首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 332 毫秒
1.
Microglia: activation and their significance in the central nervous system   总被引:6,自引:0,他引:6  
Microglia are resident monocyte-lineaged cells in the brain. Their characteristic feature is that they react to injury and diseases of the brain and become morphologically and functionally activated. Although some trigger molecules which activate microglia are predicted to be released from injured or affected cells, such molecules have not yet been identified. The main role of activated microglia is believed to be in brain defense, as scavengers of dead cells, and as immune or immunoeffector cells. Recent biochemical and neurobiological studies have further indicated that they significantly affect the pathological state and/or regulate the regenerative state and remodeling of the brain by producing a variety of biologically active molecules including cytotoxic and neurotrophic molecules.  相似文献   

2.
Astrocytes are the most abundant cell population within the CNS of mammals. Their glial role is perfectly performed in the healthy CNS as they support functions of neurons. The omnipresence of astrocytes throughout the white and grey matter and their intimate relation with blood vessels of the CNS, as well as numerous immunity-related actions that these cells are capable of, imply that astrocytes should have a prominent role in neuroinflammatory disorders, such as multiple sclerosis (MS). The role of astrocytes in MS is rather ambiguous, as they have the capacity to both stimulate and restrain neuroinflammation and tissue destruction. In this paper we present some of the proved and the proposed functions of astrocytes in neuroinflammation and discuss the effect of MS therapeutics on astrocytes.  相似文献   

3.
Xu  Yijia  Sun  Jianfang  Yang  Liying  Zhao  Shangfeng  Liu  Xin  Su  Yang  Zhang  Jinghai  Zhao  Mingyi 《Neurochemical research》2022,47(7):1791-1798

Gangliosides are important components of the neuronal cell membrane and play a vital role in the development of neurons and the brain. They participate in neurotransmission and are considered as the structural basis of learning and memory. Gangliosides participate in several and important physiological processes, such as cell differentiation, cell signaling, neuroprotection, nerve regeneration and apoptosis. The stability of ion concentration in excitable cells is particularly important in the maintenance of a steady state of cells and in the regulation of physiological functions. Ion concentration has been found to be related to the ganglioside’s regulation in many neurological diseases, and several studies have found that they can stabilize intracellular ion concentration by regulating ion channels, which highlights their important regulatory role in neuronal excitability and synaptic transmission. Gangliosides can influence some forms of ion transport, by directly binding to ion transporters or through indirect binding and activation of transport proteins via appropriate signaling pathways. Therefore, the important and special role of gangliosides in the homeostasis of ion concentration is becoming a hot topic in the field and a theoretical basis in promoting help gangliosides use as key drugs for the treatment of nervous system diseases.

  相似文献   

4.
Multiple rough endoplasmic cisternae were found in the parenchymatous cells of the endocrine pancreas of the adult rat (alpha, beta, D and intermediary cells) and were especially developed in beta cells. They are considered to be normal constituents of the parenchymatous cells of the endocrine pancreas. Their close proximity to Golgi dictyosomes and the accumulation of secretory material sometimes seen at the extremities of such cisternae, suggest that they may have a role in the secretory activity of these endocrine cells.  相似文献   

5.
Endothelial cell activation in the process of tumor angiogenesis and in various aspects of vascular biology has been extensively studied. However, endothelial cells also function in other capacities, including in immune regulation. Compared to the more traditional immune regulatory populations (Th1, Th2, Treg, etc.), endothelial cells have received far less credit as being immune regulators. Their regulatory capacity is multifaceted. They are critical in both limiting and facilitating the trafficking of various immune cell populations, including T cells and dendritic cells, out of the vasculature and into tissue. They also can be induced to stimulate immune reactivity or to be immune inhibitory. In each of these parameters (trafficking, immune stimulation and immune inhibition), their role can be physiological, whereby they have an active role in maintaining health. Alternatively, their role can be pathological, whereby they contribute to disease. In theory, endothelial cells are in an ideal location to recruit cells that can mediate immune reactivity to tumor tissue. Furthermore, they can activate the immune cells as they transmigrate across the endothelium into the tumor. However, what is seen is the absence of these protective effects of endothelial cells and, instead, the endothelial cells succumb to the defense mechanisms of the tumor, resulting in their acquisition of a tumor-protective role. To understand the immune regulatory potential of endothelial cells in protecting the host versus the tumor, it is useful to better understand the other circumstances in which endothelial cells modulate immune reactivities. Which of the multitude of immune regulatory roles that endothelial cells can take on seems to rely on the type of stimulus that they are encountering. It also depends on the extent to which they can be manipulated by potential dangers to succumb and contribute toward attack on the host. This review will explore the physiological and pathological roles of endothelial cells as they regulate immune trafficking, immune stimulation and immune inhibition in a variety of conditions and will then apply this information to their role in the tumor environment. Strategies to harness the immune regulatory potential of endothelial cells are starting to emerge in the non-tumor setting. Results from such efforts are expected to be applicable to being able to skew endothelial cells from having a tumor-protective role to a host-protective role.  相似文献   

