首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo explore the parametric characteristics of diffusional kurtosis imaging (DKI) in the brain development of healthy preterm infants.ResultsMK and FA values were positively correlated with PMA in most selected WM regions, such as the posterior limbs of the internal capsule (PLIC) and the splenium of the corpus callosum (SCC). The positive correlation between MK value and PMA in the deep GM region was higher than that between FA and PMA. The MK value gradually decreased from the PLIC to the cerebral lobe. In addition, DKI parameters exhibited subtle differences in the parietal WM between the preterm and term control groups.ConclusionsMK may serve as a more reliable imaging marker of the normal myelination process and provide a more robust characterization of deep GM maturation.  相似文献   

2.
There is a high incidence of periventricular leukomalacia, caused by hypoxia-ischemia, in preterm infants. These lesions damage the periventricular crossroads of commissural, projection and associative pathways, which are in a close topographical relationship with the lateral ventricles. We explored to what extent abnormalities of echogenicity of the periventricular crossroads correlate with changes in size of the corpus callosum. Our study included nine infants (gestation from 26-41 weeks; birth weight between 938-4450 grams) with perinatal brain injury. Periventricular areas, which topographically correspond to the frontal, main and occipital crossroad, were readily visualized by cranial ultrasound scans, performed during the first two weeks after birth. Corpus callosum mediosagittal area measurements were performed using magnetic resonance images, acquired between the first and sixth postnatal month (postmenstrual age 40-49 weeks). We found a statistically significant correlation between the increased echogenicity in the crossroad areas and the decrease of the corpus callosum midsagittal area (p < 0.05). This supports the hypothesis that callosal fibers can be damaged, during growth through the periventricular crossroads of pathways.  相似文献   

3.

Objective

To identify perinatal clinical antecedents of white matter microstructural abnormalities in extremely preterm infants.

Methods

A prospective cohort of extremely preterm infants (N = 86) and healthy term controls (N = 16) underwent diffusion tensor imaging (DTI) at term equivalent age. Region of interest-based measures of white matter microstructure - fractional anisotropy and mean diffusivity - were quantified in seven vulnerable cerebral regions and group differences assessed. In the preterm cohort, multivariable linear regression analyses were conducted to identify independent clinical factors associated with microstructural abnormalities.

Results

Preterm infants had a mean (standard deviation) gestational age of 26.1 (1.7) weeks and birth weight of 824 (182) grams. Compared to term controls, the preterm cohort exhibited widespread microstructural abnormalities in 9 of 14 regional measures. Chorioamnionitis, necrotizing enterocolitis, white matter injury on cranial ultrasound, and increasing duration of mechanical ventilation were adversely correlated with regional microstructure. Conversely, antenatal steroids, female sex, longer duration of caffeine therapy, and greater duration of human milk use were independent favorable factors. White matter injury on cranial ultrasound was associated with a five weeks or greater delayed maturation of the corpus callosum; every additional 10 days of human milk use were associated with a three weeks or greater advanced maturation of the corpus callosum.

Conclusions

Diffusion tensor imaging is sensitive in detecting the widespread cerebral delayed maturation and/or damage increasingly observed in extremely preterm infants. In our cohort, it also aided identification of several previously known or suspected perinatal clinical antecedents of brain injury, aberrant development, and neurodevelopmental impairments.  相似文献   

4.
Previous research has reported on the development trajectory of the corpus callosum morphology. However, there have been only a few studies that have included data on infants. The goal of the present study was to examine the morphology of the corpus callosum in healthy participants of both sexes, from infancy to early adulthood. We sought to characterize normal development of the corpus callosum and possible sex differences in development. We performed a morphometric magnetic resonance imaging (MRI) study of 114 healthy individuals, aged 1 month to 25 years old, measuring the size of the corpus callosum. The corpus callosum was segmented into seven subareas of the rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus and splenium. Locally weighted regression analysis (LOESS) indicated significant non-linear age-related changes regardless of sex, particularly during the first few years of life. After this increase, curve slopes gradually became flat during adolescence and adulthood in both sexes. Age of local maximum for each subarea of the corpus callosum differed across the sexes. Ratios of total corpus callosum and genu, posterior midbody, as well as splenium to the whole brain were significantly higher in females compared with males. The present results demonstrate that the developmental trajectory of the corpus callosum during early life in healthy individuals is non-linear and dynamic. This pattern resembles that found for the cerebral cortex, further suggesting that this period plays a very important role in neural and functional development. In addition, developmental trajectories and changes in growth do show some sex differences.  相似文献   

5.

