首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Apoptosis has been widely reported to be involved in the pathogenesis associated with spinal cord injury (SCI). Recently, autophagy has also been implicated in various neuronal damage models. However, the role of autophagy in SCI is still controversial and its interrelationship with apoptosis remains unclear. Here, we used an in vitro SCI model to observe a time-dependent induction of autophagy and apoptosis. Mechanical injury induced autophagy markers such as LC3 lipidation, LC3II/LC3I conversion, and Beclin-1expression. Injured neurons showed decreased cell viability and increased apoptosis. To elucidate the effect of autophagy on apoptosis, the mechanically-injured neurons were treated with the mTOR inhibitor rapamycin and 3-methyl adenine (3-MA), which are known to regulate autophagy positively and negatively, respectively. Rapamycin-treated neurons showed the highest level of cell viability and lowest level of apoptosis among the injured neurons and those treated with 3-MA showed the reciprocal effect. Notably, rapamycin-treated neurons exhibited slightly reduced Bax expression and significantly increasedBcl-2 expression. Furthermore, by plasmid transfection, we showed that Beclin-1-overexpressing neuronal cells responded to mechanical injury with greater LC3II/LC3I conversion and cell viability, lower levels of apoptosis, higher Bcl-2 expression, and unaltered Bax expression as compared to vector control cells. Beclin-1-knockdown neurons showed almost the opposite effects. Taken together, our results suggest that autophagy may serve as a protection against apoptosis in mechanically-injured spinal cord neurons. Targeting mTOR and/or enhancing Beclin-1 expression might be alternative therapeutic strategies for SCI.  相似文献   

2.

Background

Hydrogen sulfide (H2S), a novel gaseous mediator, has been recognized as an important neuromodulator and neuroprotective agent in the nervous system. The present study was undertaken to study the effects of exogenous H2S on ischemia/reperfusion (I/R) injury of spinal cord and the underlying mechanisms.

Methods

The effects of exogenous H2S on I/R injury were examined by using assessment of hind motor function, spinal cord infarct zone by Triphenyltetrazolium chloride (TTC) staining. Autophagy was evaluated by expressions of Microtubule associated protein 1 light chain 3 (LC3) and Beclin-1 which were determined by using Quantitative Real-Time PCR and Western blotting, respectively.

Results

Compared to I/R injury groups, H2S pretreatment had reduced spinal cord infarct zone, improved hind motor function in rats. Quantitative Real-Time PCR or Western blotting results showed that H2S pretreatment also downregulated miR-30c expression and upregulated Beclin-1 and LC3II expression in spinal cord. In vitro, miR-30c was showed to exert negative effect on Beclin-1 expression by targeting its 3’UTR in SY-SH-5Y cells treated with Oxygen, Glucose Deprivation (OGD). In rat model of I/R injury, pretreatment of pre-miR-30c or 3-MA (an inhibitor for autophagy) can abrogated spinal cord protective effect of H2S.

Conclusion

H2S protects spinal cord and induces autophagy via miR-30c in a rat model of spinal cord hemia-reperfusion injury.  相似文献   

3.
Ischemia-reperfusion (I/R) injury is a leading cause of acute kidney injury (AKI), which is a common clinical complication but lacks effective therapies. This study investigated the role of autophagy in renal I/R injury and explored potential mechanisms in an established rat renal I/R injury model. Forty male Wistar rats were randomly divided into four groups: Sham, I/R, I/R pretreated with 3-methyladenine (3-MA, autophagy inhibitor), or I/R pretreated with rapamycin (autophagy activator). All rats were subjected to clamping of the left renal pedicle for 45 min after right nephrectomy, followed by 24 h of reperfusion. The Sham group underwent the surgical procedure without ischemia. 3-MA and rapamycin were injected 15 min before ischemia. Renal function was indicated by blood urea nitrogen and serum creatinine. Tissue samples from the kidneys were scored histopathologically. Autophagy was indicated by light chain 3 (LC3), Beclin-1, and p62 levels and the number of autophagic vacuoles. Apoptosis was evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and expression of caspase-3. Autophagy was activated after renal I/R injury. Inhibition of autophagy by 3-MA before I/R aggravated renal injury, with worsened renal function, higher renal tissue injury scores, and more tubular apoptosis. In contrast, rapamycin pretreatment ameliorated renal injury, with improved renal function, lower renal tissue injury scores, and inhibited apoptosis based on fewer TUNEL-positive cells and lower caspase-3 expression. Our results demonstrate that autophagy could be activated during I/R injury and play a protective role in renal I/R injury. The mechanisms were involved in the regulation of several autophagy and apoptosis-related genes. Furthermore, autophagy activator may be a promising therapy for I/R injury and AKI in the future.  相似文献   