6.
Several diseases are related to retinal ganglion cell death, such as glaucoma, diabetes and other retinopathies. Many studies have attempted to identify factors that could increase neuroprotection after axotomy of these cells. Interleukin-6 has been shown to be able to increase the survival and regeneration of retinal ganglion cells (RGC) in mixed culture as well as in vivo. In this work we show that the trophic effect of IL-6 is mediated by adenosine receptor (A2aR) activation and also by the presence of extracellular BDNF. We also show that there is a complex cross-talk between IL-6, BDNF, the Adenosine A1 and A2a receptors that results in neuroprotection of retinal ganglion cells.  相似文献   

7.
Cyclosporin A (CsA) and FK506 (Tacrolimus) are short polypeptides which block the activation of lymphocytes and other immune system cells. Immunosuppressants exert neuroprotective and neurotrophic action in traumatic brain injury, sciatic nerve injury, focal and global ischemia in animals. Their neuroprotective actions are not understood and many hypotheses have been formed to explain such effects. We discuss a role of drug target - calcineurin in neuroprotective action of immunosuppressants. Protein dephosphorylation by calcineurin plays an important role in neuronal signal transduction due to its ability to regulate the activity of ion channels, glutamate release, and synaptic plasticity. In vitro FK506 protects cortex neurons from NMDA-induced death, augments NOS phosphorylation inhibiting its activity and NO synthesis. However, in vivo experiments demonstrated that FK506 in neuroprotective doses did not block excitotoxic cell death nor did it alter NO production during ischemia/reperfusion. Tissue damage in ischemia is the result of a complex pathophysiological cascade, which comprises a variety of distinct pathological events. Resident non-neuronal brain cells respond rapidly to neuronal cell death and may have both deleterious and useful role in neuronal damage. There is increasing evidence that reactive gliosis and post-ischemic inflammation involving microglia contribute to ischemic damage. We have demonstrated that FK506 modulates hypertrophic/proliferative responses and proinflammatory cytokine expression in astrocytes and microglia in vitro and in focal transient brain ischemia. Our findings suggest that astrocytes and microglia are direct targets of FK506 and modulation of glial response and inflammation is a possible mechanism of FK506-mediated neuroprotection in ischemia.  相似文献   

8.
Transplantation of olfactory ensheathing cells (OECs) becomes one of the promising strategies in restoring lost functions of injured central nervous system. Elevated level of expressed brain-derived neurotrophic factor (BDNF) was revealed in the previous studies to be related to the protective effects of OECs on injured cortical and brain stem neurons as well as retinal ganglion cells (RGCs), but no evidence has been obtained to demonstrate whether transplanted OECs protect injured central neurons directly by their secreted BDNF. In the present study, the effects of BDNF neutralization on the neuroprotection of adult OEC-conditioned medium (OEC-CM) on scratch-insulted RGCs were examined. The results showed that OEC-CM protected cultured RGCs from scratch insult, and neutralization of BDNF by BDNF neutralizing antibody attenuated such neuroprotection of the medium. It is thus concluded that neurotrophic factors including BDNF secreted by OECs can protect injured OECs in vitro and BDNF plays a major role in such a protection of OECs.  相似文献   

