首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied neurophysiological characteristics of the age-related development in junior school students (7–8 and 10–11 years of age) living in the Arctic region of the Russian Federation. The background electroencephalograms (EEGs) were recorded during quiet wakefulness with the eyes closed and open, and event related potentials (ERP) were recorded during the passive perception of sound stimuli within the oddball paradigm in the group of children (33 subjects, 18 boys and 15 girls). A decrease of the latency period and the spatial rearrangement of mismatch negativity with an increase in the amplitude in the centrofrontal cortex have been revealed in the groups of children aged 10–11 years during the perception of a rare stimulus and a decrease of the latency period of the Р300 component in the central and parietal areas associated with the maturation of mechanisms for involuntary auditory attention. Age-specific differences in the components of auditory ERP (N1 and N2) have been shown during passive perception of rare and frequent sounds, which reflect the processes of the morphofunctional maturation of the brain cortex in healthy Arctic school students (an increase of the N1 component amplitude, a decrese of the amplitude and the latency period of the N2 component). The analysis of the background EEG characteristics has shown both the common features, such as a decrease with age of the EEG power in the Δ and θ bands in the eyes-open state, and the different direction and topographic specificities in the age-dependent reorganization of bioelectrical activity in boys and girls in the α1 and α2 EEG bands.  相似文献   

2.
Decoding human speech requires both perception and integration of brief, successive auditory stimuli that enter the central nervous system as well as the allocation of attention to language-relevant signals. This study assesses the role of attention on processing rapid transient stimuli in adults and children. Cortical responses (EEG/ERPs), specifically mismatch negativity (MMN) responses, to paired tones (standard 100–100Hz; deviant 100–300Hz) separated by a 300, 70 or 10ms silent gap (ISI) were recorded under Ignore and Attend conditions in 21 adults and 23 children (6–11 years old). In adults, an attention-related enhancement was found for all rate conditions and laterality effects (L>R) were observed. In children, 2 auditory discrimination-related peaks were identified from the difference wave (deviant-standard): an early peak (eMMN) at about 100–300ms indexing sensory processing, and a later peak (LDN), at about 400–600ms, thought to reflect reorientation to the deviant stimuli or “second-look” processing. Results revealed differing patterns of activation and attention modulation for the eMMN in children as compared to the MMN in adults: The eMMN had a more frontal topography as compared to adults and attention played a significantly greater role in childrens’ rate processing. The pattern of findings for the LDN was consistent with hypothesized mechanisms related to further processing of complex stimuli. The differences between eMMN and LDN observed here support the premise that separate cognitive processes and mechanisms underlie these ERP peaks. These findings are the first to show that the eMMN and LDN differ under different temporal and attentional conditions, and that a more complete understanding of children’s responses to rapid successive auditory stimulation requires an examination of both peaks.  相似文献   

3.

Background

Hearing ability is essential for normal speech development, however the precise mechanisms linking auditory input and the improvement of speaking ability remain poorly understood. Auditory feedback during speech production is believed to play a critical role by providing the nervous system with information about speech outcomes that is used to learn and subsequently fine-tune speech motor output. Surprisingly, few studies have directly investigated such auditory-motor learning in the speech production of typically developing children.

Methodology/Principal Findings

In the present study, we manipulated auditory feedback during speech production in a group of 9–11-year old children, as well as in adults. Following a period of speech practice under conditions of altered auditory feedback, compensatory changes in speech production and perception were examined. Consistent with prior studies, the adults exhibited compensatory changes in both their speech motor output and their perceptual representations of speech sound categories. The children exhibited compensatory changes in the motor domain, with a change in speech output that was similar in magnitude to that of the adults, however the children showed no reliable compensatory effect on their perceptual representations.

