首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pierre Joliot  Anne Joliot 《BBA》2005,1706(3):204-214
The kinetics of reoxidation of the primary acceptor Qa has been followed by measuring the changes in the fluorescence yield induced by a series of saturating flashes in intact cells of Rhodobacter sphaeroides in anaerobic conditions. At 0 °C, about half of Qa is reoxidized in about 200 ms while reoxidation of the remaining fraction is completed in several seconds to minutes. The fast phase is associated with the transfer of ubiquinone formed at site Qo of the cytochrome bc1 complex while the slowest phase is associated with the diffusion of ubiquinone present in the membrane prior to the flash excitation. The biphasic kinetics of Qa oxidation is interpreted assuming that the electron chain is organized in supercomplexes that associate two RCs and one cyt bc1 complex, which allows a fast transfer of quinone formed at the level of cyt bc1 complex to the RCs. In agreement with this model, the fast phase of Qa reoxidation is inhibited by myxothiazol, a specific inhibitor of cyt bc1. The PufX-deleted mutant displays only the slowest phase of Qa oxidation; it is interpreted by the lack of supramolecular organization of the photosynthetic chain that leads to a larger average distance between cyt bc1 and RCs.  相似文献   

2.
We have examined the pre-steady state reduction kinetics of the Saccharomyces cerevisiae cytochrome bc(1) complex by menaquinol in the presence and absence of endogenous ubiquinone to elucidate the mechanism of triphasic cytochrome b reduction. With cytochrome bc(1) complex from wild type yeast, cytochrome b reduction was triphasic, consisting of a rapid partial reduction phase, an apparent partial reoxidation phase, and a slow rereduction phase. Absorbance spectra taken by rapid scanning spectroscopy at 1-ms intervals before, during, and after the apparent reoxidation phase showed that this was caused by a bona fide reoxidation of cytochrome b and not by any negative spectral contribution from cytochrome c(1). With cytochrome bc(1) complex from a yeast mutant that cannot synthesize ubiquinone, cytochrome b reduction by either menaquinol or ubiquinol was rapid and monophasic. Addition of ubiquinone restored triphasic cytochrome b reduction, and the duration of the reoxidation phase increased as the ubiquinone concentration increased. When reduction of the cytochrome bc(1) complex through center P was blocked, cytochrome b reduction through center N was biphasic and was slowed by the addition of exogenous ubiquinone. These results show that ubiquinone residing at center N in the oxidized cytochrome bc(1) complex is responsible for the triphasic reduction of cytochrome b.  相似文献   

3.
Li J  Takahashi E  Gunner MR 《Biochemistry》2000,39(25):7445-7454
The electron transfer from the reduced primary quinone (Q(A)(-)) to the secondary quinone (Q(B)) can occur in two phases with a well-characterized 100 micros component (tau(2)) and a faster process occurring in less than 10 micros (tau(1)). The fast reaction is clearly seen when the native ubiquinone-10 at Q(A) is replaced with naphthoquinones. The dependence of tau(1) on the free-energy difference between the P(+)Q(A)(-)Q(B) and P(+)Q(A)Q(B)(-) states (-) and on the pH was measured using naphthoquinones with different electrochemical midpoint potentials as Q(A) in Rhodobacter sphaeroides reaction centers (RCs) and in RCs where - is changed by mutation of M265 in the Q(A) site from Ile to Thr (M265IT). Q(B) was ubiquinone (UQ(B)) in all cases. Electron transfer was measured by using the absorption differences of the naphthosemiquinone at Q(A) and the ubisemiquinone at Q(B) between 390 and 500 nm. As - was changed from -90 to -250 meV tau(1) decreased from 29 to 0.2 micros. The free-energy dependence of tau(1) provides a reorganization energy of 850 +/- 100 meV for the electron transfer from Q(A)(-) to Q(B). The slower reaction at tau(2) is free-energy independent, so processes other than electron transfer determine the observed rate. The fraction of the reaction at tau(1) increases with increasing driving force and is 100% of the reaction when - is approximately 100 meV more favorable than in the native RCs with ubiquinone as Q(A). The fast phase, tau(1), is pH independent from pH 6 to 11 while tau(2) slows above pH 9. As the Q(A) isoprene tail length is increased from 2 to 10 isoprene units the fraction at tau(1) decreases. However, tau(1), tau(2), and the fraction of the reaction in each phase are independent of the tail length of UQ(B).  相似文献   