9.
10.
Glycogen synthase kinase 3 (GSK-3) has previously been shown to play an important role in the regulation of apoptosis. However, the nature of GSK-3 effector pathways that are relevant to neuroprotection remains poorly defined. Here, we have compared neuroprotection resulting from modulation of GSK-3 activity in PC12 cells using either selective small molecule ATP-competitive GSK-3 inhibitors (SB-216763 and SB-415286), or adenovirus overexpressing frequently rearranged in advanced T-cell lymphomas 1 (FRAT1), a protein proposed as a negative regulator of GSK-3 activity towards Axin and beta-catenin. Our data demonstrate that cellular overexpression of FRAT1 is sufficient to confer neuroprotection and correlates with inhibition of GSK-3 activity towards Tau and beta-catenin, but not modulation of glycogen synthase (GS) activity. By comparison, treatment with SB-216763 and SB-415286 proved more potent in terms of neuroprotection, and correlated with inhibition of GSK-3 activity towards GS in addition to Tau and beta-catenin.  相似文献   

11.
With the growing understanding of the mechanism of cell death in ischemia, new approaches for treatment such as neuroprotection have emerged. The basic aim of this strategy is to interfere with the events of the ischemic cascade, blocking the pathological processes and preventing the death of nerve cells in the ischemic penumebra. This concept involves inhibition of the pathological molecular events which eventually leads to the influx of calcium, activation of free radicals and neuronal death. Despite encouraging data from experimental animal models, all clinical trials of neuroprotective therapies have to date been unsuccessful. This article reviews some of the reasons for the failure of neuroprotection in the clinical trials so far. Despite all the negative reports, we believe it would be wrong to give up at this point, since there is still reasonable hope of finding an effective neuroprotection for stroke.  相似文献   

12.
《Free radical research》2013,47(4):440-452
Abstract

Hypoxia is a well-known threat to neuronal cells and triggers the pathophysiological syndromes in extreme environments such as high altitudes and traumatic conditions such as stroke. Among several prophylactic molecules proven suitable for ameliorating free radical damage, NAP (an octapeptide with initial amino acids: asparagine/N, alanine/A, and proline/P) can be considered superlative, primarily due to its high permeability into brain through blood–brain barrier and observed activity at femtomolar concentrations. Several mechanisms of action of NAP have been hypothesized for its protective role during hypoxia, yet any distinct mechanism is unknown. Oxidative stress is advocated as the leading event in hypoxia; we, therefore, investigated the regulation of key antioxidant genes to understand the regulatory role of NAP in providing neuroprotection. Primary neuronal culture of rat was subjected to cellular hypoxia by limiting the oxygen concentration to 0.5% for 72 h and observing the prophylactic efficacies of 15fM NAP by conventional cell death assays using flow cytometry. We performed real-time quantitative polymerase chain reaction to comprehend the regulatory mechanism. Further, we validated the significantly regulated candidates by enzyme assays and immunoblotting. In the present study, we report that NAP regulates a major clad of cellular antioxidants and there is an involvement of more than one route of action in neuroprotection during hypoxia.  相似文献   

13.
14.
1. This review summarizes current knowledge relating to the volume-regulatory and osmoprotective functions of amino acids in mammalian cells exposed to anisosmotic fluids. 2. Experiments in vivo and in vitro have established that they play a significant role in regulating brain cell volume under these conditions, and that taurine may be of particular importance in this respect. 3. Their possible role in renal medulla is discussed, and it is suggested that they may protect cells against acute (but not long-term) osmotic variation. 4. Evidence is briefly presented regarding adaptive changes in amino acid content of other cell types.  相似文献   

15.
16.
Ischemic stroke is a major common cause of death and long‐term disability worldwide. Several pathophysiological events including excitotoxicity, oxidative/nitrative stress, inflammation, and apoptosis are involved in ischemic injuries. Recently, the molecular mechanisms involved in cerebral ischemia through a focus on a member of small heat shock proteins family, Hsp27, has been developed. Notably, following exposure to ischemia, Hsp27 expression in the brain could be increased rather than the normal condition and it may play an important role in neuroprotection after ischemic stroke. The neuroprotection effects of Hsp27 may arise from its anti‐oxidant, anti‐inflammatory, anti‐apoptotic, and chaperonic properties. Moreover, some therapeutic strategies such as stem cell therapy and pharmacotherapy have been developed with Hsp27 targeting. In this review, we describe the function and structure of Hsp27 and its possible role in neuroprotection after ischemic stroke. Finally, we present current studies in stroke therapy, which focused on Hsp27 targeting.  相似文献   

