首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G L Hazelbauer  S Harayama 《Cell》1979,16(3):617-625
We have characterized chemotactic mutants of E. coli that appear to be defective in a common linkage of two independent receptors to the central chemotactic components. The mutants do not respond to gradients of ribose or galactose and thus are called trg (taxis to ribose and galactose), after Ordal and Adler (1974b). These trg mutants are indistinguishable from their parent in tactic response to other attractants, swimming pattern, growth rates, and transport of ribose and galactose. The mutant cells contain the usual amounts of ribose and galactose receptors, and those proteins function normally in their other role, transport of their respective ligands. The mutations, generated by insertion of translocatable drug-resistance elements (transposons)8 are located near 31 min on the map of the E. coli chromosome, a locus far removed from the genes coding for the ribose and galactose receptors. Trg mutants do not resemble either specific receptor mutants or che mutants. The nature of the requirement for the trg product in the response to ribose and galactose is not defined, but evidence for interference of tactic signals from the ribose and galactose receptors (Strange and Koshland, 1976) supports the idea that the product functions directly in the transmission of tactic signals from the two receptors to the flagella.  相似文献   

2.
Maltose chemoreceptor of Escherichia coli.   总被引:33,自引:24,他引:9       下载免费PDF全文
Strains carrying mutations in the maltose system of Escherichia coli were assayed for maltose taxis, maltose uptake at 1 and 10 muM maltose, and maltose-binding activity released by osmotic shock. An earlier conclusion that the metabolism of maltose is not necessary for chemoreception is extended to include the functioning of maltodextrin phosphorylase, the product of malP, and the genetic control of the maltose receptor by the product of malT is confirmed. Mutants in malF and malK are defective in maltose transport at low concentrations as well as high concentrations, as previously shown, but are essentially normal in maltose taxis. The product of malE has been previously shown to be the maltose-binding protein and was implicated in maltose transport. Most malE mutants are defective in maltose taxis, and all those tested are defective in maltose transport at low concentrations. Thus, as previously suggested, the maltose-binding protein probably serves as the recognition component of the maltose receptor, as well as a component of the transport system. tsome malE mutants release maltose-binding activity and are tactic toward maltose, although defective in maltose transport, implying that the binding protein has separate sites for interaction with the chemotaxis and transport systems. Some mutations in lamB, whose product is the receptor for the bacteriophage lamba, cause defects in maltose taxis, indicating some involvement of that product in maltose reception.  相似文献   

3.
Aspartate taxis mutants of the Escherichia coli tar chemoreceptor.   总被引:13,自引:8,他引:5       下载免费PDF全文
The Tar protein of Escherichia coli belongs to a family of methyl-accepting inner membrane proteins that mediate chemotactic responses to a variety of compounds. These transmembrane signalers monitor the chemical environment by means of specific ligand-binding sites arrayed on the periplasmic side of the membrane, and in turn control cytoplasmic signals that modulate the flagellar rotational machinery. The periplasmic receptor domain of Tar senses two quite different chemoeffectors, aspartate and maltose. Aspartate is detected through direct binding to Tar molecules, whereas maltose is detected indirectly when complexed with the periplasmic maltose-binding protein. Saturating levels of either aspartate or maltose do not block behavioral responses to the other compound, indicating that the detection sites for these two attractants are not identical. We initiated structure-function studies of these chemoreceptor sites by isolating tar mutants which eliminate aspartate or maltose taxis, while retaining the ability to respond to the other chemoeffector. Mutants with greatly reduced aspartate taxis are described and characterized in this report. When present in single copy in the chromosome, these tar mutations generally eliminated chemotactic responses to aspartate and structurally related compounds, such as glutamate and methionine. Residual responses to these compounds were shifted to higher concentrations, indicating a reduced affinity of the aspartate-binding site in the mutant receptors. Maltose responses in the mutants ranged from 10 to 80% of normal, but had no detectable threshold shifts, indicating that these receptor alterations may have little effect on maltose detection sensitivity. The mutational changes in 17 mutants were determined by DNA sequence analysis. Each mutant exhibited a single amino acid replacement at residue 64, 69, or 73 in the Tar molecule. The wild-type Tar transducer contains arginines at all three of these positions, implying that electrostatic forces may play an important role in aspartate detection.  相似文献   

