首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TGF-beta1 plays an important role in the maintenance of immune homeostasis and self-tolerance. To determine the mechanism by which TGF-beta1 prevents autoimmunity we have analyzed T cell activation in splenic lymphocytes from TGF-beta1-deficient mice. Here we demonstrate that unlike wild-type splenic lymphocytes, those from Tgfb1(-/-) mice are hyporesponsive to receptor-mediated mitogenic stimulation, as evidenced by diminished proliferation and reduced IL-2 production. However, they have elevated levels of IFN-gamma and eventually undergo apoptosis. Receptor-independent stimulation of Tgfb1(-/-) T cells by PMA plus ionomycin induces IL-2 production and mitogenic response, and it rescues them from anergy. Tgfb1(-/-) T cells display decreased CD3 expression; increased expression of the activation markers LFA-1, CD69, and CD122; and increased cell size, all of which indicate prior activation. Consistently, mutant CD4(+) T cells have elevated intracellular Ca(2+) levels. However, upon subsequent stimulation in vitro, increases in Ca(2+) levels are less than those in wild-type cells. This is also consistent with the anergic phenotype. Together, these results demonstrate that the ex vivo proliferative hyporesponsiveness of Tgfb1(-/-) splenic lymphocytes is due to prior in vivo activation of T cells resulting from deregulated intracellular Ca(2+) levels.  相似文献   

2.
Transforming growth factor beta1 (TGFbeta1) is a potent negative immunoregulatory molecule. We have previously shown that the autoimmune-mediated weaning-age lethality of Tgfb1-/- mice is reversed upon genetic combination with Scid or Rag null alleles. Here, we show that elimination of T but not B cells is sufficient for the reversal, but elimination of either CD4+ or CD8+ cells is not. Although elimination of B cells does not rescue TGFbeta1-deficient animals from autoimmunity, B cells are hyperresponsive to LPS in the absence of TGFbeta1. TGFbeta1 deficiency leads to activation of CD8+ T cells as suggested by down-modulation of CD8 even in the absence of CD4+ T cells. This study provides evidence that both CD4+ and CD8+ T cells, but not B cells, have the ability to cause inflammation in the absence of TGFbeta1. However, though TGFbeta1-deficient B cells are hyperresponsive to stimulation, alone they are not sufficient to cause inflammation.  相似文献   

3.
Pre-TCR complexes are thought to signal in a ligand-independent manner because they are constitutively targeted to lipid rafts. We report that ligand-independent signaling is not a unique capability of the pre-TCR complex. Indeed, the TCR alpha subunit restores development of pT alpha-deficient thymocytes to the CD4(+)CD8(+) stage even in the absence of conventional MHC class I and class II ligands. Moreover, we found that pre-TCR and alpha beta TCR complexes exhibit no appreciable difference in their association with lipid rafts, suggesting that ligand-independence is a function of the CD4(-)CD8(-) (DN) thymocytes in which pre-TCR signaling occurs. In agreement, we found that only CD44(-)CD25(+) DN thymocytes (DN3) enabled activation of extracellular signal-regulated kinases by the pre-TCR complex. DN thymocytes also exhibited a lower signaling threshold relative to CD4(+)CD8(+) thymocytes, which was associated with both the markedly elevated lipid raft content of their plasma membranes and more robust capacitative Ca(2+) entry. Taken together these data suggest that cell-autonomous, ligand-independent signaling is primarily a property of the thymocytes in which pre-TCR signaling occurs.  相似文献   

4.
The multifunctional cytokine transforming growth factor (TGF) beta1 is secreted in a latent complex with its processed propeptide (latency-associated peptide [LAP]). TGFbeta1 must be functionally released from this complex before it can engage TGFbeta receptors. One mechanism of latent TGFbeta1 activation involves interaction of the integrins alpha v beta6 and alpha v beta8 with an RGD sequence in LAP; other putative latent TGFbeta1 activators include thrombospondin-1, oxidants, and various proteases. To assess the contribution of RGD-binding integrins to TGFbeta1 activation in vivo, we created a mutation in Tgfb1 encoding a nonfunctional variant of the RGD sequence (RGE). Mice with this mutation (Tgfb1(RGE/RGE)) display the major features of Tgfb1(-/-) mice (vasculogenesis defects, multiorgan inflammation, and lack of Langerhans cells) despite production of normal levels of latent TGFbeta1. These findings indicate that RGD-binding integrins are requisite latent TGFbeta1 activators during development and in the immune system.  相似文献   

