首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have suggested that the conformation of the activation peptide of protein C is influenced by the binding of Ca(2+). To provide direct evidence for the linkage between Ca(2+) binding and the conformation of the activation peptide, we have constructed a protein C mutant in the gamma-carboxyglutamic acid-domainless form in which the P1 Arg(169) of the activation peptide is replaced with the fluorescence reporter Trp. Upon binding of Ca(2+), the intrinsic fluorescence of the mutant decreases approximately 30%, as opposed to only 5% for the wild-type, indicating that Trp(169) is directly influenced by the divalent cation. The K(d) of Ca(2+) binding for the mutant protein C was impaired approximately 4-fold compared with wild-type. Interestingly, the conformation of the activation peptide was also found to be sensitive to the binding of Na(+), and the affinity for Na(+) binding increased approximately 5-fold in the presence of Ca(2+). These findings suggest that Ca(2+) changes the conformation of the activation peptide of protein C and that protein C is also capable of binding Na(+), although with a weaker affinity compared with the mature protease. The mutant protein C can no longer be activated by thrombin but remarkably it can be activated efficiently by chymotrypsin and by the thrombin mutant D189S. Activation of the mutant protein C by chymotrypsin proceeds at a rate comparable to the activation of wild-type protein C by the thrombin-thrombomodulin complex.  相似文献   

2.
Plasma-membrane vesicles from rat corpus luteum showed an ATP-dependent uptake of Ca2+. Ca2+ was accumulated with a K1/2 (concn. giving half-maximal activity) of 0.2 microM and was released by the bivalent-cation ionophore A23187. A Ca2+-dependent phosphorylated intermediate (Mr 100,000) was detected which showed a low decomposition rate, consistent with it being the phosphorylated intermediate of the transport ATPase responsible for Ca2+ uptake. The Ca2+ uptake and the phosphorylated intermediate (E approximately P) displayed several properties that were different from those of the high-affinity Ca2+-ATPase previously observed in these membranes. Both Ca2+ uptake and E approximately P discriminated against ribonucleoside triphosphates other than ATP, whereas the ATPase split all the ribonucleoside triphosphates equally. Both Ca2+ uptake and E approximately P were sensitive to three different Hg-containing inhibitors, whereas the ATPase was inhibited much less. Ca2+ uptake required added Mg2+ (Km = 2.2 mM), whereas the ATPase required no added Mg2+. The maximum rate of Ca2+ uptake was about 400-fold less than that of ATP splitting; under different conditions, the decomposition rate of E approximately P was 1,000 times too slow to account for the ATPase activity observed. All of these features suggested that Ca2+ uptake was due to an enzyme of low activity, whose ATPase activity was not detected in the presence of the higher-specific-activity Ca2+-dependent ATPase.  相似文献   

3.
Although the stimulatory effect of glucagon-like peptide 1 (GLP-1), a cAMP-generating agonist, on Ca(2+) signal and insulin secretion is well established, the underlying mechanisms remain to be fully elucidated. We recently discovered that Ca(2+) influx alone can activate conventional protein kinase C (PKC) as well as novel PKC in insulin-secreting (INS-1) cells. Building on this earlier finding, here we examined whether GLP-1-evoked Ca(2+) signaling can activate PKCalpha and PKCepsilon at a substimulatory concentration of glucose (3 mm) in INS-1 cells. We first showed that GLP-1 translocated endogenous PKCalpha and PKCepsilon from the cytosol to the plasma membrane. Next, we assessed the phosphorylation state of the PKC substrate, myristoylated alanine-rich C kinase substrate (MARCKS), by using MARCKS-GFP. GLP-1 translocated MARCKS-GFP to the cytosol in a Ca(2+)-dependent manner, and the GLP-1-evoked translocation of MARCKS-GFP was blocked by PKC inhibitors, either a broad PKC inhibitor, bisindolylmaleimide I, or a PKCepsilon inhibitor peptide, antennapedia peptide-fused pseudosubstrate PKCepsilon-(149-164) (antp-PKCepsilon) and a conventional PKC inhibitor, G?-6976. Furthermore, forskolin-induced translocation of MARCKS-GFP was almost completely inhibited by U73122, a putative inhibitor of phospholipase C. These observations were verified in two different ways by demonstrating 1) forskolin-induced translocation of the GFP-tagged C1 domain of PKCgamma and 2) translocation of PKCalpha-DsRed and PKCepsilon-GFP. In addition, PKC inhibitors reduced forskolin-induced insulin secretion in both INS-1 cells and rat islets. Thus, GLP-1 can activate PKCalpha and PKCepsilon, and these GLP-1-activated PKCs may contribute considerably to insulin secretion at a substimulatory concentration of glucose.  相似文献   