What Is Known about this Subject?

Diffusion-weighted MRI has demonstrated changes in the corpus callosum of term neonates with perinatal asphyxia. The severity of cerebral changes demonstrated using diffusion-weighted MRI is difficult to assess without measuring values of the Apparent Diffusion Coefficient (ADC).

What Is New?

ADC values of the anterior part of the corpus callosum are slightly higher than of the posterior part in full term infants with perinatal asphyxia. Low ADC values of the corpus callosum were associated with an adverse outcome in infants with perinatal asphyxia. In infants treated with hypothermia lower ADC values than with normothermia were associated with a poor outcome, supporting neuroprotective effects of hypothermia

Background

Using MRI, changes can be detected in the corpus callosum (CC) following perinatal asphyxia which are associated with later neurodevelopmental outcome.

Aim

To study the association between the apparent diffusion coefficient of water (ADC) in the CC on MRI in neonates with perinatal asphyxia and neurodevelopmental outcome at 18 months of age.

Subjects, Methods

Of 121 infants 32 (26%) died and 13 (11%) survived with an adverse neurological outcome. Sixty-five (54%) received therapeutic hypothermia. MRI was performed within 7 days after birth using a 1.5 T or 3.0 T system, and ADC values were measured in the anterior and posterior CC. The association between ADC and composite outcome (death or abnormal neurodevelopment) was analyzed for both normothermia and hypothermia cases using receiver operating characteristics.

Results

ADC values of the posterior CC were lower than of the anterior part (mean difference 0.050 x 10-3 mm2/s, p<0.001). Field strength did not affect ADC values. ADC values of the posterior part of the CC were significantly lower in infants with basal ganglia/thalamus or near total brain injury (p<0.001). Lower ADC values were associated with an adverse outcome, but cut-off levels were lower after hypothermia (1.024 x 10-3 mm2/s vs 0.969 x 10-3 mm2/s)

Conclusion

Low ADC values of the posterior part of the corpus callosum are associated with an adverse outcome in term or near term neonates with perinatal asphyxia. Therapeutic hypothermia slightly modifies this association, showing that lower values were needed for an adverse outcome.  相似文献   

6.

Objective

Understanding healthy brain development in utero is crucial in order to detect abnormal developmental trajectories due to developmental disorders. However, in most studies neuroimaging was done after a significant postnatal period, and in those studies that performed neuroimaging on fetuses, the quality of data has been affected due to complications of scanning during pregnancy. To understand healthy brain development between 37–41 weeks of gestational age, our study assessed the in utero growth of the brain in healthy term born babies with DTI scanning soon after birth.

Methods

A cohort of 93 infants recruited from maternity hospitals in Singapore underwent diffusion tensor imaging between 5 to 17 days after birth. We did a cross-sectional examination of white matter microstructure of the brain among healthy term infants as a function of gestational age via voxel-based analysis on fractional anisotropy.

Results

Greater gestational age at birth in term infants was associated with larger fractional anisotropy values in early developing brain regions, when corrected for age at scan. Specifically, it was associated with a cluster located at the corpus callosum (corrected p<0.001), as well as another cluster spanning areas of the anterior corona radiata, anterior limb of internal capsule, and external capsule (corrected p<0.001).

Conclusions

Our findings show variation in brain maturation associated with gestational age amongst ‘term’ infants, with increased brain maturation when born with a relatively higher gestational age in comparison to those infants born with a relatively younger gestational age. Future studies should explore if these differences in brain maturation between 37 and 41 weeks of gestational age will persist over time due to development outside the womb.  相似文献   

7.