5.
The developmental expression of macroscopic Ca(2+)-activated K(+) currents in chick ciliary ganglion neurons is dependent on an avian ortholog of TGFbeta1, known as TGFbeta4, secreted from target tissues in the eye. Here we report that a different isoform, TGFbeta3, is also expressed in a target tissue of ciliary ganglion neurons. Application of TGFbeta3 inhibits the functional expression of whole-cell Ca(2+)-activated K(+) currents evoked by 12 hour treatment with either TGFbeta1 or beta-neuregulin-1 in ciliary ganglion neurons developing in vitro. TGFbeta3 had no effect on voltage-activated Ca(2+) currents. A neutralizing antiserum specific for TGFbeta3 potentiates stimulation of Ca(2+)-activated K(+) currents evoked by a target tissue (iris) extract in cultured ciliary ganglion neurons, indicating that TGFbeta3 is an inhibitory component of these extracts. Intraocular injection of TGFbeta3 causes a modest but significant inhibition of the expression of Ca(2+)-activated K(+) currents in ciliary ganglion neurons developing in vivo. Further, intraocular injection of a TGFbeta3-neutralizing antiserum stimulates expression of Ca(2+)-activated K(+) currents in ciliary ganglion neurons developing in vivo, indicating that endogenous TGFbeta3 regulates the functional expression of this current. The normal developmental expression of functional Ca(2+)-activated K(+) currents in ciliary ganglion neurons developing in vivo is therefore regulated by two different target-derived isoforms of TGFbeta, which produce opposing effects on the electrophysiological differentiation of these neurons.  相似文献   

6.
To examine the roles of TGFbeta isoforms on corneal morphogenesis, the eyes of mice that lack TGFbetas were analyzed at different developmental stages for cell proliferation, migration and apoptosis, and for expression patterns of keratin 12, lumican, keratocan and collagen I. Among the three Tgfb(-/-) mice, only Tgfb2(-/-) mice have abnormal ocular morphogenesis characterized by thin corneal stroma, absence of corneal endothelium, fusion of cornea to lens (a Peters'-like anomaly phenotype), and accumulation of hyaline cells in vitreous. In Tgfb2(-/-) mice, fewer keratocytes were found in stroma that has a decreased accumulation of ECM; for example, lumican, keratocan and collagen I were greatly diminished. The absence of TGFbeta2 did not compromise cell proliferation, nor enhance apoptosis. The thinner stroma resulting from decreased ECM synthesis may account for the decreased cell number in the stroma of Tgfb2 null mice. Keratin 12 expression was not altered in Tgfb2(-/-) mice, implicating normal corneal type epithelial differentiation. Delayed appearance of macrophages in ocular tissues was observed in Tgfb2(-/-) mice. Malfunctioning macrophages may account for accumulation of cell mass in vitreous of Tgfb2 null mice.  相似文献   

7.
ORAI1 is the pore-forming subunit of the Ca(2+) release-activated Ca(2+) (CRAC) channel, which is responsible for store-operated Ca(2+) entry in lymphocytes. A role for ORAI1 in T cell function in vivo has been inferred from in vitro studies of T cells from human immunodeficient patients with mutations in ORAI1 and Orai1(-/-) mice, but a detailed analysis of T cell-mediated immune responses in vivo in mice lacking functional ORAI1 has been missing. We therefore generated Orai1 knock-in mice (Orai1(KI/KI)) expressing a nonfunctional ORAI1-R93W protein. Homozygosity for the equivalent ORAI1-R91W mutation abolishes CRAC channel function in human T cells resulting in severe immunodeficiency. Homozygous Orai1(KI/KI) mice die neonatally, but Orai1(KI/KI) fetal liver chimeric mice are viable and show normal lymphocyte development. T and B cells from Orai1(KI/KI) mice display severely impaired store-operated Ca(2+) entry and CRAC channel function resulting in a strongly reduced expression of several key cytokines including IL-2, IL-4, IL-17, IFN-γ, and TNF-α in CD4(+) and CD8(+) T cells. Cell-mediated immune responses in vivo that depend on Th1, Th2, and Th17 cell function were severely attenuated in ORAI1-deficient mice. Orai1(KI/KI) mice lacked detectable contact hypersensitivity responses and tolerated skin allografts significantly longer than wild-type mice. In addition, T cells from Orai1(KI/KI) mice failed to induce colitis in an adoptive transfer model of inflammatory bowel disease. These findings reaffirm the critical role of ORAI1 for T cell function and provide important insights into the in vivo functions of CRAC channels for T cell-mediated immunity.  相似文献   