4.
Interaction of Cu(II) and Gly-His-Lys, a growth-modulating tripeptide from plasma, was investigated by 13C- and 1H-n.m.r. and e.p.r. spectroscopy. The n.m.r. line-broadening was interpreted in terms of major and minor species formed as a function of pH. The results indicate that the n.m.r. line-broadening is due to the presence of minor species in rapid exchange and not due to the major species in solution, which has a large tau M. It is concluded that the technique of 13C- and 1H-n.m.r. line broadening, caused by paramagnetic Cu(II) ion, should be undertaken with caution, since the method may not be useful for obtaining structural information on the major species. The e.p.r. spectra over a wide pH range are almost entirely due to similarly co-ordinating species. Starting at pH 5.5, the narrowest absorption near 340 mT shows superhyperfine structure, which comes out sharply in the pH region 6.0-9.6. The spectra in this pH range showed the seven lines of nitrogen superhyperfine splitting, indicating clearly the co-ordination of three nitrogen atoms to Cu(II). The e.p.r. parameters in the medium pH range, A parallel = 19.5 mT and g parallel = 2.21, fit well with the contention that Cu(II) is ligated to Gly-His-Lys through one oxygen atom and three nitrogen atoms in a square-planar configuration.  相似文献   

5.
Ca2+-dependent binding of modulator protein to the particulate fraction was studied. The particulate fraction from one gram of rat brain bound in a Ca2+-dependent fashion 144 microgram of modulator protein, representing more than one third of the total soluble modulator protein in this tissue. The binding site was present in both the mitochondrial and microsomal fractions, the specific activity of the microsomes being the higher. The binding was reversible with a physiological concentration of Ca2+, and was temperature-dependent, and the site can be saturated with modulator protein (4.5 microgram modulator protein per mg of microsomal protein). Tryptic digestion of the membranes caused complete disappearance of the binding activity, but heat-treatment for 5 min at 70 degrees C caused only 40% loss of activity. The binding site may be a known or unknown enzyme(s), the activity of which is regulated by Ca2+ and modulator. Alternatively, this binding site may be a nonenzymic protein that regulates the concentration of free modulator protein in the cell.  相似文献   

6.
7.
A direct binding of HRC (histidine-rich Ca(2+)-binding protein) to triadin, the main transmembrane protein of the junctional sarcoplasmic reticulum (SR) of skeletal muscle, seems well supported. Opinions are still divided, however, concerning the triadin domain involved, either the cytoplasmic or the lumenal domain, and the exact role played by Ca(2+), in the protein-to-protein interaction. Further support for colocalization of HRC with triadin cytoplasmic domain is provided here by experiments of mild tryptic digestion of tightly sealed TC vesicles. Accordingly, we show that HRC is preferentially phosphorylated by endogenous CaM K II, anchored to SR membrane on the cytoplasmic side, and not by lumenally located casein kinase 2. We demonstrate that HRC can be isolated as a complex with triadin, following equilibrium sucrose-density centrifugation in the presence of mM Ca(2+). Here, we characterized the COOH-terminal portion of rabbit HRC, expressed and purified as a fusion protein (HRC(569-852)), with respect to Ca(2+)-binding properties, and to the interaction with triadin on blots, as a function of the concentration of Ca(2+). Our results identify the polyglutamic stretch near the COOH terminus, as the Ca(2+)-binding site responsible, both for the acceleration in mobility of HRC on SDS-PAGE in the presence of millimolar concentrations of Ca(2+), and for the enhancement by high Ca(2+) of the interaction between HRC and triadin cytoplasmic segment. (c)2001 Elsevier Science.  相似文献   