4.
5.
Maltose-binding protein (MBP) is essential for maltose transport and chemotaxis in Escherichia coli. To perform these functions it must interact with two sets of cytoplasmic membrane proteins, the MalFGK transport complex and the chemotactic signal transducer Tar. MBP is present at high concentrations, on the order of 1 mM, in the periplasm of maltose-induced or malTc constitutive cells. To determine how the amount of MBP affects transport and taxis, we utilized a series of malE signal-sequence mutations that interfere with export of MBP. The MBP content in shock fluid from cells carrying the various mutations ranged from 4 to 23% of the malE+ level. The apparent Km for maltose transport varied by less than a factor of 2 among malE+ and mutant strains. At a saturating maltose concentration 9% (approximately 90 microM) of the malE+ amount of MBP was required for half-maximal uptake rates. Transport exhibited a sigmoidal dependence on the amount of periplasmic MBP, indicating that MBP may be involved in a cooperative interaction at some stage of the transport process. The chemotactic response to a saturating maltose stimulus exhibited a first-order dependence on the amount of periplasmic MBP. Thus, interaction of a single substrate-bound MBP with Tar appears sufficient to initiate a chemotactic signal from the transducer. A half-maximal chemotactic response occurred at 25% of the malE+ MBP level, suggesting that in vivo the KD for binding of maltose-loaded MBP to Tar is quite high (approximately 250 microM).  相似文献   

6.
The Tar chemoreceptor of Escherichia coli exhibits partial sensory additivity. Tar can mediate simultaneous responses to two disparate ligands, aspartate and substrate-loaded maltose-binding protein (MBP). To investigate how one receptor generates concurrent signals to two stimuli, ligand-binding asymmetry was imposed on the rotationally symmetric Tar homodimer. Mutations causing specific defects in aspartate or maltose chemotaxis were introduced pairwise into plasmid-borne tar genes. The doubly mutated tar genes did not restore aspartate or maltose chemotaxis in a strain containing a chromosomal deletion of tar (Δ tar ). However, when Tar proteins with complementing sets of mutations were co-expressed from compatible plasmids, the resulting heterodimeric receptors enabled Δ tar cells to respond to aspartate or maltose. The effect of one attractant on the response to the other depended on the relative orientations of the functional binding sites for aspartate and MBP. When the sites were in the 'same' orientation, saturating levels of one attractant strongly inhibited chemotaxis to the other. In the 'opposite' orientation, such inhibitory effects were negligible. These data demonstrate that opposing subunits of Tar can transmit signals to aspartate and maltose independently if the ligands are restricted to the 'opposite' binding orientation. When aspartate and MBP bind in the 'same' orientation, they compete for signalling through one subunit. In the wild-type Tar dimer, aspartate and MBP can bind in either the 'same' or the 'opposite' orientation, a freedom that can explain the partial additivity of the aspartate and maltose responses that is seen with tar + cells.  相似文献   

7.
Studies on the relationship between the binding of fMet-Leu-Phe and the respiratory response in human neutrophils have been carried out under two different conditions of stimulus presentation, i.e., instantaneously and over a period of time. The main findings are as follows (1) Under the first condition the activation of the respiratory response reaches the maximum value very quickly, when the receptor occupancy is less than 20% that at equilibrium. After reaching this maximal value, the activated respiration progressively decreases, while the specific binding of the stimulant continues until equilibrium. (2) Under the second condition, i.e., when the stimulus to neutrophils is presented over a time of 1, 2 or 4 min, the respiratory response (and also the secretory one) is depressed or absent, and the initial rate of the binding (initial Vass) is lower, but the maximal values of the receptor occupancy at equilibrium and of the rate of receptor occupation (maximal Vass) are similar and only slightly lower than those reached under the condition of instantaneous presentation of the stimulus. (3) This form of desensitization is specific for fMet-Leu-Phe and does not consist of the inactivation of the target (NADPH oxidase), since neutrophils desensitized by the slow presentation of the peptide are able to respond to a second challenge with other stimulants. These results indicate that: (1) the efficacy of the stimulus-receptor complexes is short-lived; (2) the intensity of the respiratory response is dependent on the rate of reaching a threshold of binding; (3) when this initial rate is slow, owing to the slow presentation of the stimulus, a specific desensitization takes place, indicating the existence of a molecular mechanism, linked in some way to the initial rate of binding, that modulates the capacity of the stimulus-receptor complexes to transduce signals for cell responses. The physiological role of this type of desensitization is discussed.  相似文献   

