首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intrauterine hypoxia is one of the most common stressors in fetuses, which can lead to abnormal brain development and permanent neurological deficits in adulthood. Neurological disorder excitotoxicity induced by hypoxia or ischemia may involve N-methyl-d-aspartate receptors (NMDARs), which are known to participate in the maturation and plasticity of developmental neurons. Inhibition of NMDARs has been reported to improve neurological outcomes in traumatic brain injuries and Alzheimer’s disease. Here, we investigated if antenatal blockade of NMDARs induced by memantine could alleviate neurodevelopmental brain damage and long-term cognitive deficits in intrauterine hypoxia rats. Pregnant rats were assigned to four groups: air control, air?+?memantine, hypoxia, and hypoxia?+?memantine. The rats were exposed to hypoxic conditions (FiO2?=?0.095–0.115) for 8 h/day (hypoxia group) or given a daily memantine injection (5 mg/kg, i.p.) before hypoxia exposure from pregnant day 19 (G19) to G20 (hypoxia?+?memantine group).The influence of NMDARs antenatal blockade by memantine on intrauterine hypoxia-induced brain developmental damage and cognitive function was then studied. Intrauterine hypoxia resulted in decreased fetal body weight, brain weight, cognitive function, hippocampal neuron numbers, and Ki-67 proliferation index in the hippocampus. Memantine preventive treatment in pregnant rats before hypoxia exposure alleviated the aforementioned damage in vivo. Excessive activation of NMDARs contributes to fetal brain developmental damage and cognitive ability impairment induced by intrauterine hypoxia, which could be alleviated by antenatal memantine preventative treatment.  相似文献   

2.
Shi Q  Fu J  Ge D  He Y  Ran J  Liu Z  Wei J  Diao T  Lu Y 《Neurochemical research》2012,37(9):2042-2052
Acute exposure to high altitudes can cause neurological dysfunction due to decreased oxygen availability to the brain. In this study, the protective effects of Huperzine A on cognitive deficits along with oxidative and apoptotic damage, due to acute hypobaric hypoxia, were investigated in male Sprague–Dawley rats. Rats were exposed to simulated hypobaric hypoxia at 6,000 m in a specially fabricated animal decompression chamber while receiving daily Huperzine A orally at the dose of 0.05 or 0.1 mg/kg body weight. After exposure to hypobaric hypoxia for 5 days, rats were trained in a Morris Water Maze for 5 consecutive days. Subsequent trials revealed Huperzine A supplementation at a dose of 0.1 mg/kg body weight restored spatial memory significantly, as evident from decreased escape latency and path length to reach the hidden platform, and the increase in number of times of crossing the former platform location and time spent in the former platform quadrant. In addition, after exposure to hypobaric hypoxia, animals were sacrificed and biomarkers of oxidative damage, such as reactive oxygen species, lipid peroxidation, lactate dehydrogenase activity, reduced glutathione, oxidized glutathione and superoxide dismutase were studied in the hippocampus. Expression levels of pro-apoptotic proteins (Bax, caspase-3) and anti-apoptotic protein (Bcl-2) of hippocampal tissues were evaluated by Western blotting. There was a significant increase in oxidative stress along with increased expression of apoptotic proteins in hypoxia exposed rats, which was significantly improved by oral Huperzine A at 0.1 mg/kg body weight. These results suggest that supplementation with Huperzine A improves cognitive deficits, reduces oxidative stress and inhibits the apoptotic cascade induced by acute hypobaric hypoxia.  相似文献   

3.
Oxidative damage in the brain may lead to cognitive impairments in aged humans. Further, in age-associated neurodegenerative disease, oxidative damage may be exacerbated and associated with additional neuropathology. Epidemiological studies in humans show both positive and negative effects of the use of antioxidant supplements on healthy cognitive aging and on the risk of developing Alzheimer disease (AD). This contrasts with consistent behavioral improvements in aged rodent models. In a higher mammalian model system that naturally accumulates human-type pathology and cognitive decline (aged dogs), an antioxidant enriched diet leads to rapid learning improvements, memory improvements after prolonged treatment and cognitive maintenance. Cognitive benefits can be further enhanced by the addition of behavioral enrichment. In the brains of aged treated dogs, oxidative damage is reduced and there is some evidence of reduced AD-like neuropathology. In combination, antioxidants may be beneficial for promoting healthy brain aging and reducing the risk of neurodegenerative disease. Special issue article in honor of Dr. Akitne Mori.  相似文献   