4.
《Autophagy》2013,9(6):762-769
It has been reported that ischemic insult increases the formation of autophagosomes and activates autophagy. However, the role of autophagy in ischemic neuronal damage remains elusive. This study was taken to assess the role of autophagy in ischemic brain damage. Focal cerebral ischemia was introduced by permanent middle cerebral artery occlusion (pMCAO). Activation of autophagy was assessed by morphological and biochemical examinations. To determine the contribution of autophagy/lysosome to ischemic neuronal death, rats were pretreated with a single intracerebral ventricle injection of the autophagy inhibitors 3-methyl-adenine (3-MA) and bafliomycin A1 (BFA) or the cathepsin B inhibitor Z-FA-fmk after pMCAO. The effects of 3-MA and Z-FA-fmk on brain damage, expression of proteins involved in regulation of autophagy and apoptosis were assessed with 2,3,5-triphenyltetrazolium chloride (TTC) staining and immunoblotting. The results showed that pMACO increased the formation of autophagosomes and autolysosomes, the mRNA and protein levels of LC3-II and the protein levels of cathepsin B. 3-MA, BFA and Z-FA-fmk significantly reduced infarct volume, brain edema, and motor deficits. The neuroprotective effects of 3-MA and Z-FA-fmk were associated with an inhibition on ischemia-induced upregulation of LC3-II and cathepsin B and a partial reversion of ischemia-induced downregulation of cytoprotective Bcl-2. These results demonstrate that ischemic insult activates autophagy and an autophagic mechanism may contribute to ischemic neuronal injury. Thus, autophagy may be a potential target for developing a novel therapy for stroke.  相似文献   

5.
Wen YD  Sheng R  Zhang LS  Han R  Zhang X  Zhang XD  Han F  Fukunaga K  Qin ZH 《Autophagy》2008,4(6):762-769
It has been reported that ischemic insult increases the formation of autophagosomes and activates autophagy. However, the role of autophagy in ischemic neuronal damage remains elusive. This study was taken to assess the role of autophagy in ischemic brain damage. Focal cerebral ischemia was introduced by permanent middle cerebral artery occlusion (pMCAO). Activation of autophagy was assessed by morphological and biochemical examinations. To determine the contribution of autophagy/lysosome to ischemic neuronal death, rats were pretreated with a single intracerebral ventricle injection of the autophagy inhibitors 3-methyl-adenine (3-MA) and bafliomycin A1 (BFA) or the cathepsin B inhibitor Z-FA-fmk after pMCAO. The effects of 3-MA and Z-FA-fmk on brain damage, expression of proteins involved in regulation of autophagy and apoptosis were assessed with 2,3,5-triphenyltetrazolium chloride (TTC) staining and immunoblotting. The results showed that pMACO increased the formation of autophagosomes and autolysosomes, the mRNA and protein levels of LC3-II and the protein levels of cathepsin B. 3-MA, BFA and Z-FA-fmk significantly reduced infarct volume, brain edema and motor deficits. The neuroprotective effects of 3-MA and Z-FA-fmk were associated with an inhibition on ischemia-induced upregulation of LC3-II and cathepsin B and a partial reversion of ischemia-induced downregulation of cytoprotective Bcl-2. These results demonstrate that ischemic insult activates autophagy and an autophagic mechanism may contribute to ischemic neuronal injury. Thus, autophagy may be a potential target for developing a novel therapy for stroke.  相似文献   