Conclusions

The results indicate that 9–11-year-old children, whose speech motor and perceptual abilities are still not fully developed, are nonetheless capable of auditory-feedback-based sensorimotor adaptation, supporting a role for such learning processes in speech motor development. Auditory feedback may play a more limited role, however, in the fine-tuning of children''s perceptual representations of speech sound categories.  相似文献   

4.
Components of evoked potentials to stimuli differing in size and warning about the necessity of subsequent recognition of an image at the global or local level were analyzed to identify the specific features of selective attention in adults and seven-year-old children. In both age groups, components were found that were related to selective attention aimed at processing a warning stimulus (the P1, N1, and P2 components) and producing a response to the subsequent test stimulus. Both age groups exhibited similar dependences of changes in the P1 component (40–110 and 110–220 ms in the adults and children, respectively) on the type of the warning stimulus. The children displayed a greater increase in the amplitude of the P1 component of the response to the global versus the local key than the adults did. The P1 component is suggested to reflect not only the sensory features of the stimulus but also the selective attention associated with its sensory processing. The amplitude of the P2 component of the response to the global key (190–240 and 330–410 ms in the adults and children, respectively) was higher in both age groups. This component is believed to indicate evaluation of the signal importance of the warning stimulus. In the adults, late components of event-related potentials (ERPs), i.e., P3-N3 (300–450 ms), were associated with the global or local level of recognition of a test hierarchical stimulus that was presented after the key, with the greatest differences in the central and posterior associative areas of the right hemisphere and in the frontocentral areas of the left hemisphere. In the children, the N3 component (530–600 ms) in the left parietal area, as well as the late ERP phases, i.e., Ps (680–950 ms) and Ns (1030–1130 ms), during which the frontal cortical areas are involved in preparing the subsequent response, was shown to depend on the type of the warning stimulus.  相似文献   

5.
The musician''s brain is considered as a good model of brain plasticity as musical training is known to modify auditory perception and related cortical organization. Here, we show that music-related modifications can also extend beyond motor and auditory processing and generalize (transfer) to speech processing. Previous studies have shown that adults and newborns can segment a continuous stream of linguistic and non-linguistic stimuli based only on probabilities of occurrence between adjacent syllables, tones or timbres. The paradigm classically used in these studies consists of a passive exposure phase followed by a testing phase. By using both behavioural and electrophysiological measures, we recently showed that adult musicians and musically trained children outperform nonmusicians in the test following brief exposure to an artificial sung language. However, the behavioural test does not allow for studying the learning process per se but rather the result of the learning. In the present study, we analyze the electrophysiological learning curves that are the ongoing brain dynamics recorded as the learning is taking place. While musicians show an inverted U shaped learning curve, nonmusicians show a linear learning curve. Analyses of Event-Related Potentials (ERPs) allow for a greater understanding of how and when musical training can improve speech segmentation. These results bring evidence of enhanced neural sensitivity to statistical regularities in musicians and support the hypothesis of positive transfer of training effect from music to sound stream segmentation in general.  相似文献   

6.
Banai K  Yifat R 《PloS one》2011,6(5):e19769

Background

Recent studies suggest that human auditory perception follows a prolonged developmental trajectory, sometimes continuing well into adolescence. Whereas both sensory and cognitive accounts have been proposed, the development of the ability to base current perceptual decisions on prior information, an ability that strongly benefits adult perception, has not been directly explored. Here we ask whether the auditory frequency discrimination of preschool children also improves when given the opportunity to use previously presented standard stimuli as perceptual anchors, and whether the magnitude of this anchoring effect undergoes developmental changes.

Methodology/Principal Findings

Frequency discrimination was tested using two adaptive same/different protocols. In one protocol (with-reference), a repeated 1-kHz standard tone was presented repeatedly across trials. In the other (no-reference), no such repetitions occurred. Verbal memory and early reading skills were also evaluated to determine if the pattern of correlations between frequency discrimination, memory and literacy is similar to that previously reported in older children and adults. Preschool children were significantly more sensitive in the with-reference than in the no-reference condition, but the magnitude of this anchoring effect was smaller than that observed in adults. The pattern of correlations among discrimination thresholds, memory and literacy replicated previous reports in older children.