17.
CD4+CD25+ T regulatory cells are avidly studied because they modulate immune responses. Their possible role in autoimmunity and more specifically in rheumatoid arthritis (RA) has been highlighted by a string of reports, one of which is in the last issue of Arthritis Research &; Therapy. There are, however, key questions that have not yet been addressed before their use can be considered as a real therapeutic option. The first is the actual, in a clinical setting, efficacy of Treg to treat active chronic autoimmune diseases such as RA. The second is how we can practically deliver their therapeutic activity in patients. Once these points have been addressed we will have a new and potentially very effective 'magic bullet' for the treatment of chronic autoimmune diseases.  相似文献   

18.
Petzelt C  Blom P  Schmehl W  Müller J  Kox WJ 《Life sciences》2003,72(17):1909-1918
Hypoxia-induced neuronal damage and glutamate release were investigated in a N(2)- or in xenon-atmosphere for embryonic rat cortical neurons; cellular damage and glutamate over-release were observed in N(2)-treated cells whereas xenon protected the cells from the hypoxic insult. The protective effect of xenon was strongly reduced by pre-incubating neurons with the calcium-chelator BAPTA-AM indicating a role for calcium in this process. The results demonstrate (a) the neuroprotective properties of xenon, suggest (b) a relationship between the prevention of neurotransmitter release in a hypoxic situation and neuroprotection and present (c) evidence that such neuroprotection may be based on yet other xenon-dependent mechanisms.  相似文献   

19.
Various neuroprotective factors have been shown to help prevention of neuronal cell death, which is responsible for the progression of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). However, most of these therapeutic potentials have been tested by administration of recombinant proteins, transgenic expression or virus vector-mediated gene transfer. Therefore, it remains to be clarified whether any endogenous factors has advantage for neuroprotection in a pathological nervous system. Here we show the role of BAFF-R signaling pathway in the control of neural cell survival. Both B cell–activating factor (BAFF) and its receptor (BAFF-R) are expressed in mouse neurons and BAFF-R deficiency reduces the survival of primary cultured neurons. Although many studies have so far addressed the functional role of BAFF-R on the differentiation of B cells, impaired BAFF-R signaling resulted in accelerated disease progression in an animal model of inherited ALS. We further demonstrate that BAFF-R deficient bone marrow cells or genetic depletion of B cells does not affect the disease progression, indicating that BAFF-mediated signals on neurons, not on B cells, support neural cell survival. These findings suggest opportunities to improve therapeutic outcome for patients with neurodegenerative diseases by synthesized BAFF treatment.  相似文献   

20.
We have recently identified a neuroprotective role for omega-3 polyunsaturated fatty acids (n-3 PUFAs) in a toxin-induced mouse model of Parkinson's disease (PD). Combined with epidemiological data, these observations suggest that low n-3 PUFA intake is a modifiable environmental risk factor for PD. In order to strengthen these preclinical findings as prerequisite to clinical trials, we further investigated the neuroprotective role of n-3 PUFAs in Fat-1 mice, a transgenic model expressing an n-3 fatty acid desaturase converting n-6 PUFAs into n-3 PUFAs. Here, we report that the expression of the fat-1 transgene increased cortical n-3:n-6 PUFA ratio (+28%), but to a lesser extent than dietary supplementation (92%). Such a limited endogenous production of n-3 PUFAs in the Fat-1 mouse was insufficient to confer neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity as assessed by dopamine levels, tyrosine hydroxylase (TH)-positive neurons and fibers, as well as nigral Nurr1 and dopamine transporter (DAT) mRNA expression. Nevertheless, higher cortical docosahexaenoic acid (DHA) concentrations were positively correlated with markers of nigral dopaminergic neurons such as the number of TH-positive cells, in addition to Nurr1 and DAT mRNA levels. These associations are consistent with the protective role of DHA in a mouse model of PD. Taken together, these data suggest that dietary intake of a preformed DHA supplement is more effective in reaching the brain and achieving neuroprotection in an animal model of PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号