6.
《Autophagy》2013,9(4):482-494
Several recent studies have showed that autophagy is involved in ischemic brain damage, but it may also play a pro-survival role in ischemic preconditioning. This study was taken to determine the role of autophagy in an animal model of cerebral ischemic preconditioning (IPC). Focal cerebral IPC was produced in rats by a brief ischemic insult followed by permanent focal ischemia (PFI) 24 h later using the suture occlusion technique. The rats were pretreated with intracerebral ventricle infusion of the autophagy inhibitors 3-methyladenine (3-MA) and bafliomycin A1 (Baf A1) or the autophagy inducer rapamycin to evaluate the contribution of autophagy to IPC-induced neuroprotection. The results from electron microscopic examinations and immunofluorescence showed that both IPC and PFI induced autophagy activation, but the extent and persistence of autophagy activation were varied. IPC treatment significantly reduced infarct volume, brain edema and motor deficits after subsequent PFI, whereas 3-MA and Baf A1 suppressed the neuroprotection induced by IPC. 3-MA pretreatment also significantly attenuated upregulation of LC3-II, beclin 1 and HSP70 and downregulation of p62. To further determine if autophagy induction is responsible for IPC-induced neuroprotection, rats were treated with rapamycin 24 h before the onset of PFI. The results showed that rapamycin reduced infarct volume, brain edema and motor deficits induced by PFI. Rapamycin pretreatment also increased the protein levels of LC3-II and beclin 1. These results demonstrate that autophagy activation during IPC offers a remarkable tolerance to a subsequent fatal ischemic insult, and IPC's neuroprotective effects can be mimicked by autophagy inducers.  相似文献   

7.
目的:探讨白藜芦醇甙在高糖处理的大鼠心肌微血管内皮细胞损伤中的作用及其可能调控机制。方法:酶消法分离大鼠CMECs,高糖处理CMECs建立细胞损伤模型,实验随机分为6个组:对照组(葡萄糖浓度为5.5 mmol/L)、白藜芦醇甙组、高糖组(葡萄糖浓度为33 mmol/L)、高糖+白藜芦醇甙组、高糖+白藜芦醇甙+3-MA(自噬抑制剂)组和高糖+雷帕霉素(自噬诱导剂)组。白藜芦醇甙组和高糖+白藜芦醇甙组分别加入10μmol/L的白藜芦醇甙孵育24 h,高糖+白藜芦醇甙+3-MA组加入10μmol/L的白藜芦醇甙和10μmmol/L 3-MA孵育24 h,高糖+雷帕霉素组加入100 nmol/L的雷帕霉素孵育24小时。CCK-8实验检测大鼠CMECs增殖;Tunel法检测大鼠CMECs凋亡;FITC-葡聚糖清除实验检测单层CMECs通透性;Western blot检测LC3Ⅱ和p62的表达。结果:与对照组和白藜芦醇甙组相比,高糖组CMECs增殖能力降低(P<0.05),凋亡率显著增加(P<0.05),细胞通透性增加(P<0.05),LC3Ⅱ表达降低(P<0.05),p62的表达增加(P<0.05);与高糖组相比,高糖+白藜芦醇甙组和高糖+雷帕霉素组CMECs增殖能力增加(P<0.05),凋亡率显著降低(P<0.05),细胞通透性降低(P<0.05),LC3Ⅱ表达增加(P<0.05),p62的表达降低(P<0.05);与高糖+白藜芦醇甙组相比,高糖+白藜芦醇甙+3-MA组CMECs增殖能力降低(P<0.05),凋亡率显著增加(P<0.05),细胞通透性增加(P<0.05),LC3Ⅱ表达降低(P<0.05),p62的表达增加(P<0.05)。结论:白藜芦醇甙通过增加自噬减轻高糖处理的大鼠心肌微血管内皮细胞损伤。  相似文献   