8.
CD4/CD8 lineage commitment of thymocytes is controlled by the T cell receptor-mediated signals and is mimicked in vitro by a long-pulse stimulation of isolated CD4(+)CD8(+) thymocytes with proper combinations of phorbol myristate acetate and the calcium ionophore ionomycin. CD4 lineage commitment required higher intracellular Ca(2+) levels than CD8 lineage commitment in this culture system. The calcineurin inhibitor FK506 at 1nM inhibited the development of thymocytes to either lineage, but 0.3nM FK506 significantly switched the development from the CD4 cell fate to the CD8 cell fate. The switch in lineage commitment was also observed when 1nM FK506 was added 8h after the start of the culture. Delayed addition of 20microM U0126, an Mek (Erk kinase) inhibitor, also induced the switch. These results suggest that the intensity of calcineurin activity and the duration of both calcineurin and Erk pathway activation are crucial for thymocyte lineage commitment.  相似文献   

9.
Wen L  Chen SJ  Zhang W  Ma HW  Zhang SQ  Chen L 《Cytokine》2011,53(2):215-222
B cell activating factor belonging to the TNF family (BAFF, also called BLyS, TALL-1, THANK, or zTNF4) is an important survival factor for B cells, and is able to regulate T-cell activation. Recently, we have demonstrated that treatment of mice with human soluble BAFF (hsBAFF) causes a significant increase of percentages of splenic CD4(+) T lymphocytes dose-dependently, but the CD8(+) T lymphocyte percentages maintained unchanged. Here, we show that hsBAFF significantly enhanced CD4(+) T lymphocyte response of cultured mouse splenic cells, and hsBAFF induced the proliferation and IL-2/IFN-γ secretion of purified CD4(+) T lymphocytes suboptimally stimulated through anti-CD3. Of importance, we observed that IL-2 or IFN-γ cytokine has additive effect on the proliferation and activity of hsBAFF-stimulated CD4(+) T lymphocytes. Using Flow cytometry with fluorescent probe, Fluo-3/AM, we found that hsBAFF elicited [Ca(2+)](i) elevation contributing to CD4(+) T cell proliferation. This is evidenced by our finding that pretreatment with BAPTA/AM, an intracellular Ca(2+) chelator, significantly attenuated the proliferation of hsBAFF-stimulated CD4(+) T lymphocytes. Subsequently, we revealed that hsBAFF-stimulated CD4(+) T cell proliferation was markedly suppressed after pretreatment with EGTA, an extracellular Ca(2+) chelator, or with 2-APB, an inhibitor of Ca(2+) influx through CRAC channels, respectively, suggesting that extracellular Ca(2+) influx due to hsBAFF is closely associated with [Ca(2+)](i) elevation contributing to CD4(+) T cell proliferation. In addition, we noticed that hsBAFF-treated cells conferred partial resistance to decrease of cellular viability induced by thapsigargin (Tg), an endoplasmic reticulum (ER) Ca(2+)-ATPase inhibitor. Taken together, our data indicate that hsBAFF may promote CD4(+) T cell proliferation and response by upregulation of [Ca(2+)](i) homeostasis.  相似文献   