4.
In Rhodobacter sphaeroides reaction centers (RCs) containing the mutation Ala M260 to Trp (AM260W), transmembrane electron transfer along the full-length of the A-branch of cofactors is prevented by the loss of the Q(A) ubiquinone, but it is possible to generate the radical pair P(+)H(A)(-) by A-branch electron transfer or the radical pair P(+)Q(B)(-) by B-branch electron transfer. In the present study, FTIR spectroscopy was used to provide direct evidence for the complete absence of the Q(A) ubiquinone in mutant RCs with the AM260W mutation. Light-induced FTIR difference spectroscopy of isolated RCs was also used to probe the neutral Q(B) and the semiquinone Q(B)(-) states in two B-branch active mutants, a double AM260W-LM214H mutant, denoted WH, and a quadruple mutant, denoted WAAH, in which the AM260W, LM214H, and EL212A-DL213A mutations were combined. The data were compared to those obtained with wild-type (Wt) RCs and the double EL212A-DL213A (denoted AA) mutant which exhibit the usual A-branch electron transfer to Q(B). The Q(B)(-)/Q(B) spectrum of the WH mutant is very close to that of Wt RCs indicating similar bonding interactions of Q(B) and Q(B)(-) with the protein in both RCs. The Q(B)(-)/Q(B) spectra of the AA and WAAH mutants are also closely related to one another, but are very different to that of the Wt complex. Isotope-edited IR fingerprint spectra were obtained for the AA and WAAH mutants reconstituted with site-specific (13)C-labeled ubiquinone. Whilst perturbations of the interactions of the semiquinone Q(B)(-) with the protein are observed in the AA and WAAH mutants, the FTIR data show that the bonding interaction of neutral Q(B) in these two mutants are essentially the same as those for Wt RCs. Therefore, it is concluded that Q(B) occupies the same binding position proximal to the non-heme iron prior to reduction by either A-branch or B-branch electron transfer.  相似文献   

5.
The cytochrome bc(1) complex catalyzes electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which electron transfer is linked to proton translocation across the inner mitochondrial membrane. In the Q cycle mechanism proton translocation is the net result of topographically segregated reduction of quinone and reoxidation of quinol on opposite sides of the membrane, with protons being carried across the membrane as hydrogens on the quinol. The linkage of proton chemistry to electron transfer during quinol oxidation and quinone reduction requires pathways for moving protons to and from the aqueous phase and the hydrophobic environment in which the quinol and quinone redox reactions occur. Crystal structures of the mitochondrial cytochrome bc(1) complexes in various conformations allow insight into possible proton conduction pathways. In this review we discuss pathways for proton conduction linked to ubiquinone redox reactions with particular reference to recently determined structures of the yeast bc(1) complex.  相似文献   