8.
9.
《Autophagy》2013,9(6):738-753
The present study evaluated autophagy activation in astrocytes and its contribution to astrocyte injury induced by cerebral ischemia and hypoxia. Focal cerebral ischemia was induced by permanent middle cerebral artery occlusion (pMCAO) in rats. In vitro hypoxia in cultured primary astrocytes was induced by the oxygen-glucose deprivation (OGD). Alterations of astrocytes were evaluated with astroglia markers glial fibrillary acidic protein (GFAP). The formation of autophagosomes in astrocytes was examined with transmission electron microscopy (TEM). The expression of autophagy-related proteins were examined with immunoblotting. The role of autophagy in OGD or focal cerebral ischemia-induced death of astrocytes was assessed by pharmacological inhibition of autophagy with 3-methyladenine (3-MA) or bafilomycin A1 (Baf). The results showed that GFAP staining was reduced in the infarct brain areas 3-12 h following pMCAO. Cerebral ischemia or OGD induced activation of autophagy in astrocytes as evidenced by the increased formation of autophagosomes and autolysosomes and monodansylcadaverine (MDC)-labeled vesicles; the increased production of microtubule-associated protein 1 light chain 3 (LC3-II); the upregulation of Beclin 1, lysosome-associated membrane protein 2 (LAMP2) and lysosomal cathepsin B expression; and the decreased levels of cytoprotective Bcl-2 protein in primary astrocytes. 3-MA inhibited OGD-induced the increase in LC3-II and the decline in Bcl-2. Furthermore, 3-MA and Baf slightly but significantly attenuated OGD-induced death of astrocytes. 3-MA also significantly increased the number of GFAP-positive cells and the protein levels of GFAP in the ischemic cortex core 12 h following pMCAO. These results suggest that ischemia or hypoxia-induced autophagic/lysosomal pathway activation may at least partly contribute to ischemic injury of astrocytes.  相似文献   

10.
Intracellular accumulation of altered proteins, including p62 and ubiquitinated proteins, is the basis of most neurodegenerative disorders. The relationship among the accumulation of altered proteins, autophagy, and spinal cord dysfunction by cervical spondylotic myelopathy has not been clarified. We examined the expression of p62 and autophagy markers in the chronically compressed spinal cord of tiptoe-walking Yoshimura mice. In addition, we examined the expression and roles of p62 and autophagy in hypoxic neuronal cells. Western blot analysis showed the accumulation of p62, ubiquitinated proteins, and microtubule-associated protein 1 light chain 3 (LC3), an autophagic marker, in the compressed spinal cord. Immunohistochemical examinations showed that p62 accumulated in neurons, axons, astrocytes, and oligodendrocytes. Electron microscopy showed the expression of autophagy markers, including autolysosomes and autophagic vesicles, in the compressed spinal cord. These findings suggest the presence of p62 and autophagy in the degenerated compressed spinal cord. Hypoxic stress increased the expression of p62, ubiquitinated proteins, and LC3-II in neuronal cells. In addition, LC3 turnover assay and GFP-LC3 cleavage assay showed that hypoxic stress increased autophagy flux in neuronal cells. These findings suggest that hypoxic stress induces accumulation of p62 and autophagy in neuronal cells. The forced expression of p62 decreased the number of neuronal cells under hypoxic stress. These findings suggest that p62 accumulation under hypoxic stress promotes neuronal cell death. Treatment with 3-methyladenine, an autophagy inhibitor decreased the number of neuronal cells, whereas lithium chloride, an autophagy inducer increased the number of cells under hypoxic stress. These findings suggest that autophagy promotes neuronal cell survival under hypoxic stress. Our findings suggest that pharmacological inducers of autophagy may be useful for treating cervical spondylotic myelopathy patients.  相似文献   

11.
《Autophagy》2013,9(12):1462-1471
Intracellular accumulation of altered proteins, including p62 and ubiquitinated proteins, is the basis of most neurodegenerative disorders. The relationship among the accumulation of altered proteins, autophagy, and spinal cord dysfunction by cervical spondylotic myelopathy has not been clarified. We examined the expression of p62 and autophagy markers in the chronically compressed spinal cord of tiptoe-walking Yoshimura mice. In addition, we examined the expression and roles of p62 and autophagy in hypoxic neuronal cells. Western blot analysis showed the accumulation of p62, ubiquitinated proteins, and microtubule-associated protein 1 light chain 3 (LC3), an autophagic marker, in the compressed spinal cord. Immunohistochemical examinations showed that p62 accumulated in neurons, axons, astrocytes, and oligodendrocytes. Electron microscopy showed the expression of autophagy markers, including autolysosomes and autophagic vesicles, in the compressed spinal cord. These findings suggest the presence of p62 and autophagy in the degenerated compressed spinal cord. Hypoxic stress increased the expression of p62, ubiquitinated proteins, and LC3-II in neuronal cells. In addition, LC3 turnover assay and GFP-LC3 cleavage assay showed that hypoxic stress increased autophagy flux in neuronal cells. These findings suggest that hypoxic stress induces accumulation of p62 and autophagy in neuronal cells. The forced expression of p62 decreased the number of neuronal cells under hypoxic stress. These findings suggest that p62 accumulation under hypoxic stress promotes neuronal cell death. Treatment with 3-methyladenine, an autophagy inhibitor decreased the number of neuronal cells, whereas lithium chloride, an autophagy inducer increased the number of cells under hypoxic stress. These findings suggest that autophagy promotes neuronal cell survival under hypoxic stress. Our findings suggest that pharmacological inducers of autophagy may be useful for treating cervical spondylotic myelopathy patients.  相似文献   