Corpus callosum trauma has long been implicated in mild traumatic brain injury (mTBI), yet the mechanism by which forces penetrate this structure is unknown. We investigated the hypothesis that coronal and horizontal rotations produce motion of the falx cerebri that damages the corpus callosum. We analyzed previously published head kinematics of 115 sports impacts (2 diagnosed mTBI) measured with instrumented mouthguards and used finite element (FE) simulations to correlate falx displacement with corpus callosum deformation. Peak coronal accelerations were larger in impacts with mTBI (8592 rad/s2 avg.) than those without (1412 rad/s2 avg.). From FE simulations, coronal acceleration was strongly correlated with deep lateral motion of the falx center (r = 0.85), while horizontal acceleration was correlated with deep lateral motion of the falx periphery (r > 0.78). Larger lateral displacement at the falx center and periphery was correlated with higher tract-oriented strains in the corpus callosum body (r = 0.91) and genu/splenium (r > 0.72), respectively. The relationship between the corpus callosum and falx was unique: removing the falx from the FE model halved peak strains in the corpus callosum from 35% to 17%. Consistent with model results, we found indications of corpus callosum trauma in diffusion tensor imaging of the mTBI athletes. For a measured alteration of consciousness, depressed fractional anisotropy and increased mean diffusivity indicated possible damage to the mid-posterior corpus callosum. Our results suggest that the corpus callosum may be sensitive to coronal and horizontal rotations because they drive lateral motion of a relatively stiff membrane, the falx, in the direction of commissural fibers below.

  相似文献   

8.
Poot M  Badea A  Williams RW  Kas MJ 《PloS one》2011,6(5):e18612

Background

Understanding complex networks that modulate development in humans is hampered by genetic and phenotypic heterogeneity within and between populations. Here we present a method that exploits natural variation in highly diverse mouse genetic reference panels in which genetic and environmental factors can be tightly controlled. The aim of our study is to test a cross-species genetic mapping strategy, which compares data of gene mapping in human patients with functional data obtained by QTL mapping in recombinant inbred mouse strains in order to prioritize human disease candidate genes.

Methodology

We exploit evolutionary conservation of developmental phenotypes to discover gene variants that influence brain development in humans. We studied corpus callosum volume in a recombinant inbred mouse panel (C57BL/6J×DBA/2J, BXD strains) using high-field strength MRI technology. We aligned mouse mapping results for this neuro-anatomical phenotype with genetic data from patients with abnormal corpus callosum (ACC) development.

Principal Findings

From the 61 syndromes which involve an ACC, 51 human candidate genes have been identified. Through interval mapping, we identified a single significant QTL on mouse chromosome 7 for corpus callosum volume with a QTL peak located between 25.5 and 26.7 Mb. Comparing the genes in this mouse QTL region with those associated with human syndromes (involving ACC) and those covered by copy number variations (CNV) yielded a single overlap, namely HNRPU in humans and Hnrpul1 in mice. Further analysis of corpus callosum volume in BXD strains revealed that the corpus callosum was significantly larger in BXD mice with a B genotype at the Hnrpul1 locus than in BXD mice with a D genotype at Hnrpul1 (F = 22.48, p<9.87*10−5).

Conclusion

This approach that exploits highly diverse mouse strains provides an efficient and effective translational bridge to study the etiology of human developmental disorders, such as autism and schizophrenia.  相似文献   

9.
The corpus callosum is the principal cerebral commissure connecting the right and left hemispheres. The development of the corpus callosum is under tight genetic control, as demonstrated by abnormalities in its development in more than 1,000 genetic syndromes. We recruited more than 25 families in which members affected with corpus callosum hypoplasia (CCH) lacked syndromic features and had consanguineous parents, suggesting recessive causes. Exome sequence analysis identified C12orf57 mutations at the initiator methionine codon in four different families. C12orf57 is ubiquitously expressed and encodes a poorly annotated 126 amino acid protein of unknown function. This protein is without significant paralogs but has been tightly conserved across evolution. Our data suggest that this conserved gene is required for development of the human corpus callosum.  相似文献   

