was 23,500, and that for phosphoribosyl anthranilate isomerase was 21,800. Both enzymes have been examined as to conditions necessary to achieve maximal activity of their individual functions and to maintain that activity.  相似文献   

4.
Cloned homobasidiomycete TRP2 genes for Agaricus bisporus and Coprinus bilanatus were sequence-characterised. Both genes encode tri-functional proteins with activity domains for glutamine amidotransferase (GAT; G domain), indole glycerol phosphate synthase (InGP; C domain) and phosphoribosyl anthranilate isomerase (F domain). A conserved intron disrupts the GAT-coding sequence in both genes. Consensus amino acid (aa) signatures were identified for GAT and InGP, but in the latter 15-aa signature, one residue did not fit the previously defined consensus. Protein architecture and parsimony analysis with analogous proteins indicate domain organisation (NH(2)-G-C-F-COOH) was as for other filamentous fungi. The data do not support earlier suggestions that the three activity domains are detached in A. bisporus.  相似文献   

5.
The trpD gene specifies a polypeptide which has both glutamine amidotransferase and phosphoribosyl anthranilate (PRA) transferase activities. Deletions fusing segments of trpD to the gene preceding it in the operon, trpE, were selected in strains carrying various trpD point mutations. The selection procedure required both that a deletion enter trpE and that it restore the PRA transferase activity which the parent trpD point mutant lacked. Deletion mutants were found which had PRA transferase activity although the first third of trpD was deleted. The existence of the mutants proves that a terminal segment of trpD is sufficient to specify a polypeptide having PRA transferase activity. The location of the deletion end points on the genetic map of trpD defines the extent of the trpD segment required for PRA transferase activity. This segment did not overlap the initial region of trpD required to specify the glutamine amidotransferase function of the trpD polypeptide. These results support the hypothesis (M. Grieshaber and R. Bauerle, 1972; H. Zalkin and L. H. Hwang, 1971) that the bifunctional trpD polypeptide might have evolved by fusion of a gene specifying a glutamine amidotransferase with a gene directing PRA transferase synthesis.  相似文献   

6.
Forty single gene mutations in Chlamydomonas reinhardtii were isolated based on resistance to the compound 5'-methyl anthranilic acid (5-MAA). In other organisms, 5-MAA is converted to 5'-methyltryptophan (5-MT) and 5-MT is a potent inhibitor of anthranilate synthase, which catalyzes the first committed step in tryptophan biosynthesis. The mutant strains fall into two phenotypic classes based on the rate of cell division in the absence of 5-MAA. Strains with class I mutations divide more slowly than wild-type cells. These 17 mutations map to seven loci, which are designated MAA1 to MAA7. Strains with class II mutations have generation times indistinguishable from wild-type cells, and 7 of these 23 mutations map to loci defined by class I mutations. The remainder of the class II mutations map to 9 other loci, which are designated MAA8-MAA16. The maa5-1 mutant strain excretes high levels of anthranilate and phenylalanine into the medium. In this strain, four enzymatic activities in the tryptophan biosynthetic pathway are increased at least twofold. These include the combined activities of anthranilate phosphoribosyl transferase, phosphoribosyl anthranilate isomerase, indoleglycerol phosphate synthetase and anthranilate synthase. The slow growth phenotypes of strains with class I mutations are not rescued by the addition of tryptophan, but the slow growth phenotype of the maa6-1 mutant strain is partially rescued by the addition of indole. The maa6-1 mutant strain excretes a fluorescent compound into the medium, and cell extracts have no combined anthranilate phosphoribosyl transferase, phosphoribosyl anthranilate isomerase and indoleglycerol phosphate synthetase activity. The MAA6 locus is likely to encode a tryptophan biosynthetic enzyme. None of the other class I mutations affected these enzyme activities. Based on the phenotypes of double mutant strains, epistatic relationships among the class I mutations have been determined.  相似文献   