8.
Several bovine brain proteins have been found to interact with a hydrophobic chromatography resin (phenyl-Sepharose CL-4B) in a Ca2+-dependent manner. These include calmodulin, the Ca2+/phospholipid-dependent protein kinase (protein kinase C) and a novel Ca2+-binding protein that has now been purified to electrophoretic homogeneity. This latter protein is acidic (pI 5.1) and, like calmodulin and some other high-affinity Ca2+-binding proteins, exhibits a Ca2+-dependent mobility shift on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, with an apparent Mr of 22 000 in the absence of Ca2+ and Mr 21 000 in the presence of Ca2+. This novel calciprotein is distinct from known Ca2+-binding proteins on the basis of Mr under denaturing conditions, Cleveland peptide mapping and amino acid composition analysis. It may be a member of the calmodulin superfamily of Ca2+-binding proteins. This calciprotein does not activate two calmodulin-dependent enzymes, namely cyclic nucleotide phosphodiesterase and myosin light-chain kinase, nor does it have any effect on protein kinase C. It may be a Ca2+-dependent regulatory protein of an as-yet-undefined enzymic activity. The Ca2+/phospholipid-dependent protein kinase is also readily purified by Ca2+-dependent hydrophobic-interaction chromatography followed by ion-exchange chromatography, during which it is easily separated from calmodulin. A preparation of protein kinase C that lacks contaminating kinase or phosphatase activities is thereby obtained rapidly and simply. Such a preparation is ideal for the study of phosphorylation reactions catalysed in vitro by protein kinase C.  相似文献   

9.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

10.
Protein S is an anticoagulant vitamin-K-dependent plasma protein functioning as a cofactor to activated protein C in the degradation of factors Va and VIIIa. A murine monoclonal antibody, HPS 7, specific for a calcium-stabilized epitope in human protein S, is described. The epitope was available in intact protein S, both in its free form and when protein S was bound to C4b-binding protein. It disappeared upon reduction of disulfide bridges and also after thrombin of chymotrypsin cleavage of protein S. Thrombin cleaves protein S close to the calcium-binding region containing gamma-carboxyglutamic acid (Gla). The cleaved protein still contains the Gla region, linked by a disulfide bridge, but it has a lower affinity for calcium and no protein C cofactor activity. The thrombin-mediated cleavage of protein S could be inhibited by HPS 7. The Ka for the interaction between protein S and the monoclonal was estimated to be approximately 0.7 X 10(8) M-1. Half-maximal binding between HPS 7 and protein S was observed at a calcium concentration of 0.50 mM, indicating that saturation of the Gla region with calcium was required for the interaction. The recently reported Gla-independent high-affinity calcium binding did not induce the epitope. The calcium-dependent binding of protein S to phospholipid vesicles as well as the protein C cofactor activity was inhibited by HPS 7. The data suggests that the epitope for HPS 7 is located in the Gla region of protein S or in the closely positioned thrombin-sensitive region.  相似文献   

11.
To identify protein targets for calmodulin (CaM) in the cilia of Paramecium tetraurelia, we employed a 125I-CaM blot assay after resolution of ciliary proteins on SDS/polyacrylamide gels. Two distinct types of CaM-binding proteins were detected. One group bound 125I-CaM at free Ca2+ concentrations above 0.5-1 microM and included a major binding activity of 63 kDa (C63) and activities of 126 kDa (C126), 96 kDa (C96), and 36 kDa (C36). CaM bound these proteins with high (nanomolar) affinity and specificity relative to related Ca2+ receptors. The second type of protein bound 125I-CaM only when the free Ca2+ concentration was below 1-2 microM and included polypeptides of 95 kDa (E95) and 105 kDa (E105). E105 may also contain Ca2+-dependent binding sites for CaM. Both E95 and E105 exhibited strong specificity for Paramecium CaM over bovine CaM. Ciliary subfractionation experiments suggested that C63, C126, C96, E95, and E105 are bound to the axoneme, whereas C36 is a soluble and/or membrane-associated protein. Additional Ca2+-dependent CaM-binding proteins of 63, 70, and 120 kDa were found associated with ciliary membrane vesicles. In support of these results, filtration binding assays also indicated high-affinity binding sites for CaM on isolated intact axonemes and suggested the presence of both Ca2+-dependent and Ca2+-inhibitable targets. Like E95 and E105, the Ca2+-inhibitable CaM-binding sites showed strong preference for Paramecium CaM over vertebrate CaM and troponin C. Together, these results suggest that CaM has multiple targets in the cilium and hence may regulate ciliary motility in a complex and pleiotropic fashion.  相似文献   