4.
Diabetes mellitus manifests itself in a wide variety of complications and the symptoms of the disease are multifactorial. The present study was carried out to investigate the effects of vanadyl sulfate on biochemical parameters, enzyme activities and brain lipid peroxidation, glutathione and nonenzymatic glycosylation of normal- and streptozotocin-diabetic rats. Streptozotocin (STZ) was administered as a single dose (65 mg/kg) to induce diabetes. A dose of 100 mg/kg vanadyl sulfate was orally administered daily to STZ-diabetic and normal rats, separately until the end of the experiment, at day 60. In STZ-diabetic group, blood glucose, serum sialic and uric acid levels, serum catalase (CAT) and lactate dehydrogenase (LDH) activities, brain lipid peroxidation (LPO) and nonenzymatic glycosylation (NEG) increased, while brain glutathione (GSH) level and body weight decreased. In the diabetic group given vanadyl sulfate, blood glucose, serum sialic and uric acid levels, serum CAT and LDH activities and brain LPO and NEG levels decreased, but brain GSH and body weight increased.The present study showed that vanadyl sulfate exerted antioxidant effects and consequently may prevent brain damage caused by streptozotocin-induced diabetes.  相似文献   

5.
The role of oxidative stress in electroconvulsive therapy-related effects is not well studied. The purpose of this study was to determine oxidative stress parameters in several brain structures after a single electroconvulsive seizure or multiple electroconvulsive seizures. Rats were given either a single electroconvulsive shock or a series of eight electroconvulsive shocks. Brain regions were isolated, and levels of oxidative stress in the brain tissue (cortex, hippocampus, striatum and cerebellum) were measured. We demonstrated a decrease in lipid peroxidation and protein carbonyls in the hippocampus, cerebellum, and striatum several times after a single electroconvulsive shock or multiple electroconvulsive shocks. In contrast, lipid peroxidation increases both after a single electroconvulsive shock or multiple electroconvulsive shocks in cortex. In conclusion, we demonstrate an increase in oxidative damage in cortex, in contrast to a reduction of oxidative damage in hippocampus, striatum, and cerebellum.  相似文献   

6.
7.
Shamsaei  N.  Abdi  H.  Moradi  F. 《Neurophysiology》2019,51(6):438-446
Neurophysiology - Cerebral ischemia induces structural and functional damage in the brain, which leads to cell death and cognitive dysfunction. According to the evidences, physical exercise...  相似文献   

8.
Mesenchymal stem cell (MSC) administration via the intranasal route could become an effective therapy to treat neonatal hypoxic-ischemic (HI) brain damage. We analyzed long-term effects of intranasal MSC treatment on lesion size, sensorimotor and cognitive behavior, and determined the therapeutic window and dose response relationships. Furthermore, the appearance of MSCs at the lesion site in relation to the therapeutic window was examined. Nine-day-old mice were subjected to unilateral carotid artery occlusion and hypoxia. MSCs were administered intranasally at 3, 10 or 17 days after hypoxia-ischemia (HI). Motor, cognitive and histological outcome was investigated. PKH-26 labeled cells were used to localize MSCs in the brain. We identified 0.5×106 MSCs as the minimal effective dose with a therapeutic window of at least 10 days but less than 17 days post-HI. A single dose was sufficient for a marked beneficial effect. MSCs reach the lesion site within 24 h when given 3 or 10 days after injury. However, no MSCs were detected in the lesion when administered 17 days following HI. We also show for the first time that intranasal MSC treatment after HI improves cognitive function. Improvement of sensorimotor function and histological outcome was maintained until at least 9 weeks post-HI. The capacity of MSCs to reach the lesion site within 24 h after intranasal administration at 10 days but not at 17 days post-HI indicates a therapeutic window of at least 10 days. Our data strongly indicate that intranasal MSC treatment may become a promising non-invasive therapeutic tool to effectively reduce neonatal encephalopathy.  相似文献   