10.
11.
Mast cell stimulation by Ag is followed by the opening of Ca(2+)-activated K(+) channels, which participate in the orchestration of mast cell degranulation. The present study has been performed to explore the involvement of the Ca(2+)-activated K(+) channel K(Ca)3.1 in mast cell function. To this end mast cells have been isolated and cultured from the bone marrow (bone marrow-derived mast cells (BMMCs)) of K(Ca)3.1 knockout mice (K(Ca)3.1(-/-)) and their wild-type littermates (K(Ca)3.1(+/+)). Mast cell number as well as in vitro BMMC growth and CD117, CD34, and FcepsilonRI expression were similar in both genotypes, but regulatory cell volume decrease was impaired in K(Ca)3.1(-/-) BMMCs. Treatment of the cells with Ag, endothelin-1, or the Ca(2+) ionophore ionomycin was followed by stimulation of Ca(2+)-activated K(+) channels and cell membrane hyperpolarization in K(Ca)3.1(+/+), but not in K(Ca)3.1(-/-) BMMCs. Upon Ag stimulation, Ca(2+) entry but not Ca(2+) release from intracellular stores was markedly impaired in K(Ca)3.1(-/-) BMMCs. Similarly, Ca(2+) entry upon endothelin-1 stimulation was significantly reduced in K(Ca)3.1(-/-) cells. Ag-induced release of beta-hexosaminidase, an indicator of mast cell degranulation, was significantly smaller in K(Ca)3.1(-/-) BMMCs compared with K(Ca)3.1(+/+) BMMCs. Moreover, histamine release upon stimulation of BMMCs with endothelin-1 was reduced in K(Ca)3.1(-/-) cells. The in vivo Ag-induced decline in body temperature revealed that IgE-dependent anaphylaxis was again significantly (by approximately 50%) blunted in K(Ca)3.1(-/-) mice. In conclusion, K(Ca)3.1 is required for Ca(2+)-activated K(+) channel activity and Ca(2+)-dependent processes such as endothelin-1- or Ag-induced degranulation of mast cells, and may thus play a critical role in anaphylactic reactions.  相似文献   

12.
RasGRP1 and Sos are two Ras-guanyl-nucleotide exchange factors that link TCR signal transduction to Ras and MAPK activation. Recent studies demonstrate positive selection of developing thymocytes is crucially dependent on RasGRP1, whereas negative selection of autoreactive thymocytes appears to be RasGRP1 independent. However, the role of RasGRP1 in T regulatory (Treg) cell development and function is unknown. In this study, we characterized the development and function of CD4(+)CD25(+)Foxp3(+) and CD8(+)CD44(high)CD122(+) Treg lineages in RasGRP1(-/-) mice. Despite impaired CD4 Treg cell development in the thymus, the periphery of RasGRP1(-/-) mice contained significantly increased frequencies of CD4(+)Foxp3(+) Treg cells that possessed a more activated cell surface phenotype. Furthermore, on a per cell basis, CD4(+)Foxp3(+) Treg cells from mutant mice are more suppressive than their wild-type counterparts. Our data also suggest that the lymphopenic environment in the mutant mice plays a dominant role of favored peripheral development of CD4 Treg cells. These studies suggest that whereas RasGRP1 is crucial for the intrathymic development of CD4 Treg cells, it is not required for their peripheral expansion and function. By contrast to CD4(+)CD25(+)Foxp3(+) T cells, intrathymic development of CD8(+)CD44(high)CD122(+) Treg cells is unaffected by the RasGRP1(-/-) mutation. Moreover, RasGRP1(-/-) mice contained greater numbers of CD8(+)CD44(high)CD122(+) T cells in the spleen, relative to wild-type mice. Activated CD8 Treg cells from RasGRP1(-/-) mice retained their ability to synthesize IL-10 and suppress the proliferation of wild-type CD8(+)CD122(-) T cells, albeit at a much lower efficiency than wild-type CD8 Treg cells.  相似文献   

13.
The signals required for activation and the differentiation of human triple negative postnatal thymocytes were studied in vitro. Highly purified populations of CD4-, CD8-, CD3- (triple negative) thymocytes were isolated by combined panning and preparative cell sorting and the ability of triple negative thymocytes to proliferate in response to various cytokines determined. Maximal triple negative proliferation was obtained using a mitogenic combination of CD2 antibodies and either rIL-2 or the phorbol ester, PMA. Long term growth (2 to 6 wk) of postnatal triple negative thymocytes was best achieved using CD2 antibodies and rIL-2. After in vitro culture with CD2 antibodies and rIL-2, triple negative thymocytes gave rise to TCR-delta+ cells beginning on day 2 of culture (approximately 15% CD3/TCR-delta+) reaching maximum (approximately 60% CD3/TCR-delta+) on day 7 with stable number of TCR-delta+ cells observed in vitro for up to 6 wk. Analysis of 30 clones of human postnatal triple negative thymocytes demonstrated 9 of 30 (30%) were TCR-delta+, beta F1-, essentially ruling out overgrowth of the triple negative population over time by a minor pool of contaminating TCR-delta+ cells. Thus, these studies have defined an in vitro culture system for human postnatal T cell precursors and demonstrated that precursors of human TCR-gamma delta+ T cells reside in the triple negative thymocyte pool.  相似文献   