12.
Suspensions of aspirin-treated, 32P-prelabelled, washed platelets containing ADP scavengers in the buffer were activated with either phorbol 12,13-dibutyrate (PdBu) or the Ca2+ ionophore A23187. High concentrations of PdBu (greater than or equal to 50 nM) induced platelet aggregation and the protein kinase C (PKC)-dependent phosphorylation of proteins with molecular masses of 20 (myosin light chain), 38 and 47 kDa. No increase in cytosolic Ca2+ was observed. Preincubation of platelets with prostacyclin (PGI2) stimulated the phosphorylation of a 50 kDa protein [EC50 (concn. giving half-maximal effect) 0.6 ng of PGI2/ml] and completely abolished platelet aggregation [ID50 (concn. giving 50% inhibition) 0.5 ng of PGI2/ml] induced by PdBu, but had no effect on phosphorylation of the 20, 38 and 47 kDa proteins elicited by PdBu. The Ca2+ ionophore A23187 induced shape change, aggregation, mobilization of Ca2+, rapid phosphorylation of the 20 and 47 kDa proteins and the formation of phosphatidic acid. Preincubation of platelets with PGI2 (500 ng/ml) inhibited platelet aggregation, but not shape change, Ca2+ mobilization or the phosphorylation of the 20 and 47 kDa proteins induced by Ca2+ ionophore A23187. The results indicate that PGI2, through activation of cyclic AMP-dependent kinases, inhibits platelet aggregation at steps distal to protein phosphorylation evoked by protein kinase C and Ca2+-dependent protein kinases.  相似文献   

13.
Synaptotagmin is a proposed Ca2+ sensor on the vesicle for regulated exocytosis and exhibits Ca2+-dependent binding to phospholipids, syntaxin, and SNAP-25 in vitro, but the mechanism by which Ca2+ triggers membrane fusion is uncertain. Previous studies suggested that SNAP-25 plays a role in the Ca2+ regulation of secretion. We found that synaptotagmins I and IX associate with SNAP-25 during Ca2+-dependent exocytosis in PC12 cells, and we identified C-terminal amino acids in SNAP-25 (Asp179, Asp186, Asp193) that are required for Ca2+-dependent synaptotagmin binding. Replacement of SNAP-25 in PC12 cells with SNAP-25 containing C-terminal Asp mutations led to a loss-of-function in regulated exocytosis at the Ca2+-dependent fusion step. These results indicate that the Ca2+-dependent interaction of synaptotagmin with SNAP-25 is essential for the Ca2+-dependent triggering of membrane fusion.  相似文献   

14.
15.
A Ca2+-activatable cyclic nucleotide phosphodiesterase from bovine heart can be eluted from a DEAE-cellulose column either in the free form by buffers containing 0.1 mM ethylene glycol bis(beta-aminoethyl ether)N-N,N'N'-tetraacetic acid (EGTA) or as a complex of the enzyme with its protein modulator by buffers containing 0.01 mM CaCl2. A purification procedure based primarily on the significantly different affinity of the two forms of the enzyme for DEAE-cellulose was developed for the purification of the enzyme from bovine heart. The procedure involves ammonium sulfate fractionation, three chromatographic steps on DEAE-cellulose, and gel filtration on Sephadex G-200 with a 5000-fold purification over the crude extract. The purified enzyme has a specific activity of 120 mumol of cAMP/mg/min, can be activated 5-fold by Ca2+, but is only 80% pure as judged by analytical disc gel electrophoresis. The purified enzyme is unstable but can be stabilized by addition of Ca2+ and the protein modulator; this is in contrast to the less pure preparations of Ca2+-activatable phosphodiesterase which are destabilized by the protein modulator in the presence of Ca2+.  相似文献   