6.
We have investigated in detail the effects of dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, DBMIB) on the ubiquinol-cytochrome c reductase (cytochrome bc1 complex) from bovine heart mitochondria. The inhibitory action of DBMIB on the steady-state activity of the bc1 complex is related to the specific binding of the quinone to the purified enzymatic complex. At concentrations higher than 10 mol per mol of the enzyme, DBMIB is able to stimulate an antimycin-insensitive reduction of cytochrome c catalyzed by the bc1 complex. In accordance with kinetic data showing a competition by endogenous ubiquinone in the inhibitory action, DBMIB can be considered as a product-like inhibitor of the ubiquinol-cytochrome c reductase activity. The site of specific binding of dibromothymoquinone in the bc1 complex enables it to interact with the iron-sulphur center of the enzyme, as indicated by changes induced in the EPR spectrum of the center. However, the inhibitor also directly interacts with cytochrome b, promoting a fast chemical oxidation of the reduced heme center. In spite of these effects, DBMIB has been found not to exert significant effects on the first turnover of the fully oxidized bc1 complex, as monitored by the rapid reduction of both cytochromes b and c1 by ubiquinol-1. In the presence of antimycin, only a stimulation of cytochrome c1 reduction, in parallel to an enhanced cytochrome b reoxidation, is observed. Moreover, DBMIB does not affect the oxidant-induced extra cytochrome b reduction in the presence of antimycin. On the basis of the evidences suggesting a competition with the endogenous ubiquinone in the redox cycle of the bc1 complex, a model is proposed for the mechanism of DBMIB inhibition. Such model can also explain at the molecular level the redox bypass induced by dibromothymoquinone in the whole respiratory chain (Degli Esposti, M., Rugolo, M. and Lenaz, G. (1983) FEBS Lett. 156, 15-19).  相似文献   

7.
Domain rotation of the Rieske iron-sulfur protein (ISP) between the cytochrome (cyt) b and cyt c(1) redox centers plays a key role in the mechanism of the cyt bc(1) complex. Electron transfer within the cyt bc(1) complex of Paracoccus denitrificans was studied using a ruthenium dimer to rapidly photo-oxidize cyt c(1) within 1 μs and initiate the reaction. In the absence of any added quinol or inhibitor of the bc(1) complex at pH 8.0, electron transfer from reduced ISP to cyt c(1) was biphasic with rate constants of k(1f) = 6300 ± 3000 s(-1)and k(1s) = 640 ± 300 s(-1) and amplitudes of 10 ± 3% and 16 ± 4% of the total amount of cyt c(1) photooxidized. Upon addition of any of the P(m) type inhibitors MOA-stilbene, myxothiazol, or azoxystrobin to cyt bc(1) in the absence of quinol, the total amplitude increased 2-fold, consistent with a decrease in redox potential of the ISP. In addition, the relative amplitude of the fast phase increased significantly, consistent with a change in the dynamics of the ISP domain rotation. In contrast, addition of the P(f) type inhibitors JG-144 and famoxadone decreased the rate constant k(1f) by 5-10-fold and increased the amplitude over 2-fold. Addition of quinol substrate in the absence of inhibitors led to a 2-fold increase in the amplitude of the k(1f) phase. The effect of QH(2) on the kinetics of electron transfer from reduced ISP to cyt c(1) was thus similar to that of the P(m) inhibitors and very different from that of the P(f) inhibitors. The current results indicate that the species occupying the Q(o) site has a significant conformational influence on the dynamics of the ISP domain rotation.  相似文献   

8.
Yu CA  Cen X  Ma HW  Yin Y  Yu L  Esser L  Xia D 《Biochimica et biophysica acta》2008,1777(7-8):1038-1043
Intensive biochemical, biophysical and structural studies of the cytochrome (cyt) bc(1) complex in the past have led to the formulation of the "protonmotive Q-cycle" mechanism for electron and proton transfer in this vitally important complex. The key step of this mechanism is the separation of electrons during the oxidation of a substrate quinol at the Q(P) site with both electrons transferred simultaneously to ISP and cyt b(L) when the extrinsic domain of ISP (ISP-ED) is located at the b-position. Pre-steady state fast kinetic analysis of bc(1) demonstrates that the reduced ISP-ED moves to the c(1)-position to reduce cyt c(1) only after the reduced cyt b(L) is oxidized by cyt b(H). However, the question of how the conformational switch of ISP-ED is initiated remains unanswered. The results obtained from analysis of inhibitory efficacy and binding affinity of two types of Q(P) site inhibitors, Pm and Pf, under various redox states of the bc(1) complex, suggest that the electron transfer from heme b(L) to b(H) is the driving force for the releasing of the reduced ISP-ED from the b-position to c(1)-position to reduce cyt c(1).  相似文献   