12.
目的:研究自噬在高压氧预处理预防脊髓缺血再灌注损伤中的机制。方法:新生大鼠脊髓神经元原代培养,分为对照组(氧糖剥夺)和高压氧(HBO)预处理组。通过应用免疫组织化学、Western blot分析两组LC3-Ⅱ与凋亡相关分子Beclin-1,Bcl-2,Casp-ase-3的表达变化。结果:发现重复高压氧预处理对氧糖剥夺诱导原代培养的脊髓神经元损伤具有明显的保护作用。免疫组化和Western blot显示与对照组相比高压氧预处理显著增加脊髓神经元细胞Bcl-2的表达,降低Beclin-1,Caspase-3以及自噬的特异性标记蛋白LC3-Ⅱ的表达。氧糖剥夺后对照组与高压氧组相比,LDH释放量明显增多(P<0.05)。结论:HBO预处理通过调节自噬减轻缺血再灌注损伤,为HBO预处理神经保护提供一条新的作用机制。  相似文献   

13.
To research the impact of autophagy on alveolar epithelial cell inflammation and its possible mechanism in the early stages of hypoxia, we established a cell hypoxia–reoxygenation model and orthotopic left lung ischemia–reperfusion model. Rat alveolar epithelial cells stably expressing GFP-LC3 were treated with an autophagy inhibitor (3-MA) or an autophagy promoter (rapamycin), followed by hypoxia–reoxygenation treatment for 2, 4, and 6 hr in vitro. In vivo, 20 male Sprague Dawley rats were randomly divided into four groups (model group: No blocking of the hilum in the left lung; control group: Blocking of the hilum in the left lung for 1 hr with dimethyl sulfoxide lavage; 3-MA group: Blocking of the hilum in the left lung for 1 hr with 100 ml/kg of 3-MA (5 μmol/L) solution lavage; and rapamycin group: Blocking of the hilum in the left lung for 1 hr with 100 ml/kg of rapamycin (250 nmol/L) solution lavage) to establish an orthotopic left lung ischemia model. This study demonstrated that rapamycin significantly suppressed the nuclear factor kappa B signaling pathway and limited the expression of proinflammatory factors. A contrary result was found after the 3-MA pretreatment. These findings indicate that autophagy reduces ischemia–reperfusion injury by repressing inflammatory signaling pathways in the early stages of hypoxia in vitro and in vivo. Autophagy could be a new protective method for application in lung ischemia–reperfusion injury.  相似文献   

14.
The role of autophagy in the recovery of spinal cord injury remains controversial; in particular, the mechanism of autophagy regulated degradation of ubiquitinated proteins has not been discussed to date. In this study, we investigated the protective role of basic fibroblast growth factor (bFGF) both in vivo and in vitro and demonstrated that excessive autophagy and ubiquitinated protein accumulation is involved in the rat model of trauma. bFGF administration improved recovery and increased the survival of neurons in spinal cord lesions in the rat model. The protective effect of bFGF is related to the inhibition of autophagic protein LC3II levels; bFGF treatment also enhances clearance of ubiquitinated proteins by p62, which also increases the survival of neuronal PC-12 cells. The activation of the downstream signals of the PI3K/Akt/mTOR pathway by bFGF treatment was detected both in vivo and in vitro. Combination therapy including the autophagy activator rapamycin partially abolished the protective effect of bFGF. The present study illustrates that the role of bFGF in SCI recovery is related to the inhibition of excessive autophagy and enhancement of ubiquitinated protein clearance via the activation of PI3K/Akt/mTOR signaling. Overall, our study suggests a new trend for bFGF drug development for central nervous system injuries and sheds light on protein signaling involved in bFGF action.  相似文献   