16.
17.
Ca2+-dependent activator protein for secretion (CAPS) is a cytosolic protein essential for the Ca2+-dependent fusion of dense-core vesicles (DCVs) with the plasma membrane and the regulated secretion of a subset of neurotransmitters. The mechanism by which CAPS functions in exocytosis and the means by which it associates with target membranes are unknown. We identified two domains in CAPS with distinct membrane-binding properties that were each essential for CAPS activity in regulated exocytosis. The first of these, a centrally located pleckstrin homology domain, exhibited three properties: charge-based binding to acidic phospholipids, binding to plasma membrane but not DCV membrane, and stereoselective binding to phosphatidylinositol 4,5-bisphosphate. Mutagenesis studies revealed that the former two properties but not the latter were essential for CAPS function. The central pleckstrin homology domain may mediate transient CAPS interactions with the plasma membrane during Ca2+-triggered exocytosis. The second membrane association domain comprising distal C-terminal sequences mediated CAPS targeting to and association with neuroendocrine DCVs. The CAPS C-terminal domain was also essential for optimal activity in regulated exocytosis. The presence of two membrane association domains with distinct binding specificities may enable CAPS to bind both target membranes to facilitate DCV-plasma membrane fusion.  相似文献   

18.
Protein C, like the other vitamin K-dependent plasma proteins that participate in blood coagulation, except prothrombin, has at least one high affinity calcium-binding site that is independent of gamma-carboxyglutamic acid. Calcium binding to this site is required for activation of protein C by the thrombin-thrombomodulin complex. In an attempt to localize this calcium-binding site, we subjected protein C to limited tryptic digestion. A monoclonal antibody that recognizes a calcium-dependent epitope both in intact protein C, in gamma-carboxyglutamic acid-domainless protein C, and in activated protein C, was used to isolate a fragment from the tryptic digest. The fragment was derived from the light chain of protein C and consisted of the two domains that are homologous to the epidermal growth factor precursor. Half-maximal binding of the intact protein and of the isolated fragment by the antibody occurred at 100-200 microM Ca2+. The results suggest the presence of a Ca2+-binding site in the epidermal growth factor homology region of protein C.  相似文献   

19.
Plasma membrane vesicles isolated from rat liver exhibited an azide-insensitive Mg2+-ATP-dependent Ca2+ pump which accumulated Ca2+ at a rate of 5.1 +/- 0.5 nmol of calcium/mg of protein/min and reached a total accumulation of 33.2 +/- 2.6 nmol of calcium/mg of protein in 20 microM Ca2+ at 37 degrees C. Equiosmotic addition of 50 mM Na+ resulted in a loss of accumulated calcium. Measurement of Mg2+-ATP-dependent Ca2+ uptake in the presence of 50 mM Na+ revealed no effect of Na+ on the initial rate of Ca2+ uptake, but a decrease in the total accumulation. The half-maximal effect of Na+ on Ca2+ accumulation was achieved at 14 mM. The Ca2+ efflux rate constant in the absence of Na+ was 0.16 +/- 0.01 min-1, whereas the efflux rate constant in the presence of 50 mM Na+ was 0.25 +/- 0.02 min-1. Liver homogenate sedimentation fractions from 1,500 to 105,000 X g were assayed for azide-insensitive Mg2+-ATP-dependent Ca2+ accumulation. Na+-sensitive Ca2+ uptake activity was found to specifically co-sediment with the plasma membrane-associated enzymes, 5'-nucleotidase and Na+/K+-ATPase, whereas Na+-insensitive Ca2+ uptake was found to co-sediment with the endoplasmic reticulum-associated enzyme, glucose-6-phosphatase. The plasma membrane Ca2+ pump was also distinguished from the endoplasmic reticulum Ca2+ pump by its sensitivity to inhibition by vanadate. Half-maximal inhibition of plasma membrane Ca2+ uptake occurred at 0.8 microM VO4(3-), whereas half-maximal inhibition of microsomal Ca2+ uptake occurred at 40 microM.  相似文献   

20.
Ca2+ requirement for protein kinase C activation is a matter of controversy. In this report we have examined Ca2+ dependency of the reaction in different assay systems and shown that the enzyme response to Ca2+, as well as diacylglycerol, depends upon phospholipid species, protein substrate and lipid conformation (micelles or sonicates). These results emphasize that the enzyme characteristics as defined in reconstituted membrane systems may not have a physiological relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号