9.
Oxidative stress and inflammatory responses play a critical contributing factor in cerebral ischemia and reperfusion, which lead to lipid peroxidation and neuronal dysfunction that may represent a target for therapeutic intervention. The present study was aimed to elucidate the neuroprotective effect of tannic acid (TA), a natural polyphenol with potential antioxidant and antiinflammatory properties on middle cerebral artery occlusion (MCAO) model in rats. To test this hypothesis, male Wistar rats were pretreated with TA (50 mg/kg b.wt.) and then subjected to 2-h MCAO followed by 22 h of reperfusion. After 2-h MCAO/22-h reperfusion, neurological deficit, infarct sizes, activities of antioxidant enzymes, cytokine level, histology, and immunohistochemistry were used to analyze the expression of glial fibrillary acidic protein (GFAP) in ischemic brain. The pretreatment of TA showed a marked reduction in infarct size, improved neurological function, suppressed neuronal loss, and downregulated the GFAP expression in MCAO rats. A significantly depleted activity of antioxidant enzymes and content of glutathione in MCAO group were protected significantly in MCAO group pretreated with TA. Conversely, the elevated level of thiobarbituric acid reactive species and cytokines in MCAO group was attenuated significantly in TA-pretreated group when compared with MCAO group. The results indicated that TA protected the brain from damage caused by MCAO, and this effect may thorough diminish the oxidative stress and inflammatory responses.  相似文献   

10.
Niveditha  S.  Ramesh  S. R.  Shivanandappa  T. 《Neurochemical research》2017,42(11):3310-3320
Neurochemical Research - Exposure to pesticides like paraquat (PQ) is considered as a risk factor for Parkinson’s disease (PD). PQ has been shown to induce PD-like phenotype in...  相似文献   

11.
Patients affected by nonketotic hyperglycinemia (NKH) usually present severe neurological symptoms and suffer from acute episodes of intractable seizures with leukoencephalopathy. Although excitotoxicity seems to be involved in the brain damage of NKH, the mechanisms underlying the neuropathology of this disease are not fully established. The objective of the present study was to investigate the in vitro effects of glycine (GLY), that accumulate at high concentrations in the brain of patients affected by this disorder, on important parameters of oxidative stress, such as lipid peroxidation (thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence) and the most important non-enzymatic antioxidant defense reduced glutathione (GSH) in cerebral cortex from 30-day-old rats. GLY significantly increased TBA-RS and chemiluminescence values, indicating that this metabolite provokes lipid oxidative damage. Furthermore, the addition of high doses of the antioxidants melatonin, trolox (soluble vitamin E) and GSH fully prevented GLY-induced increase of lipid peroxidation, indicating that free radicals were involved in this effect. GLY also decreased GSH brain concentrations, which was totally blocked by melatonin treatment. Finally, GLY significantly reduced sulfhydryl group content from a commercial GSH solution, but did not oxidize reduced cytochrome C. Our data indicate that oxidative stress elicited in vitro by GLY may possibly contribute at least in part to the pathophysiology of the neurological dysfunction in NKH.  相似文献   

12.
Exposure to intermittent hypoxia (IH) is associated with cognitive impairments and oxidative stress in brain regions involved in learning and memory. In earlier studies, erythropoietin (EPO) showed a neuroprotective effect in large doses. The aim of the present study was to explore the effect of smaller doses of EPO, such as those used in the treatment of anemia, on IH-induced cognitive deficits and hippocampal oxidative stress in young rats. The effect of concurrent EPO treatment (500 and 1,000 IU/kg/day ip) on spatial learning and memory deficits induced by long-term exposure to IH for 6 weeks was tested using the Morris water maze (MWM) test and the elevated plus maze (EPM) test. Moreover, the effect on hippocampal glutamate and oxidative stress were assessed. Exposure to IH induced a significant impairment of spatial learning and cognition of animals in both MWM and EPM performance parameters. Moreover, hippocampal glutamate and thiobarbituric acid reactive substances (TBARS) increased while antioxidant defenses (GSH and GSH-Px) decreased. EPO in the tested doses significantly reduced the IH-induced spatial learning deficits in both MWM and EPM tests and dose-dependently antagonized the effects of IH on hippocampal glutamate, TBARS, GSH levels, and GSH-Px activity. Treatment with EPO in moderate doses that used for anemia, concurrently with IH exposure can antagonize IH-induced spatial learning deficits and protect hippocampal neurons from IH-induced lipid peroxidation and oxidative stress-induced damage in young rats, possibly through multiple mechanisms involving a potential antioxidative effect.  相似文献   