15.
为探究自噬抑制剂6-氨基-3-甲基腺嘌呤(3-methyladenine,3-MA)对损伤细胞氧化应激水平的影响,将3-MA作用于H2O2诱导的PC12细胞损伤模型,以自噬增强剂雷帕霉素(rapamycin,Rap)作为对照,探讨自噬与氧化应激的关系。测定线粒体的膜电位和细胞内的活性氧(reactive oxygen species, ROS)与丙二醛(malondialdehyde, MDA)含量,以及超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活性,评价损伤细胞的氧化应激状态。单丹(磺)酰戊二胺(monodansylcadaverine,MDC)染色,观察损伤细胞的自噬情况。蛋白质印迹分析损伤细胞中的自噬相关蛋白质LC3-II/LC3-I比值变化。实验结果显示:与正常组相比,H2O2损伤细胞的ROS水平上升到正常组的141%,MDA含量增加(P<0.001);CAT与SOD酶活力显著降低(P<0.001),差异均有统计学意义,证明损伤细胞氧化应激水平增加;MDC染色结果表明,H2O2组自噬明显增加。Western印迹结果表明,LC3-II/LC3-I值显著升高(P<0.05);与损伤组相比,3-MA组MDC染色结果表明,自噬水平降低。Western印迹结果表明,LC3-II/LC3-I值下降;细胞内ROS水平升高,增加到正常组的208%。MDA含量增加(P<0.001),CAT、SOD酶活力降低(P<0.001)。综上结果表明,自噬抑制剂可增加H2O2诱导的PC12细胞损伤模型的氧化应激水平,增加细胞凋亡。  相似文献   

16.
Adiponectin, one of the adipose-derived hormone with metabolic activity, has been reported to conversely affect angiogenesis of endothelial cells in vitro. The previous study in animal models has demonstrated that adiponectin has a protective role in retinal vascular injury following pathological stimuli. However, clinical research regarding the relationship between plasma adiponectin level and diabetic retinopathy (DR) are inconclusive. The aim of this study was to investigate the effect of adiponectin on high glucose-induced retinal angiogenesis and its association with autophagy by using rhesus choroid-retinal endothelial (RF-6A) cells as a model. We found that cell vitality decreased and cell migration and tube formation increased in the high-glucose group. Treatment with adiponectin or 3-methyladenine (3-MA, an autophagy inhibitor) increased cell viability and inhibited cell migration and tube formation. In the high-glucose group, the protein expression of Bax and apoptosis rate of cells increased and the expression of Bcl-2 decreased, whereas treatment with adiponectin or 3-MA reversed these results. Autophagy was activated in the high-glucose group to present as more LC3B fluorescent dots and higher expressions of LC3B, Atg5 proteins as well as lower expression of p62. Treatment with adiponectin or 3-MA inhibited autophagy by promoting the expression of p-PI3K, p-AKT, and p-mTOR when compared with the high-glucose group. The results of this study suggested that adiponectin inhibits high glucose-induced angiogenesis of RF/6A cells by inhibiting autophagy, and promotion of the PI3K/AKT/mTOR pathway might be involved in the anti-autophagy activities of adiponectin.  相似文献   

17.
Feng  Xiang-Lan  Deng  Hong-Bo  Wang  Zheng-Gang  Wu  Yun  Ke  Jian-Juan  Feng  Xiao-Bo 《Neurochemical research》2019,44(2):450-464

Histone acetylation levels can be upregulated by treating cells with histone deacetylase inhibitors (HDACIs), which can induce autophagy. Autophagy flux in the spinal cord of rats following the left fifth lumber spinal nerve ligation (SNL) is involved in the progression of neuropathic pain. Suberoylanilide hydroxamic acid (SAHA), one of the HDACIs can interfere with the epigenetic process of histone acetylation, which has been shown to ease neuropathic pain. Recent research suggest that SAHA can stimulate autophagy via the mammalian target of rapamycin (mTOR) pathway in some types of cancer cells. However, little is known about the role of SAHA and autophagy in neuropathic pain after nerve injury. In the present study, we aim to investigate autophagy flux and the role of the mTOR pathway on spinal cells autophagy activation in neuropathic pain induced by SNL in rats that received SAHA treatment. Autophagy-related proteins and mTOR or its active form were assessed by using western blot, immunohistochemistry, double immunofluorescence staining and transmission electron microscopy (TEM). We found that SAHA decreased the paw mechanical withdrawal threshold (PMWT) of the lower compared with SNL. Autophagy flux was mainly disrupted in the astrocytes and neuronal cells of the spinal cord dorsal horn on postsurgical day 28 and was reversed by daily intrathecal injection of SAHA (n?=?100 nmol/day or n?=?200 nmol/day). SAHA also decreased mTOR and phosphorylated mTOR (p-mTOR) expression, especially p-mTOR expression in astrocytes and neuronal cells of the spinal dorsal horn. These results suggest that SAHA attenuates neuropathic pain and contributes to autophagy flux in astrocytes and neuronal cells of the spinal dorsal horn via the mTOR signaling pathway.