8.
Maltose-binding protein (MBP), which is encoded by the malE gene, is the maltose chemoreceptor of Escherichia coli, as well as an essential component of the maltose uptake system. Maltose-loaded MBP is thought to initiate a chemotactic response by binding to the tar gene product, the signal transducer Tar, which is also the aspartate chemoreceptor. To study the interaction of MBP with Tar, we selected 14 malE mutants which had specific defects in maltose taxis. Three of these mutants were fully active in maltose transport and produced MBP in normal amounts. The isoelectric points of the MBPs from these three mutants were identical to (malE461 and malE469) or only 0.1 pH unit more basic than (malE454) the isoelectric point of the wild-type protein (pH 5.0). Six of the mutations, including malE454, malE461, and malE469, were mapped in detail; they were located in two regions within malE. We also isolated second-site suppressor mutations in the tar gene that restored maltose taxis in combination with the closely linked malE454 and malE461 mutations but not with the malE469 mutation, which maps in a different part of the gene. This allele-specific suppression confirmed that MBP and Tar interact directly.  相似文献   

9.
Grb2 is a key mediator of helicobacter pylori CagA protein activities   总被引:11,自引:0,他引:11  
CagA delivered from Helicobacter pylori into gastric epithelial cells undergoes tyrosine phosphorylation and induces host cell morphological changes. Here we show that CagA can interact with Grb2 both in vitro and in vivo, which results in the activation of the Ras/MEK/ERK pathway and leads to cell scattering as well as proliferation. Importantly, this ability of CagA is independent from the tyrosine phosphorylation, which occurs within the five repeated EPIYA sequences (PY region) of CagA. However, the PY region appears to be indispensable for the Grb2 binding and induction of the cellular responses. Thus, intracellular CagA via its binding to Grb2 may act as a transducer for stimulating growth factor-like downstream signals which lead to cell morphological changes and proliferation, the causes of H. pylori-induced gastric hyperplasia.  相似文献   

10.
Wang SY  Ahn BS  Harris R  Nordeen SK  Shapiro DJ 《BioTechniques》2004,37(5):807-8, 810-7
To analyze the interactions of steroid/nuclear hormone receptors with their DNA response elements, we used ultra low-volume microplates to develop a simple and rapid fluorescence anisotropy assay. The novel fluorescence anisotropy microplate assay (FAMA) was applied to the binding of estrogen and progesterone receptors (ER and PR, respectively) to their respective DNA response elements. The FAMA offers exceptional flexibility in its ability to test a variety of binding conditions and DNA response elements in real time. This assay can differentiate between, and quantitate, sequence-specific and nonspecific binding of receptors to DNA and offers the possibility of true solution analysis of the interaction of coregulators with the estrogen response element (ERE)-ER complex. To test suitability for screening large compound libraries, we demonstrated that the FAMA generates stable signals for more than 4 hours, is insensitive to inhibition by dimethyl sulfoxide (DMSO), and works well in 384-well plates. We analyzed inhibition of receptor-DNA interaction by several zinc chelators and demonstrated zinc dependence and a generally higher sensitivity to inhibition for PR-progesterone response element (PRE) interactions than for ER-ERE interactions. The FAMA is the first system suitable for screening large compound libraries to identify novel compounds that antagonize (or stimulate) binding of steroid receptors to their DNA response elements.  相似文献   