Conclusions/Significance

The processes allowing the use of context to form perceptual anchors are already functional among preschool children, albeit to a lesser extent than in adults. Nevertheless, immature anchoring cannot fully account for the poorer frequency discrimination abilities of young children. That anchoring is present among the majority of typically developing preschool children suggests that the anchoring deficits observed among individuals with dyslexia represent a true deficit rather than a developmental delay.  相似文献   

7.
The ability to discriminate species and recognize individuals is crucial for reproductive success and/or survival in most animals. However, the temporal order and neural localization of these decision-making processes has remained unclear. In this study, event-related potentials (ERPs) were measured in the telencephalon, diencephalon, and mesencephalon of the music frog Nidirana daunchina. These ERPs were elicited by calls from 1 group of heterospecifics (recorded from a sympatric anuran species) and 2 groups of conspecifics that differed in their fundamental frequencies. In terms of the polarity and position within the ERP waveform, auditory ERPs generally consist of 4 main components that link to selective attention (N1), stimulus evaluation (P2), identification (N2), and classification (P3). These occur around 100, 200, 250, and 300 ms after stimulus onset, respectively. Our results show that the N1 amplitudes differed significantly between the heterospecific and conspecific calls, but not between the 2 groups of conspecific calls that differed in fundamental frequency. On the other hand, the N2 amplitudes were significantly different between the 2 groups of conspecific calls, suggesting that the music frogs discriminated the species first, followed by individual identification, since N1 and N2 relate to selective attention and stimuli identification, respectively. Moreover, the P2 amplitudes evoked in females were significantly greater than those in males, indicating the existence of sexual dimorphism in auditory discrimination. In addition, both the N1 amplitudes in the left diencephalon and the P2 amplitudes in the left telencephalon were greater than in other brain areas, suggesting left hemispheric dominance in auditory perception. Taken together, our results support the hypothesis that species discrimination and identification of individual characteristics are accomplished sequentially, and that auditory perception exhibits differences between sexes and in spatial dominance.  相似文献   

8.
Neural processing of auditory looming in the human brain   总被引:2,自引:0,他引:2  
Acoustic intensity change, along with interaural, spectral, and reverberation information, is an important cue for the perception of auditory motion. Approaching sound sources produce increases in intensity, and receding sound sources produce corresponding decreases. Human listeners typically overestimate increasing compared to equivalent decreasing sound intensity and underestimate the time to contact of approaching sound sources. These characteristics could provide a selective advantage by increasing the margin of safety for response to looming objects. Here, we used dynamic intensity and functional magnetic resonance imaging to examine the neural underpinnings of the perceptual priority for rising intensity. We found that, consistent with activation by horizontal and vertical auditory apparent motion paradigms, rising and falling intensity activated the right temporal plane more than constant intensity. Rising compared to falling intensity activated a distributed neural network subserving space recognition, auditory motion perception, and attention and comprising the superior temporal sulci and the middle temporal gyri, the right temporoparietal junction, the right motor and premotor cortices, the left cerebellar cortex, and a circumscribed region in the midbrain. This anisotropic processing of acoustic intensity change may reflect the salience of rising intensity produced by looming sources in natural environments.  相似文献   

9.
Analysis of the topography and parameters of event-related potentials (ERPs) recorded during the presentation of incomplete images with different fragmentation aided in study of the role of different cortical zones and the order of their involvement in the recognition process. The role of the frontal cortical areas at different stages of perception of fragmented images was established. The differences in the ERPs induced by recognized and unrecognized stimuli in the frontal and frontal-temporal derivations in the interval 30–83 ms were associated with the appearance of early positivity in response to recognized images and development of early negativity in response to unrecognized stimuli. The N300 component associated with recognition was stronger in these cortical zones during identification of images. A late positive complex appeared in the frontal areas earlier than in other areas. Involvement of the caudal visual areas in the recognition process was reflected by enhancement of the components P100, P250, and N400. Our results suggest that the frontal areas play the main role in the recognition of fragmented images because they are the structures that organize extraction of traces from long-term modality-specific memory using a system of afferent and efferent links and determine the strategy of information analysis necessary for the solution of a given task.  相似文献   

10.