7.
In bacteria, the biosynthetic pathway for the hydroxymethyl pyrimidine moiety of thiamine shares metabolic intermediates with purine biosynthesis. The two pathways branch after the compound aminoimidazole ribotide. Past work has shown that the first common metabolite, phosphoribosyl amine (PRA), can be generated in the absence of the first enzyme in purine biosynthesis, PurF. PurF-independent PRA synthesis is dependent on both strain background and growth conditions. Standard genetic approaches have not identified a gene product singly responsible for PurF-independent PRA formation. This result has led to the hypothesis that multiple enzymes contribute to PRA synthesis, possibly as the result of side products from their dedicated reaction. A mutation that was able to restore PRA synthesis in a purF gnd mutant strain was identified and found to map in the gene coding for the TrpD subunit of the anthranilate synthase (AS)-phosphoribosyl transferase (PRT) complex. Genetic analyses indicated that wild-type AS-PRT was able to generate PRA in vivo and that the P362L mutant of TrpD facilitated this synthesis. In vitro activity assays showed that the mutant AS was able to generate PRA from ammonia and phosphoribosyl pyrophosphate. This work identifies a new reaction catalyzed by AS-PRT and considers it in the context of cellular thiamine synthesis and metabolic flexibility.  相似文献   

8.
Sixty-five tryptophan auxotrophs which map in a cluster on the genome of Bacillus subtilis were characterized on the basis of (i) growth response, (ii) accumulation of intermediate compounds, and (iii) determination of enzymatic defects. They could be placed into six phenotypic classes. Certain of the mutants exhibited pleiotropic effects on more than one enzymatic activity in a manner different from those effects reported for the tryptophan pathway in other organisms. Invariably, mutations in the second gene, that coding for phosphoribosyl transferase activity, were found to lack the indoleglycerol phosphate synthase activity specified by the third gene in the cluster; however, this polarity did not extend to genes more distal in the cluster. Furthermore, mutations in the gene which codes for phosphoribosyl-anthranilate isomerase not only led to a loss of this enzyme but also to a loss of phosphoribosyl transferase and indoleglycerol phosphate synthase. In contrast, mutations in either of the loci coding for these latter functions had no apparent effect on isomerase activity. No polarity of the conventional type was found, e.g., none of the mutations in any gene led to polarized effects on the levels of the enzymes specified by the other genes of the cluster. These observations indicated a possible in vivo aggregation involving the transferase, isomerase, and synthase enzymes, with the isomerase acting as the "key" enzyme in the aggregate.  相似文献   

9.
The stability of tryptophan biosynthetic enzyme activities was examined in cultures of repressor-negative (trpR) strains of Escherichia coli K-12 incubated under conditions of nutrient starvation of chloramphenicol inhibition. The results show that four of the five activities examined are stable under most nongrowing conditions, whereas one activity, indoleglycerol phosphate (InGP) synthetase, carried by the trpC protein, is unstable under most conditions tested. Phosphoribosylanthranilate (PRA) isomerase activity, which is also carried by the trpC protein, is unstable during starvation for ammonium, cysteine, or sulfate but is stable under other nongrowing conditions where InGP synthetase is not. InGP synthetase activity but not PRA isomerase activity is also diminished about twofold in cultures using glycerol as a carbon-energy source. These results indicate that one or both activities of the trpC protein is specifically inactivated under several culture conditions. Experiments with antibodies to the trpC protein show that sulfate-starved and ammonium-starved cultures contain 20 to 40% less immunologically reactive trpC protein than unstarved cultures. This indicates that the trpC protein is probably partially degraded under these conditions. During recovery from sulfate starvation or ammonium starvation, cultures slowly regain normal levels of InGP synthetase and PRA isomerase activities, suggesting that inactivation may be reversible.  相似文献   

10.
Enzymes of the Tryptophan Pathway in Three Bacillus Species   总被引:10,自引:8,他引:2       下载免费PDF全文
The tryptophan synthetic pathway was characterized in three species of Bacillus, B. subtilis, B. pumilus, and B. alvei. They share the common features of a pathway which is subject to tryptophan repression, contains no unexpected complexes among the five enzymes, exhibits dissociable anthranilate synthase enzymes which do not require phosphoribosyl transferase for amidetransfer activity, contains separate indoleglycerol phosphate synthase and phosphoribosylanthranilate isomerase enzymes, and contains similar tryptophan synthetase multimers. In looking at these characteristics in detail however, differences among the three species became apparent, as, for example, in the complementation observed between the alpha and beta(2) components of tryptophan synthetase, and the dissociation patterns of the large and small components of anthranilate synthase. The results demonstrate some pitfalls in attempting to compare multimeric enzymes in crude extracts from different organisms.  相似文献   