11.
A microprocessor-based system was developed for the measurement and on-line calculation of values and derivatives of expiratory variables and their response to exercise. The system accepts analog signals from gas analysers, ECG electrodes and flow transducer, digitizes these signals, calculates values of required parameters and presents results on a video display. The system offers the user various options of logging and data processing. Plots of the values of calculated parameters versus exercise time and correlation between variables can be easily produced by the system. A mass storage unit was available with the system to enable the storage of calculated variables for off-line analysis. Hardcopy of displayed results and plots can be provided by the system.  相似文献   

12.
13.
The Trg transducer mediates chemotactic response to galactose and ribose by interacting, respectively, with sugar-occupied galactose- and ribose-binding proteins. Adaptation is linked to methylation of specific glutamyl residues of the Trg protein. This study characterized two trg mutations that affect interaction with binding protein ligands but do not affect methylation or adaptation. The mutant phenotypes indicated that the steady-state activity of methyl-accepting sites is independent of ligand-binding activity. The mutation trg-8 changed arginine 85 to histidine, and trg-19 changed glycine 151 to aspartate. The locations of the mutational changes provided direct evidence for functioning of the amino-terminal domain of Trg in ligand recognition. Cross-inhibition of tactic sensitivity by the two Trg-linked attractants implies competition for a common site on Trg. However, the single amino acid substitution caused by trg-19 greatly reduced the response to galactose but left unperturbed the response to ribose. Thus Trg must recognize the two sugar-binding proteins at nonidentical sites, and the complementary sites on the respective binding proteins should differ. trg-8 mutants were substantially defective in the response to both galactose and ribose. An increase in cellular content of Trg-8 protein improved the response to galactose but not to ribose. It appears that Trg-8 protein is defective in the generation of the putative conformational change induced by ligand interaction. The asymmetry of the mutational defect implies that functional separation of interaction sites could persist beyond the initial stage of ligand binding.  相似文献   

14.
Of JAKs,STATs, blind watchmakers,jeeps and trains   总被引:2,自引:0,他引:2  
  相似文献   

15.
Transducers are transmembrane receptor proteins that generate intracellular signals on stimulation and participate in adaptation by appropriate changes in the level of methylation. The transducer mutation trg-21 conferred a Trg- phenotype and defective taxis to galactose and ribose but a normal response to other attractants when present in a single chromosomal copy. Amplification of trg-21 by a multicopy plasmid made host cells generally nonchemotactic. The dominant phenotype resulted from a strong counterclockwise rotational bias of flagellar motors in Che- cells. Apparently, the Trg21 transducer sends a continuous counterclockwise signal to flagella independent of tactic stimulation. It appears that the cell has a homeostatic capacity that is sufficient to compensate for the effect of mutant transducers produced from a single chromosomal copy of trg-21, but the capacity is exceeded in cells that have multiple copies of the gene. The Trg21 protein did not have a significant effect on methylesterase activity, indicating that the two global effects of a stimulated transducer, that is, on flagellar rotation and on modification enzymes, can occur independently. The mutant protein exhibited essentially normal turnover of methyl groups but had a drastic defect in deamidation which thus reduced the number of methyl-accepting sites. The trg-21 mutation substitutes a threonine for Ala-419. This alanine is a conserved residue in all sequenced transducers and is in a region of the carboxy-terminal domain in which homology among the transducers is very high. The Trg21 phenotype implicates this conserved region in the generation of the excitatory signal which is directed at the flagella.  相似文献   

16.
A simplified capillary chemotaxis assay utilizing a hypodermic needle, syringe, and disposable pipette tip was developed to measure bacterial tactic responses. The method was applied to two strains of subsurface microaerophilic bacteria. This method was more convenient than the Adler method and required less practice. Isolate VT10 was a strain of Pseudomonas syringae, which was isolated from the shallow subsurface. It was chemotactically attracted toward dextrose, glycerol, and phenol, which could be used as sole carbon sources, and toward maltose, which could not be used. Isolate MR100 was phylogenetically related to Pseudomonas mendocina and was isolated from the deep subsurface. It showed no tactic response to these compounds, although, it could use dextrose, maltose, and glycerol as carbon sources. The chemotaxis results obtained by the new method were verified by using the swarm plate assay technique. The simplified technique may be useful for routine chemotactic testing.  相似文献   