10.
11.
High adiposity is deleteriously associated with brain health, and may disproportionately affect white matter integrity; however, limited information exists regarding the mechanisms underlying the association between body mass (BMI) and white matter integrity. The present study evaluated whether vascular and inflammatory markers influence the relationship between BMI and white matter in healthy aging. We conducted a cross-sectional evaluation of white matter integrity, BMI, and vascular/inflammatory factors in a cohort of 138 healthy older adults (mean age: 71.3 years). Participants underwent diffusion tensor imaging, provided blood samples, and participated in a health evaluation. Vascular risk factors and vascular/inflammatory blood markers were assessed. The primary outcome measure was fractional anisotropy (FA) of the genu, body, and splenium (corpus callosum); exploratory measures included additional white matter regions, based on significant associations with BMI. Regression analyses indicated that higher BMI was associated with lower FA in the corpus callosum, cingulate, and fornix (p<.001). Vascular and inflammatory factors influenced the association between BMI and FA. Specifically, BMI was independently associated with the genu [β=-.21; B=-.0024; 95% CI, -.0048 to -.0000; p=.05] and cingulate fibers [β=-.39; B=-.0035; 95% CI,-.0056 to -.0015; p<.001], even after controlling for vascular/inflammatory risk factors and blood markers. In contrast, BMI was no longer significantly associated with the fornix and middle/posterior regions of the corpus callosum after controlling for these markers. Results partially support a vascular/inflammatory hypothesis, but also suggest a more complex relationship between BMI and white matter characterized by potentially different neuroanatomic vulnerability.  相似文献   

12.
Gut microbiota plays a key role in multiple aspects of human health and disease, particularly in early life. Distortions of the gut microbiota have been found to correlate with fatal diseases in preterm infants, however, developmental patterns of gut microbiome and factors affecting the colonization progress in preterm infants remain unclear. The purpose of this prospective longitudinal study was to explore day-to-day gut microbiome patterns in preterm infants during their first 30 days of life in the neonatal intensive care unit (NICU) and investigate potential factors related to the development of the infant gut microbiome. A total of 378 stool samples were collected daily from 29 stable/healthy preterm infants. DNA extracted from stool was used to sequence the V4 region of the 16S rRNA gene region for community analysis. Operational taxonomic units (OTUs) and α-diversity of the community were determined using QIIME software. Proteobacteria was the most abundant phylum, accounting for 54.3% of the total reads. Result showed shift patterns of increasing Clostridium and Bacteroides, and decreasing Staphylococcus and Haemophilus over time during early life. Alpha-diversity significantly increased daily in preterm infants after birth and linear mixed-effects models showed that postnatal days, feeding types and gender were associated with the α-diversity, p< 0.05–0.01. Male infants were found to begin with a low α-diversity, whereas females tended to have a higher diversity shortly after birth. Female infants were more likely to have higher abundance of Clostridiates, and lower abundance of Enterobacteriales than males during early life. Infants fed mother’s own breastmilk (MBM) had a higher diversity of gut microbiome and significantly higher abundance in Clostridiales and Lactobacillales than infants fed non-MBM. Permanova also showed that bacterial compositions were different between males and females and between MBM and non-MBM feeding types. In conclusion, infant postnatal age, gender and feeding type significantly contribute to the dynamic development of the gut microbiome in preterm infants.  相似文献   

13.
The regenerative capacity of the central nervous system must be optimized to promote repair following traumatic brain injury (TBI) and may differ with the site and form of damage. Sonic hedgehog (Shh) maintains neural stem cells and promotes oligodendrogenesis. We examined whether Shh signaling contributes to neuroblast (doublecortin) or oligodendrocyte progenitor (neural/glial antigen 2 [NG2]) responses in two distinct TBI models. Shh-responsive cells were heritably labeled in vivo using Gli1-CreERT2;R26-YFP bitransgenic mice with tamoxifen administration on Days 2 and 3 post-TBI. Injury to the cerebral cortex was produced with mild controlled cortical impact. Yellow fluorescent protein (YFP) cells decreased in cortical lesions. Total YFP cells increased in the subventricular zone (SVZ), indicating Shh pathway activation in SVZ cells, including doublecortin-labeled neuroblasts. The alternate TBI model produced traumatic axonal injury in the corpus callosum. YFP cells decreased within the SVZ and were rarely double labeled as NG2 progenitors. NG2 progenitors increased in the cortex, with a similar pattern in the corpus callosum. To further test the potential of NG2 progenitors to respond through Shh signaling, Smoothened agonist was microinjected into the corpus callosum to activate Shh signaling. YFP cells and NG2 progenitors increased in the SVZ but were not double labeled. This result indicates that either direct Smoothened activation in NG2 progenitors does not signal through Gli1 or that Smoothened agonist acts indirectly to increase NG2 progenitors. Therefore, in all conditions, neuroblasts exhibited differential Shh pathway utilization compared with oligodendrocyte progenitors. Notably, cortical versus white matter damage from TBI produced opposite responses of Shh-activated cells within the SVZ.  相似文献   

14.