  相似文献   

18.
Induction of autophagy has been shown to be beneficial for the replication of poliovirus, a phenomenon that might also apply for other picornaviruses. We demonstrate that de novo synthesis of human rhinovirus type 2 (HRV2), an HRV of the minor receptor group, is unaffected by tamoxifen, rapamycin, and 3-methyladenine (3-MA), drugs either stimulating (tamoxifen and rapamycin) or inhibiting (3-MA) autophagic processes. Furthermore, LC3-positive vesicles (i.e., autophagosomes) are not induced upon infection. Therefore, multiplication of this particular picornavirus is not dependent on autophagy.  相似文献   

19.
目的:卵巢癌为女性常见病,死亡率高,分子靶向治疗药物较少,研发高效低毒的靶向新药意义重大。细胞自噬(autophagy)维持着细胞内稳态和生长,是抗癌药物作用的关键靶部位。本课题旨在明确小豆蔻明(Cardamonin,CAR)调控自噬对卵巢癌SKOV3细胞增殖的影响。方法:体外培养卵巢癌SKOV3细胞,不同药物分组处理,荧光显微镜下观察单黄酰戊二胺(MDC)染色后细胞自噬囊泡,WesternBlot法检测细胞自噬相关蛋白LC3的表达,四氮唑蓝(MTT)法观察SKOV3细胞增殖情况,流式细胞术检测SKOV3细胞凋亡的变化。结果:自噬抑制剂3-MA显著性降低SKOV3细胞内MDC染色的荧光颗粒数目、LC3II蛋白表达,抑制细胞增殖;而CAR(高、中剂量)、雷帕霉素和AZD8055与3-MA联用后细胞内MDC荧光颗粒数目增多、LC3II蛋白表达增加、细胞增殖抑制率及凋亡率明显升高;且高剂量CAR(10^-6mol·L^-1)的作用比低剂量CAR(10^-6mol·L^-1)明显。结论:CAR能够抑制SKOV3细胞增殖,诱导细胞自噬,促进细胞凋亡。CAR有望成为卵巢癌药物治疗的先导化合物。本研究为进一步研发此类化合物提供了实验依据及一定的理论基础。  相似文献   

20.
It has been reported that autophagy and zinc transporters (ZnTs) both play the key roles in excitotoxicity, which is associated with cognitive deficits following developmental seizures. However, the influence of autophagy on acute phase ZnTs expression has never been studied. The present study sought to investigate the contribution of an autophagy inhibitor (3-methyladenine, 3-MA) on the regulation of ZnTs, microtubule-associated protein 1A/1B light chain 3 (LC3), and beclin-1 expression in rat hippocampus following recurrent neonatal seizures. We examined the expression of ZnT1∼ZnT3, LC3, and beclin-1 at 1.5, 3, 6, and 24 h after the last seizures using real-time RT-PCR and Western blot methods, respectively. The results showed that there were upregulated expressions of ZnT-1, ZnT-2, LC3, and beclin-1 of RS group. Pretreatment with 3-MA remarkably attenuated seizure-induced ZnT-1, ZnT-2, LC3, and beclin-1 increase. Additionally, linear correlations could be observed between LC3–Beclin1, LC3–ZnT-2, Beclin1–ZnT2, Beclin1–ZnT3, and among ZnT1∼ZnT3 in control group, while the linear correlations could be observed between LC3–Beclin1, Beclin1–ZnT2, and Beclin1–ZnT3 in RS group. These results demonstrate, for the first time, that there exists an interaction of Zn2+ with autophagic signals that are immediately activated in hippocampus after recurrent neonatal seizures, which might play a key role in neonatal seizure-induced excitotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号