14.
15.
It has been observed that the progressive ascitic growth of a transplantable T-cell lymphoma of spontaneous origin, designated Dalton's lymphoma (DL), in a murine host induces inhibition of various immune responses and is associated with an involution of thymus accompanied by a massive depletion of the cortical region and alteration in the distribution of thymocytes caused by tumour serum-dependent induction of apoptosis with a decrease of CD4(+)CD8(+), CD4(+)CD8(-) and CD4(-)CD8(+) thymocytes. Here, we report that thymocytes of DL-bearing mice are defective in their proliferative ability and in their response to non-specific mitogenic stimulus in vitro. Also, antigen-specific T-cell proliferative ability representing the fundamental T(H) function declines under DL-bearing conditions and upon treatment with serum of DL-bearing mice. Moreover, a significant inhibition of T-cell cytolytic activity with a decreased ability to produce interferon gamma is shown by the T cells of DL-bearing mice and by the T cells treated with DL-ascitic fluid, DL-conditioned medium or serum of DL-bearing mice. Further, addition of interleukin-2 and anti-interleukin-10 to the cultures of thymocytes treated with serum of DL-bearing mice is found to inhibit the induction of apoptosis in thymocytes, a phenomenon associated with the progression of DL growth. Analysis of the results indicates an immune deviation with the predominance of a T(H2)-type response with the progression of tumour. We further discuss the possible mechanisms that may explain the observed tumour-induced diminution of T-cell immunity.  相似文献   

16.
The proliferation of T cells is regulated in a development-dependent manner, but it has been unclear whether proliferation is essential for T cell differentiation. The cyclin-dependent kinase inhibitor p27(Kip1) is abundant throughout development in cells of the T cell lineage, with the exception of late stage CD4(-)CD8(-) thymocytes and activated mature T cells, both of which show a high rate of proliferation. The role of down-regulation of p27(Kip1) expression in T cell development and function has now been investigated by the generation and characterization of three strains of p27 transgenic mice that express the transgene at various levels specifically in the T cell lineage. The numbers of thymocytes at CD4(+)CD8(+), CD4(+)CD8(-), and CD4(-)CD8(+) stages of development as well as those of mature T cells in peripheral lymphoid tissues were reduced in transgenic mice in a manner dependent on the level of p27(Kip1) expression. The development of thymocytes in the transgenic strain in which p27(Kip1) is most abundant (p27-Tg(high) mice) appeared to be blocked at the CD4(-)CD8(-)CD25(+)CD44(low) stage. Peripheral T cells from p27-Tg(high) mice exhibited a reduced ability to proliferate in response to mitogenic stimulation compared with wild-type T cells. Moreover, Ag-induced formation of germinal centers and Ig production were defective in p27-Tg(high) mice. These results suggest that down-regulation of p27(Kip1) expression is required for the development, proliferation, and immunoresponsiveness of T cells.  相似文献   

17.
Themis1, a recently identified T cell protein, has a critical function in the generation of mature CD4(+)CD8(-) and CD4(-)CD8(+) (CD4 and CD8 single-positive [SP]) thymocytes and T cells. Although Themis1 has been shown to bind to the adaptor proteins LAT and Grb2, previous studies have yielded conflicting results regarding whether thymocytes from Themis1(-/-) mice exhibit TCR-mediated signaling defects. In this study, we demonstrate that, in the absence of Themis1, TCR-mediated signaling is selectively impaired in CD4 SP and CD8 SP thymocytes but is not affected in CD4(+)CD8(+) double-positive thymocytes despite high expression of Themis1 in double-positive thymocytes. Like Themis1, Themis2, a related member of the Themis family, which is expressed in B cells and macrophages, contains two conserved cysteine-based domains, a proline-rich region, and a nuclear localization signal. To determine whether Themis1 and Themis2 can perform similar functions in vivo, we analyzed T cell development and TCR-mediated signaling in Themis1(-/-) mice reconstituted with either Themis1 or Themis2 transgenes. Notably, Themis1 and Themis2 exhibited the same potential to restore T cell development and TCR-mediated signaling in Themis1(-/-) mice. Both proteins were tyrosine phosphorylated and were recruited within Grb2 signaling complexes to LAT following TCR engagement. These results suggest that conserved molecular features of the Themis1 and Themis2 proteins are important for their biological activity and predict that Themis1 and Themis2 may perform similar functions in T and B cells, respectively.  相似文献   