13.
Aging can be defined as the condition where stressors are not counteracted by protective functions, leading to a dysregulation in development. These changes can be translated into decrements in neuronal functioning accompanied by behavioral declines, such as decreases in motor and cognitive performance, in both humans and animals. When coupled with genetic alterations, the ultimate expression of these changes is seen in diseases such as Alzheimer disease (AD). This association will be discussed in the last section of this chapter. In this review we will describe motor and cognitive deficits in behavior due to aging, and show how these deficits are related to increased vulnerability to oxidative stress, inflammation or signaling. Importantly, using muscarinic receptors as examples, we will also try to show that the sensitivity to these insults may be differentially expressed among neurotransmitter receptor subtypes.  相似文献   

14.
Triazophos, O,O-diethyl-1-H-1,2,4-triazol-3-yl phosphorothioate, (TZ) is an organophosphate pesticide widely used as an insecticide in agriculture fields, however, its adverse effects on cognitive function remain unknown till date. The present study was designed to identify the effect of TZ on cognitive function in order to gain an insight into the molecular mechanism(s) probably involved in TZ induced toxicity. Wistar male albino rats were orally administered with TZ at 8.2 mg/kg bw daily for 30 days. Cognitive function was assessed by evaluating step down latency (SDL) in passive avoidance apparatus, transfer latency (TL) on elevated plus maze and escape latency (EL) using morris water maze. The biochemical changes, in terms of malondialdehyde (MDA), reduced glutathione (GSH) and brain derived neurotrophic factor (BDNF) levels were evaluated in hippocampi regions. Relative mRNA expression and protein expression of BDNF were also evaluated. The results demonstrated that rats treated with TZ showed significantly (p < 0.01) reduced SDL and prolonged TL and EL as compared to control group rats. Moreover, significantly low (p < 0.01) mRNA expression and protein levels (p < 0.001) of BDNF, increased MDA and reduced GSH levels were observed in TZ treated rats. The study concludes that chronic exposure to TZ significantly impairs the learning and memory which may be attributed to the significantly reduced mRNA and protein expression of BDNF in hippocampus. Moreover, BDNF is negatively correlated to MDA levels and positively correlated to GSH levels. Hence, it can be suggested that interplay between BDNF and oxidative stress plays an important role in mediating the toxic effects of TZ.  相似文献   

15.

Objectives

Resting state (RS) functional MRI recently identified default network abnormalities related to cognitive impairment in MS. fMRI can also be used to map functional connectivity (FC) while the brain is at rest and not adhered to a specific task. Given the importance of the anterior cingulate cortex (ACC) for higher executive functioning in MS, we here used the ACC as seed-point to test for differences and similarities in RS-FC related to sustained attention between MS patients and controls.

Design

Block-design rest phases of 3 Tesla fMRI data were analyzed to assess RS-FC in 31 patients (10 clinically isolated syndromes, 16 relapsing-remitting, 5 secondary progressive MS) and 31 age- and gender matched healthy controls (HC). Participants underwent extensive cognitive testing.

Observations

In both groups, signal changes in several brain areas demonstrated significant correlation with RS-activity in the ACC. These comprised the posterior cingulate cortex (PCC), insular cortices, the right caudate, right middle temporal gyrus, angular gyri, the right hippocampus, and the cerebellum. Compared to HC, patients showed increased FC between the ACC and the left angular gyrus, left PCC, and right postcentral gyrus. Better cognitive performance in the patients was associated with increased FC to the cerebellum, middle temporal gyrus, occipital pole, and the angular gyrus.

Conclusion

We provide evidence for adaptive changes in RS-FC in MS patients compared to HC in a sustained attention network. These results extend and partly mirror findings of task-related fMRI, suggesting FC may increase our understanding of cognitive dysfunction in MS.  相似文献   

16.
The long-term consequences of traumatic brain injury (TBI), specifically the detrimental effects of inflammation on the neurogenic niches, are not very well understood. In the present in vivo study, we examined the prolonged pathological outcomes of experimental TBI in different parts of the rat brain with special emphasis on inflammation and neurogenesis. Sixty days after moderate controlled cortical impact injury, adult Sprague-Dawley male rats were euthanized and brain tissues harvested. Antibodies against the activated microglial marker, OX6, the cell cycle-regulating protein marker, Ki67, and the immature neuronal marker, doublecortin, DCX, were used to estimate microglial activation, cell proliferation, and neuronal differentiation, respectively, in the subventricular zone (SVZ), subgranular zone (SGZ), striatum, thalamus, and cerebral peduncle. Stereology-based analyses revealed significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle. In parallel, significant decrements in Ki67-positive proliferating cells in SVZ and SGZ, but only trends of reduced DCX-positive immature neuronal cells in SVZ and SGZ were detected relative to sham control group. These results indicate a progressive deterioration of the TBI brain over time characterized by elevated inflammation and suppressed neurogenesis. Therapeutic intervention at the chronic stage of TBI may confer abrogation of these deleterious cell death processes.  相似文献   