11.
The metabolism of hyperthermophilic microorganisms can function properly at temperatures close to 100 degrees C. It follows that they are equipped with both thermostable enzymes and mechanisms that handle labile metabolites. We wanted to understand how stable and active phosphoribosyl anthranilate isomerase (tPRAI) from the hyperthermophile Thermotoga maritima is at its optimum growth temperature of 80 degrees C, and how its thermolabile substrate, N-(5'-phosphoribosyl)-anthranilate (PRA), is protected from rapid decomposition. To this end, the trpF gene of T. maritima was expressed heterologously in Escherichia coli and tPRAI was purified. In contrast to most PRAIs from mesophiles, which are monomers with the eightfold beta alpha (or TIM) barrel fold, tPRAI is a homodimer. It is strongly resistant toward inactivation by temperatures up to 95 degrees C, by acidification to pH 3.2, and by proteases in the presence and absence of detergents. tPRAI is about 35-fold more active at its physiologic temperature than is the enzyme from E. coli (ePRAI) at 37 degrees C. This high catalytic efficiency of tPRAI is likely to complete successfully with the rapid spontaneous hydrolysis of PRA at 80 degrees C. Thus, with respect to both stability and function, tPRAI appears well adapted to the extreme habitat of T. maritima. Single crystals of tPRAI have been obtained that are suitable for X-ray analysis at high resolution.  相似文献   

12.
Glutamine-dependent anthranilate synthetase was produced in vitro by mixing the extracts of a trypA and a trypC mutant of Aspergillus nidulans. Neither mutant alone possessed this activity. The enzyme formed in the mixture had the properties of the wild-type anthranilate synthetase which, together with N-(5-phosphoribosyl) anthranilate (PRA) isomerase and indole 3-glycerol phosphate (InGP) synthetase, is found in a 10S multienzyme complex. Extracts of the trypA69 mutant contained a 6.5S protein as the active component—presumably the trypC + product—which in addition showed PRA isomerase and InGP synthetase activity. Extracts of the trypC801 mutant lacked all three enzyme activities but contained a 4.5S component—the trypA + gene product—which in vitro showed ammonia-dependent anthranilate synthetase activity. These mutants are analogous in their properties to certain tryp-2 and tryp-1 mutants of Neurospora. When complementary extracts of the two genera were mixed (Aspergillus trypA with Neurospora tryp-1 or Aspergillus trypC with Neurospora tryp-2), a hybrid glutamine-dependent anthranilate synthetase was obtained which showed less than half the activity produced in homologous combinations.This study was supported by Grant GB 22655 from the National Science Foundation to J.A.DeM.  相似文献   

13.

Background  

Anthranilate is an aromatic amine used industrially as an intermediate for the synthesis of dyes, perfumes, pharmaceuticals and other classes of products. Chemical synthesis of anthranilate is an unsustainable process since it implies the use of nonrenewable benzene and the generation of toxic by-products. In Escherichia coli anthranilate is synthesized from chorismate by anthranilate synthase (TrpED) and then converted to phosphoribosyl anthranilate by anthranilate phosphoribosyl transferase to continue the tryptophan biosynthetic pathway. With the purpose of generating a microbial strain for anthranilate production from glucose, E. coli W3110 trpD9923, a mutant in the trpD gene that displays low anthranilate producing capacity, was characterized and modified using metabolic engineering strategies.  相似文献   

14.
Auxotrophs of Acinetobacter calcoaceticus blocked in each reaction of the synthetic pathway from chorismic acid to tryptophan were obtained after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. One novel class was found to be blocked in both anthranilate and p-aminobenzoate synthesis; these mutants (trpG) require p-aminobenzoate or folate as well as tryptophan (or anthranilate) for growth. The loci of six other auxotrophic classes requiring only tryptophan were defined by growth, accumulation, and enzymatic analysis where appropriate. The trp mutations map in three chromosomal locations. One group contains trpC and trpD (indoleglycerol phosphate synthetase and phosphoribosyl transferase) in addition to trpG mutations; this group is closely linked to a locus conferring a glutamate requirement. Another cluster contains trpA and trpB, coding for the two tryptophan synthetase (EC 4.2.1.20) subunits, along with trpF (phosphoribosylanthranilate isomerase); this group is weakly linked to a his marker. The trpE gene, coding for the large subunit of anthranilate synthetase, is unlinked to any of the above. This chromosomal distribution of the trp genes has not been observed in other organisms.  相似文献   