Background

The precise assessment of cerebral saturation changes during an inflammatory injury in the developing brain, such as seen in periventricular leukomalacia, is not well defined. This study investigated the impact of inflammation on locoregional cerebral oxygen saturation in a newborn rodent model using photoacoustic imaging.

Methods

1 mg/kg of lipopolysaccharide(LPS) diluted in saline or saline alone was injected under ultrasound guidance directly in the corpus callosum of P3 rat pups. Coronal photoacoustic images were carried out 24 h after LPS exposure. Locoregional oxygen saturation (SO2) and resting state connectivity were assessed in the cortex and the corpus callosum. Microvasculature was then evaluated on cryosection slices by lectin histochemistry.

Results

Significant reduction of SO2 was found in the corpus callosum; reduced SO2 was also found in the cortex ipsilateral to the injection site. Seed-based functional connectivity analysis showed that bilateral connectivity was not affected by LPS exposure. Changes in locoregional oxygen saturation were accompanied by a significant reduction in the average length of microvessels in the left cortex but no differences were observed in the corpus callosum.

Conclusion

Inflammation in the developing brain induces marked reduction of locoregional oxygen saturation, predominantly in the white matter not explained by microvascular degeneration. The ability to examine regional saturation offers a new way to monitor injury and understand physiological disturbance non-invasively.  相似文献   

15.
Glycoprotein sialyltransferase was studied in the rat brain and in the frontal grey cortex and corpus callosum of the calf brain. Activities were measured with endogenous acceptors as well as with desialized α1-acid glycoprotein as an exogenous acceptor. The enzyme was characterized by means of its pH optimum, Km values and requirements for detergent and cations. The properties of the rat and calf brain enzymes appeared to be very similar. Substrate specificity studies indicate that more than one glycoprotein sialyltransferase reaction may occur in brain. The regional distribution of the enzyme in the calf brain was rather uniform. From this it was concluded that glycoprotein sialyltransferase, at least for the greater part, is localized in membranes other than those of the synaptic complexes, and occurs in both neurons and glia cells. The regional distribution of the amounts of endogenous glycoprotein acceptor sites, which could be calculated from the sialyltransferase activities, showed a striking correlation with that of the protein-bound sialic acid, but not with the sialyltransferase activity. The role of these endogenous glycoprotein acceptors in cerebral sialoglycoprotein biosynthesis is discussed.  相似文献   

16.
The objective of this research was to describe the organization, connectivity and microstructure of the corpus callosum of the spider monkey (Ateles geoffroyi). Non-invasive magnetic resonance imaging and diffusion-tensor imaging were obtained from three subjects using a 3T Philips scanner. We hypothesized that the arrangement of fibers in spider monkeys would be similar to that observed in other non-human primates. A repeated measure (n = 3) of fractional anisotropy values was obtained of each subject and for each callosal subdivision. Measurements of the diffusion properties of corpus callosum fibers exhibited a similar pattern to those reported in the literature for humans and chimpanzees. No statistical difference was reached when comparing this parameter between the different CC regions (p = 0.066). The highest fractional anisotropy values corresponded to regions projecting from the corpus callosum to the posterior cortical association areas, premotor and supplementary motor cortices. The lowest fractional anisotropy corresponded to projections to motor and sensory cortical areas. Analyses indicated that approximately 57% of the fibers projects to the frontal cortex and 43% to the post-central cortex. While this study had a small sample size, the results provided important information concerning the organization of the corpus callosum in spider monkeys.  相似文献   