17.
目的:探讨红景天苷(Sal)对癫痫大鼠认知功能障碍的治疗作用及其可能机制。方法:将24只成年雄性SD大鼠随机分为健康对照组、模型组、Sal[按体重1g/(kg·d)]干预组。采用Morris水迷宫方法检测大鼠学习记忆功能变化,并检测大鼠脑组织中超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-PX)和谷胱甘肽(GSH)、丙二醛(MDA)相应的比酶活力及含量变化。结果:(1)模型组大鼠寻找平台的潜伏期明显长于对照组,具有统计学意义(P<0.05),Sal组寻找平台的潜伏期相对于模型组显著缩短(P<0.05)。撤离平台后,模型组大鼠在平台所在象限的停留时间明显短于对照组(P<0.05),Sal治疗后大鼠在平台所在象限的停留时间较模型组显著延长(P<0.05)。(2)模型组SOD、GSH、GSH-PX显著下降,MDA明显增高,Sal干预组SOD、GSH、GSH-PX明显增高,而MDA显著下降,有统计学差异(P<0.05)结论:Sal可减轻癫痫持续状态所致的认知功能障碍,其可能机制是通过减轻海马区氧化应激减轻海马区的损伤,进而改善认知功能。  相似文献   

18.
杨江河  魏敏  张蓉  李华  闫志强  刘绍明 《生物磁学》2011,(15):2868-2871
目的:探讨红景天苷(sal)对癫痫大鼠认知功能障碍的治疗作用及其可能机制。方法:将24只成年雄性SD大鼠随机分为健康对照组、模型组、Sal[按体重1g/(kg·d)]干预组。采用Morris水迷宫方法检测大鼠学习记忆功能变化,并检测大鼠脑组织中超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH—PX)和谷胱甘肽(GSH)、丙二醛(MDA)相应的比酶活力及含量变化。结果:(1)模型组大鼠寻找平台的潜伏期明显长于对照组,具有统计学意义(P〈0.05),Sal组寻找平台的潜伏期相对于模型组显著缩短(P〈0.05)。撤离平台后,模型组大鼠在平台所在象限的停留时间明显短于对照组(P〈0.05),sal治疗后大鼠在平台所在象限的停留时间较模型组显著延长(P〈0.05)。(2)模型组SOD、GSH、GSH—Px显著下降,MDA明显增高,Sal干预组SOD、GSH、GSH—PX明显增高.而MDA显著下降,有统计学差异(P〈0.05)。结论:Sal可减轻癫痫持续状态所致的认知功能障碍,其可能机制是通过减轻海马区氧化应激减轻海马区的损伤,进而改善认知功能。  相似文献   

19.
Biological Trace Element Research - The use of cisplatin (CP) in chemotherapy of resistant cancers is limited due to its dose-dependent nephrotoxicity. Disulfiram (DSF), the aversion therapy for...  相似文献   

20.
Tyrosinemia type II, also known as Richner–Hanhart syndrome, is an autosomal recessive inborn error of metabolism caused by a deficiency of hepatic cytosolic tyrosine aminotransferase, and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that studies demonstrated that high concentrations of tyrosine provoke oxidative stress in vitro and in vivo in the cerebral cortex of rats, in the present study we investigate the oxidative stress parameters (enzymatic antioxidant defenses, thiobarbituric acid-reactive substances and protein carbonyl content) in cerebellum, hippocampus and striatum of 30-old-day rats after acute administration of l-tyrosine. Our results demonstrated that the acute administration of l-tyrosine increased the thiobarbituric acid reactive species levels in hippocampus and the carbonyl levels in cerebellum, hippocampus and striatum. In addition, acute administration of l-tyrosine significantly decreased superoxide dismutase activity in cerebellum, hippocampus and striatum, while catalase was increased in striatum. In conclusion, the oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia and the administration of antioxidants may be considered as a potential adjuvant therapy for tyrosinemia, especially type II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号