15.
16.
Several physical properties of the first four enzymatic activities of the tryptophan pathway were examined using gel filtration and ion exchange chromatography. Five different patterns were noted. Differences in the anthranilate synthetase (AS) and phosphoribosylanthranilate transferase (PRT) defined these patterns. In all the organisms studied phosphoribosylanthranilate isomerase and indoleglycerol phosphate synthetase co-eluted from both diethylaminoethyl-cellulose and G-200 and thus probably are contained in a single polypeptide of 50,000 daltons. An AS-PRT complex was found in Citrobacter species, Enterobacter cloacae, and Erwinia dissolvens. In all the other bacteria examined AS and PTR were separate molecules. In Serratia marcescens, S. marinorubra, and Enterobacter liquefaciens, AS was 140,000 daltons and PRT was 45,000 daltons. In Erwinia carotavora and Enterobacter hafniae the AS was the same size as the Serratia species but the PRT was larger at 67,000 daltons. Two Proteus species had an AS and PRT of the same size as E. carotavora and E. halfniae but the Proteus AS was different in that it partially dissociated upon gel filtration. Aeromonas formicans was unique in its possession of an AS with a molecular weight of 220,000. The PRT of A. formicans was found to elute at 67,000 daltons. Possible paths of evolution of the tryptophan enzymes are discussed in terms of the results of this study. The results presented here are also considered with respect to existing taxonomic schemes of the enteric bacteria.  相似文献   

17.
18.
产甘油假丝酵母(Candida glycerinogenes) WL2002-5 是我国发酵甘油生产菌种, 具有高产甘油和耐高渗透压的优良性能。本文采用遗传互补的方法从产甘油假丝酵母基因文库中克隆了TRP1基因(CgTRP1)。序列分析显示, 该基因编码区全长735 bp, 编码的磷酸核糖氨基苯甲酸同分异构酶(CgPRAI)氨基酸序列与其他酵母来源的PRAI蛋白同源性在32.9%~49.2%之间。功能互补实验显示, CgTRP1基因在高拷贝情况下可以互补酿酒酵母trp1基因功能但在低拷贝情况下只能部分互补酿酒酵母trp1基因功能, 是一条功能明确、结构完整的酵母新基因。在CgTRP1 基因下游发现另一蛋白编码基因, 编码的氨基酸序列与酵母无机焦磷酸酶有很高的相似性。  相似文献   

19.
Phosphoribosyl amine (PRA) is an intermediate in purine biosynthesis and also required for thiamine biosynthesis in Salmonella enterica. PRA is normally synthesized by phosphoribosyl pyrophosphate amidotransferase, a high-turnover enzyme of the purine biosynthetic pathway encoded by purF. However, PurF-independent PRA synthesis has been observed in strains having different genetic backgrounds and growing under diverse conditions. Genetic analysis has shown that the anthranilate synthase-phosphoribosyltransferase (AS-PRT) enzyme complex, involved in the synthesis of tryptophan, can play a role in the synthesis of PRA. This work describes the in vitro synthesis of PRA in the presence of the purified components of the AS-PRT complex. Results from in vitro assays and in vivo studies indicate that the cellular accumulation of phosphoribosyl anthranilate can result in nonenzymatic PRA formation sufficient for thiamine synthesis. These studies have uncovered a mechanism used by cells to redistribute metabolites to ensure thiamine synthesis and may define a general paradigm of metabolic robustness.  相似文献   

20.
For the purpose of studying the production of L-tryptophan by Escherichia coli, the deletion mutants of the trp operon (trpAE1) were transformed with mutant plasmids carrying the trp operon whose anthranilate synthase and phosphoribosyl anthranilate transferase (anthranilate aggregate), respectively, had been desensitized to tryptophan inhibition. In addition to release of the anthranilate aggregate from the feedback inhibition required for plasmids such as pSC101 trp.I15, the properties of trp repression (trpR) and tryptophanase deficiency (tnaA) were both indispensable for host strains such as strain Tna (trpAE1 trpR tnaA). The gene dosage effects on tryptophan synthase activities and on production of tryptophan were assessed. A moderate plasmid copy number, approximately five per chromosome, was optimal for tryptophan production. Similarly, an appropriate release of the anthranilate aggregate from feedback inhibition was also a necessary step to ward off the metabolic anomaly. If the mutant plasmid pSC101 trp-I15 was further mutagenized (pSC101 trp.I15.14) and then transferred to Tna cells, an effective enhancement of tryptophan production was achieved. Although further improvement of the host-plasmid system is needed before commercial production of tryptophan can be realized by this means, a promising step toward this goal has been established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号