17.
目的:研究胎盘组织学绒毛膜羊膜炎与未足月胎膜早破后早产儿出现脑损伤的相关性。方法:选取我院妇产科2017年1月至2019年12月收治的因胎膜早破生产的未足月早产儿80例,根据是否存在绒毛膜羊膜炎分为观察组(绒毛膜羊膜炎)和对照组(无绒毛膜羊膜炎),每组40例,患儿于胎龄40 w时行颅脑核磁共振检查(Magnetic Resonance Examination,MRI),对比两组脑室周围白质软化(periventricular leukomalacia,PVL)阳性率,且采用新生儿20项行为神经评分量表(neonatal behavior neurological assessment,NBNA)评价两组患儿神经行为,然后在纠正胎龄3、6个月时对两组患儿进行智能发育指数(mental developmentalindex,MDI)及心理运动发育指数(psychomotor development index,PDI)测定并对比。结果:观察组PVL阳性率为27.5%,高于对照组的10.0%(P<0.05);观察组纠正胎龄40 w NBNA得分为(31.02±3.51)分,对照组为(35.21±4.02)分,差异具有统计学意义(P<0.05);胎龄3个月,MDI得分在观察组与对照组间差异无具有统计学意义(P>0.05),但其PDI得分低于对照组(P<0.05);胎龄6个月,观察组MDI及PDI得分均低于对照组(P<0.05)。结论:绒毛膜羊膜炎与未足月胎膜早破后早产儿的脑部损伤情况具有一定相关性,可以作为预测早产儿脑损伤程度的一项指标。  相似文献   

18.
One approach to the problem of determining the mechanisms coupling the structure and functions of the brain is studies in clinical populations aimed at assessing the presence or absence of congruence of anatomical/ morphological and functional abnormalities. Magnetic resonance imaging (MRI), including structural MRI and diffusion tensor imaging with tractography, as well as the recording of auditory event-related potentials (ERPs) in the standard two-tone oddball paradigm and the sensory gating paradigm, was conducted in 26 male patients with paroxysmal juvenile schizophrenia and 26 mentally healthy men with no family history of mental illness. MRI abnormalities have been found in the genu of the corpus callosum and fasciculus uncinatus of the left hemisphere of the patients. Reduction of the fractional anisotropy in the genu of the corpus callosum was correlated with P300 reduction in the right temporal region.  相似文献   

19.
Glutamatergic signal transduction occurs in CNS white matter, but quantitative data on glutamate uptake and metabolism are lacking. We report that the level of the astrocytic glutamate transporter GLT in rat fimbria and corpus callosum was approximately 35% of that in parietal cortex; uptake of [3H]glutamate was 24 and 43%, respectively, of the cortical value. In fimbria and corpus callosum levels of synaptic proteins, synapsin I and synaptophysin were 15-20% of those in cortex; the activities of glutamine synthetase and phosphate-activated glutaminase, enzymes involved in metabolism of transmitter glutamate, were 11-25% of cortical values, and activities of aspartate and alanine aminotransferases were 50-70% of cortical values. The glutamate level in fimbria and corpus callosum was 5-6 nmol/mg tissue, half the cortical value. These data suggest a certain capacity for glutamatergic neurotransmission. In optic and trigeminal nerves, [3H]glutamate uptake was < 10% of the cortical uptake. Formation of [14C]glutamate from [U-14C]glucose in fimbria and corpus callosum of awake rats was 30% of cortical values, in optic nerve it was 13%, illustrating extensive glutamate metabolism in white matter in vivo. Glutamate transporters in brain white matter may be important both physiologically and during energy failure when reversal of glutamate uptake may contribute to excitotoxicity.  相似文献   

20.
Cetaceans diverged from terrestrial mammals approximately 53 mya and have evolved independently since then. During this time period, they have developed a complex nervous system with many adaptations to the marine environment. This study used stereological methods to estimate the total number and diameter of the myelinated fibers in the corpus callosum of the common minke whale (Balaenoptera acutorostrata) (n= 4). The total number of callosal fibers was estimated to 55.3 × 106 (range: 49.0 × 106–59.1 × 106). Despite large variations of the callosal area (350–950 mm2), there was little variation in total fiber number. The fibers with diameters ranging from 0.822 to 1.14 μm were the most frequent, which is similar to results obtained in the human brain using the same method. There was no systematic distribution of large‐, middle‐, or small‐sized fibers along the rostrocaudal axis of the corpus callosum. This study indicated that the corpus callosum of the common minke whale is small and has few fibers compared to terrestrial mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号