18.
TCR signaling plays a governing role in both the survival and differentiation of bipotent double-positive thymocytes into the CD4(+) and CD8(+) single-positive T cell lineages. A central mediator of this developmental program is the small GTPase Ras, emitting cytoplasmic signals through downstream MAPK pathways and eventually affecting gene expression. TCR signal transduction orchestrates the activation of Ras by integrating at least two Ras-guanyl nucleotide exchange factors, RasGRP1 and Sos. In this study, we have characterized the relationship between RasGRP1 function and its potential roles in promoting ERK activity, cell survival, maturation, and lineage commitment. Investigations on RasGRP1(-/-) mice expressing a transgenic (Tg) MHC class II-restricted TCR revealed that the development of CD4 T cells expressing this Tg TCR is completely dependent on RasGRP1. Unexpectedly, a small number of functional CD8 single-positive thymocytes expressing the Tg MHC class II-restricted TCR exists in mutant mice. In addition, RasGRP1(-/-) double-positive thymocytes exhibit marked deficits in TCR-stimulated up-regulation of the positive selection marker CD69 and the antiapoptotic protein Bcl-2, whereas CD5 induction is unaffected. To evaluate the role of RasGRP1 in providing cellular survival signaling, we enforced Bcl-2 expression in RasGRP1(-/-) thymocytes. These studies demonstrate that RasGRP1 function cannot be fully complemented by Tg Bcl-2 expression. Therefore, we propose that RasGRP1 transmits differentiation signaling critically required for CD4 T cell development.  相似文献   

19.
To delineate the cellular targets and mechanisms by which glucocorticoids (GCs) exert their actions, we generated mice in which a green fluorescent protein (GFP)-GC receptor (GR) fusion gene is knocked into the GR locus. In these mice, the GFP-GR protein, which is functionally indistinguishable from endogenous GR, allows the tracking and quantitation of GR expression in single living cells. In GFP-GR thymus, GR expression is uniform among embryonic thymocyte subpopulations but gradually matures over a 3-wk period after birth. In the adult, GR is specifically induced to high levels in CD25(+)CD4(-)CD8(-) thymocytes and returns to basal levels in CD4(+)CD8(+) thymocytes of wild-type and positively selecting female HY TCR-transgenic mice, but not negatively selecting male HY TCR-transgenic mice. In GFP-GR/recombinase-activating gene 2(-/-) thymocytes, GR expression is down-regulated by pre-TCR complex stimulation. Additionally, relative GR expression is dissociated from GC-induced apoptosis in vivo. Results from these studies define differential GR expression throughout ontogeny, suggest pre-TCR activation as a specific mechanism of GR down-regulation, define immature CD8(+) thymocytes as novel apoptosis-sensitive GC targets, and separate receptor abundance from susceptibility to apoptosis across thymocyte populations.  相似文献   

20.
CTLA-4, a homologue of CD28, is a negative regulator of T cell activation in the periphery and is transiently expressed on the cell surface after T cell activation. However, the role of CTLA-4 in T cell activation in the thymus is not clear. This investigation was initiated to determine the role of CTLA-4 in the activation of CD4(+)CD8(+) double-positive (DP) and CD4(+)CD8(-) and CD4(-)CD8(+) single-positive (SP) thymocytes using fetal thymic organ cultures (FTOC) of MHC class II-restricted, OVA(323-339)-restricted TCR transgenic mice (DO11.10). We found that treatment of the FTOC with anti-CTLA-4-blocking Ab during activation with OVA(323-339) increased the proportion and number of DP thymocytes, but decreased the proportion and number of SP thymocytes compared with OVA(323-339)-stimulated FTOC without anti-CTLA-4 Ab treatment. In addition, anti-CTLA-4 Ab treatment inhibited OVA(323-339)-induced expression of the early activation marker, CD69, in DP thymocytes, but increased CD69 in SP thymocytes. Similarly, CTLA-4 blockage decreased phosphorylation of ERK in DP thymocytes by Ag-specific TCR engagement, but increased phosphorylation of ERK in SP thymocytes. CTLA-4 blockage inhibited deletion of DP thymocytes treated with a high dose of OVA(323-339), whereas CTLA-4 blockage did not inhibit deletion of DP thymocytes treated with a low dose of OVA(323-339). We conclude that CTLA-4 positively regulates the activation of DP thymocytes, resulting in their deletion, whereas blocking CTLA-4 suppresses the activation of DP thymocytes, leading to inhibition of DP thymocyte deletion. In contrast, CTLA-4 negatively regulates the activation of SP thymocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号