Objectives

Current models of ADHD suggest abnormal reward and punishment sensitivity, but the exact mechanisms are unclear. This study aims to investigate effects of continuous reward and punishment on the processing of performance feedback in children with ADHD and the modulating effects of stimulant medication.

Methods

15 Methylphenidate (Mph)-treated and 15 Mph-free children of the ADHD-combined type and 17 control children performed a selective attention task with three feedback conditions: no-feedback, gain and loss. Event Related Potentials (ERPs) time-locked to feedback and errors were computed.

Results

All groups performed more accurately with gain and loss than without feedback. Feedback-related ERPs demonstrated no group differences in the feedback P2, but an enhanced late positive potential (LPP) to feedback stimuli (both gains and losses) for Mph-free children with ADHD compared to controls. Feedback-related ERPs in Mph-treated children with ADHD were similar to controls. Correlational analyses in the ADHD groups revealed that the severity of inattention problems correlated negatively with the feedback P2 amplitude and positively with the LPP to losses and omitted gains.

Conclusions

The early selective attention for rewarding and punishing feedback was relatively intact in children with ADHD, but the late feedback processing was deviant (increased feedback LPP). This may explain the often observed positive effects of continuous reinforcement on performance and behaviour in children with ADHD. However, these group findings cannot be generalised to all individuals with the ADHD, because the feedback-related ERPs were associated with the severity of the inattention problems. Children with ADHD-combined type with more inattention problems showed both deviant early attentional selection of feedback stimuli, and deviant late processing of non-reward and punishment.  相似文献   

11.
Measurements on the auditory perception of subjectively uniform rhythm lead to the concept of the perceptual moment. In accordance with the experimental results, the perceptual moment is a function of the duration of the sound impulse and of its temporal envelope. A model for these functional relations is developed, which consists mainly of a first-order low pass, as it was concluded that the temporal perception of sound impulses is dependent on the transient behavior of the auditory system. The perceptual moment of a sound impulse is defined as the moment at which a certain percentage (16%) of the maximum of the transient is trespassed.  相似文献   

12.
In adults and seven- to eight-year-old children, event-related potentials (ERPs) were analyzed during quiet observation and detailed paired comparison of visual stimuli. In both age groups, we showed the differences in the initial stages (component N1) of sensory analysis in these situations. In adults, an increase in the negativity during the initial stages of analysis was observed in the caudal and central areas of the cortex during presentation of standard and test stimuli. In the frontal areas of the cortex, an increase in the negative potential was observed only in ERPs induced by the test stimulus. In children, an increase in the negativity at the initial phases of analysis of stimuli in the situation of working memory, as compared to quiet observation, was confined to the caudal areas of the cortex. Differential curves that characterize analysis of standard and test stimuli showed age-related differences in the initial and late phases of information processing under the conditions of working memory. In adults, the differential curves that characterize analysis of the standard stimulus were represented by negative phases, and the curves related to the test stimulus, by positive phases. In children, late phases of analysis of the standard and test stimuli had smaller differences as compared to adults: the late positive wave was predominant in the responses to both standard and test stimulus in the caudal areas of the cortex. In the frontal areas, there was no considerable increase in the amplitude of the late positive wave in response to the test stimulus. This fact, together with the absence of enhancement of initial negativity in the frontal areas, which reflects analysis of the test stimulus, indicates that the prefrontal cortex plays a smaller role in the comparison of the memory trace with the current information in seven- to eight-year-old children. The data obtained suggest that the central executive of working memory is not sufficiently mature in children aged seven to eight years.  相似文献   