17.
In Escherichia coli, the periplasmic maltose-binding protein (MBP), the product of the malE gene, is the primary recognition component of the transport system for maltose and maltodextrins. It is also the maltose chemoreceptor, in which capacity it interacts with the signal transducer Tar (taxis to aspartate and some repellents). In studies of the maltose system in other members of the family Enterobacteriaceae, we found that MBP is produced by Salmonella typhimurium, Klebsiella pneumoniae, Enterobacter aerogenes, and Serratia marcescens. MBP from all of these species cross-reacted with antibody against the E. coli protein and had a similar molecular weight (about 40,000). The Shigella flexneri and Proteus mirabilis strains we examined did not synthesize MBP. The isoelectric points of MBP from different species varied from the acid extreme of E. coli (4.8) to the basic extreme of E. aerogenes (8.9). All species with MBP transported maltose with high affinity, although the Vmax for K. pneumoniae was severalfold lower than that for the other species. Maltose chemotaxis was observed only in E. coli and E. aerogenes. In S. typhimurium LT2, Tar was completely inactive in maltose taxis, although it signaled normally in response to aspartate. MBP isolated from all five species could be used to reconstitute maltose transport and taxis in a delta malE strain of E. coli after permeabilization of the outer membrane with calcium.  相似文献   

18.
In this study, we describe a novel method for the detection of conformational changes in proteins, which is predicated on the reconstitution of split green fluorescent protein (GFP). We employed fluorescence complementation assays for the monitoring of the conformationally altered proteins. In particular, we used maltose binding protein (MBP) as a model protein, as MBP undergoes a characteristic hinge-twist movement upon substrate binding. The common feature of this approach is that GFP, as a reporter protein, splits into two non-fluorescent fragments, which are genetically fused to the N- and C-termini of MBP. Upon binding to maltose, the chromophores move closer together, resulting in the generation of fluorescence. This split GFP method also involves the reconstitution of GFP, which is determined via observations of the degree to which fluorescence intensity is restored. As a result, reconstituted GFP has been observed to generate fluorescence upon maltose binding in vitro, thereby allowing for the direct detection of changes in fluorescence intensity in response to maltose, in a concentration- and time-dependent fashion. Our findings showed that the fluorescence complementation assay can be used to monitor the conformational alterations of a target protein, and this ability may prove useful in a number of scientific and medical applications.  相似文献   

19.
Synthesis of a novel sulfhydryl-specific, tetraammine Ru(II)polypyridyl complex, [Ru(II)(NH(3))(4)(1,10-phenanthroline-5-maleimide)](PF(6))(2), which exhibits environment-sensitive electrochemical properties is described. When conjugated to an allosteric site in a genetically engineered mutant of maltose binding protein, the formal potential of the conjugated redox probe is shifted to higher potential upon maltose binding. The magnitude of this potential shift was used to measure maltose affinity of the protein-redox conjugate complex and to monitor maltose concentration in solution. These results are presented in context of reagentless biosensing.  相似文献   

20.
Role of DNA-PK in the cellular response to DNA double-strand breaks   总被引:11,自引:0,他引:11  
Burma S  Chen DJ 《DNA Repair》2004,3(8-9):909-918
The DNA-dependent protein kinase (DNA-PK) plays a critical role in DNA double-strand break (DSB) repair and in V(D)J recombination. DNA-PK also plays a very important role in triggering apoptosis in response to severe DNA damage or critically shortened telomeres. Paradoxically, components of the DNA-PK complex are present at the mammalian telomere where they function in capping chromosome ends to prevent them from being mistaken for double-strand breaks. In addition, DNA-PK appears to be involved in mounting an innate immune response to bacterial DNA and to viral infection. As DNA-PK localizes very rapidly to DNA breaks and phosphorylates itself and other damage-responsive proteins, it appears that DNA-PK serves as both a sensor and a transducer of DNA-damage signals. The many roles of DNA-PK in the mammalian cell are discussed in this review with particular emphasis on recent advances in our understanding of the phosphorylation events that take place during the activation of DNA-PK at DNA breaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号