13.
It was recently shown that rhythmic entrainment, long considered a human-specific mechanism, can be demonstrated in a selected group of bird species, and, somewhat surprisingly, not in more closely related species such as nonhuman primates. This observation supports the vocal learning hypothesis that suggests rhythmic entrainment to be a by-product of the vocal learning mechanisms that are shared by several bird and mammal species, including humans, but that are only weakly developed, or missing entirely, in nonhuman primates. To test this hypothesis we measured auditory event-related potentials (ERPs) in two rhesus monkeys (Macaca mulatta), probing a well-documented component in humans, the mismatch negativity (MMN) to study rhythmic expectation. We demonstrate for the first time in rhesus monkeys that, in response to infrequent deviants in pitch that were presented in a continuous sound stream using an oddball paradigm, a comparable ERP component can be detected with negative deflections in early latencies (Experiment 1). Subsequently we tested whether rhesus monkeys can detect gaps (omissions at random positions in the sound stream; Experiment 2) and, using more complex stimuli, also the beat (omissions at the first position of a musical unit, i.e. the ‘downbeat’; Experiment 3). In contrast to what has been shown in human adults and newborns (using identical stimuli and experimental paradigm), the results suggest that rhesus monkeys are not able to detect the beat in music. These findings are in support of the hypothesis that beat induction (the cognitive mechanism that supports the perception of a regular pulse from a varying rhythm) is species-specific and absent in nonhuman primates. In addition, the findings support the auditory timing dissociation hypothesis, with rhesus monkeys being sensitive to rhythmic grouping (detecting the start of a rhythmic group), but not to the induced beat (detecting a regularity from a varying rhythm).  相似文献   

14.
在复杂声环境中,对声音强度的分辨是听觉系统对声音信号精确处理的重要功能之一.到目前为止,有关人对声音强度分辨的研究都是在单耳条件下进行的,然而,正常条件下人都是利用双耳感知强度和方位变化的声音.以人对声刺激强度的最小可察觉差异(just noticeable difference,JND)为强度分辨阈值的指标,观察双耳条件下超前声对人分辨滞后声强度的影响.实验在封闭声场中进行,声刺激强度和空间方位的控制是通过改变双耳平均声压(average binaural level,ABL)和双耳声压差(interaural level difference,ILD)来模拟的.实验结果表明,与安静条件下人对声刺激强度的分辨阈值相比,低强度的超前声对人分辨滞后声强度的阈值无显著影响,而中等及以上强度(ABL大于或等于40 dB)的超前声可提高人分辨滞后声强度的阈值,阈值的提高随超前声强度的增加呈单调增大的趋势.当超前声强度一定时,超前声对人分辨滞后声强度的影响随滞后声强度的增加而衰减,对分辨较高强度的滞后声的阈值影响不显著,该结果与单耳的研究结果有明显差异.实验未发现超前声和滞后声ILD的相对改变对人探测滞后声强度变化的阈值有显著影响.  相似文献   

15.
The study analyzed auditory event-related potentials (ERPs) in 37 healthy right-handed subjects without any neurological or psychiatric disorders. Young age group consisted of 18 persons aged from 10 to 27; advanced age group included 19 persons aged from 32 to 59 years. ERPs were recorded from 32 scalp electrodes according to 10–20 System. Two-tones oddball paradigm including standard and target tones was used for ERP-recording. The sound sequence was given to examinees without any preliminary instruction. Complex psychology testing included Stroop Color and Word Test and Wisconsin Card Sorting Test. Significantly larger amplitude of N200 was detected in young subjects compared to advanced age ones. Wavelet-analysis revealed stronger wavelet-connections in the frontal–central area on the time range of P300 in in advanced age examinees vs. young ones. The correlation of the data of psychological tests examining the executive functions was detected with latency of P300 in young examinees and with amplitude of P300 in advanced age ones. Obtained data suggest that switching from one activity to another is prevalent in young persons and focusing on a current activity in advances age persons.  相似文献   

16.
Many species rely on multiple modalities to acquire information about predation risk, potential mates, and food. We studied the sensory modalities of blue land crabs, Cardisoma guanhumi, used for food detection. We isolated the acoustic and seismic cues of falling fruit and measured latency to emerge from their burrows after hearing the sound of falling fruits, seismic signals associated with fruit drop, and a combination of both modalities. In contrast to a previous study, we found no support that either substrate-born vibration or sound-enhanced emergence time. In fact, the actual fruit drop caused slower emergence times at one site. This crab lives in a seismically variable environment and perhaps such species are likely to rely more on other modalities to identify food.  相似文献   

17.
Normal adult volunteer subjects ranging in age from 18 to 90 years participated in a study in which analogous auditory and visual paradigms, with infrequently occurring target and non-target events, were used to elicit event-related potentials (ERPs) with a prominent P3 component. Of the 135 subjects participating, 66 completed both auditory and visual paradigms. The amplitude and latency of P3 were analyzed using average ERPs, single trials (adaptive filter) and principal components analysis (PCA). Age regressions were calculated using measures derived from average ERPs and single trials. Single trial measures were better than average ERP measures in demonstrating age-related changes in P3 latency. There was a significant increase in P3 latency with age of 1–1.5 msec/year. The range of normal P3 latency for a given age (1 S.E. of the regression = 40 msec for the visual target stimuli) was much larger than obtained by other investigators.The visual paradigm produced higher P3 latency/age correlations than the auditory paradigm (visual target r = 0.52, non-target r = 0.42; auditory target r = 0.32, non-target r = 0.33). Within individuals, the amplitude and latency of P3 generated by auditory and visual stimuli were highly correlated, though the visual paradigm produced larger and later P3s than the auditory paradigm.There is an apparent change in the scalp topography of P3 with age. In young adults, P3s to target stimuli have a markedly parietal distribution. The distribution of P3 becomes more uniformly distributed from Pz to Fz with age. This may be due to changes in overlapping components such as the slow wave (SW) rather than to changes in the amplitude of P3 per se.  相似文献   

18.
BackgroundIn addition to the core symptoms, attention deficit hyperactivity disorder (ADHD) is associated with poor emotion regulation. There is some evidence that children and young adults with ADHD have lower omega-3 levels and that supplementation with omega-3 can improve both ADHD and affective symptoms. We therefore investigated differences between ADHD and non-ADHD children in omega-3/6 fatty acid plasma levels and the relationship between those indices and emotion-elicited event-related potentials (ERPs).MethodsChildren/adolescents with (n=31) and without ADHD (n=32) were compared in their plasma omega-3/6 indices and corresponding ERPs during an emotion processing task.ResultsChildren with ADHD had lower mean omega-3/6 and ERP abnormalities in emotion processing, independent of emotional valence relative to control children. ERP abnormalities were significantly associated with lower omega-3 levels in the ADHD group.ConclusionsThe findings reveal for the first time that lower omega-3 fatty acids are associated with impaired emotion processing in ADHD children.  相似文献   

19.
There are significant challenges to restoring binaural hearing to children who have been deaf from an early age. The uncoordinated and poor temporal information available from cochlear implants distorts perception of interaural timing differences normally important for sound localization and listening in noise. Moreover, binaural development can be compromised by bilateral and unilateral auditory deprivation. Here, we studied perception of both interaural level and timing differences in 79 children/adolescents using bilateral cochlear implants and 16 peers with normal hearing. They were asked on which side of their head they heard unilaterally or bilaterally presented click- or electrical pulse- trains. Interaural level cues were identified by most participants including adolescents with long periods of unilateral cochlear implant use and little bilateral implant experience. Interaural timing cues were not detected by new bilateral adolescent users, consistent with previous evidence. Evidence of binaural timing detection was, for the first time, found in children who had much longer implant experience but it was marked by poorer than normal sensitivity and abnormally strong dependence on current level differences between implants. In addition, children with prior unilateral implant use showed a higher proportion of responses to their first implanted sides than children implanted simultaneously. These data indicate that there are functional repercussions of developing binaural hearing through bilateral cochlear implants, particularly when provided sequentially; nonetheless, children have an opportunity to use these devices to hear better in noise and gain spatial hearing.  相似文献   

20.
Working memory     
It is suggested that working memory comprises a system for the temporary storage and manipulation of information, forming an important link between perception and controlled action. Evidence is presented for a three-component model, comprising an attentional control system, the central executive, and two subsidiary slave systems. One of these the, the visuo-spatial sketchpad holds and manipulates spatial information, while the other, the phonological loop performs a similar function for auditory and speech-based information. Evidence is presented for the view that the phonological loop has evolved as a mechanism to facilitate the acquisition of language.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号