9.
The ubiquinone complement of Rhodobacter capsulatus chromatophore membranes has been characterized by its isooctane solvent extractability and electrochemistry; we find that the main ubiquinone pool (Qpool) amounts to about 80% of the total ubiquinone and has an Em7 value close to 90 mV. To investigate the interactions of ubiquinone with the cyt bc1 complex, we have examined the distinctive EPR line shapes of the [2Fe-2S] cluster of the cyt bc1 complex when the Qpool-cyt bc1 complex interactions are modulated by changing the numbers of Q or QH2 present (by solvent extraction and reconstitution), by the exposure of the [2Fe-2S] to the Qpool in different redox states, by the presence of inhibitors specific for the Qo site (myxothiazol and stigmatellin) and Qi site (antimycin), and by site-specific mutations of side chains of the cyt b polypeptide (mutants F144L and F144G) previously identified as important for Qo site structure. Evidence suggests that the Qo site can accommodate two ubiquinone molecules. One (designated Qos) is bound relatively strongly and is second only to the ubiquinone of the QA site of the reaction center in its resistance to solvent extraction. In this strong interaction, the Qo site binds Q and QH2 with approximately equal affinities. Their bound states are distinguished by their effects on the [2Fe-2S] cluster spectral feature at gx at 1.783 (Q) and gx at 1.777 (QH2); titration of the line-shape change reveals an Em7 value of approximately 95 mV. The other molecule (Qow) is bound more weakly, in the same range as the ubiquinone of the QB site of the reaction center. Again, the affinities of the Q form (gx at 1.800) and QH2 form (gx at 1.777) are nearly equal, and the Em7 value measured is approximately 80 mV. These results are discussed in terms of earlier EPR analyses of the cyt bc1 complexes of other systems. A Qo site double-occupancy model is considered that builds on the previous model based on Qo site mutants [Robertson, D. E., Daldal, F.,& Dutton, P. L. (1990) Biochemistry 29, 11249-11260] and includes the recent suggestion that two of the [2F3-2S] cluster ligands of the R. capsulatus cyt bc1 complex are histidines [Gurbiel, R. J. Ohnishi, T., Robertson, D. E. Daldal, F., & Hoffman, B. M. (1991) Biochemistry 30, 11579-11584]. We speculate that the cyt bc1 complex complexes a full enzymatic turnover without necessary exchange of ubiquinone with the Qpool.  相似文献   

10.
Darrouzet E  Daldal F 《Biochemistry》2003,42(6):1499-1507
The ubihydroquinone:cytochrome (cyt) c oxidoreductase, or bc(1) complex, and its homologue the b(6)f complex are key components of respiratory and photosynthetic electron transport chains as they contribute to the generation of an electrochemical gradient used by the ATP synthase to produce ATP. The bc(1) complex has two catalytic domains, ubihydroquinone oxidation (Q(o)) and ubiquinone reduction (Q(i)) sites, that are located on each side of the membrane. The key to the energetic efficiency of this enzyme relies upon the occurrence of a unique electron bifurcation reaction at its Q(o) site. Recently, several lines of evidence have converged to establish that in the bc(1) complex the extrinsic domain of the Fe-S subunit that contains a [2Fe2S] metal cluster moves during catalysis to shuttle electrons between the Q(o) site and c(1) heme. While this step is required for electron bifurcation, available data also suggest that the movement might be controlled to ensure maximal energetic efficiency [Darrouzet et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 4567-4572]. To gain insight into the plausible control mechanism, we used a biochemical genetic approach to define the different regions of the bc(1) complex that might interact with each other. Previously, we found that a mutation located at position L286 of the ef loop of Rhodobacter capsulatus cyt b could alleviate movement impairment resulting from a mutation in the hinge region, linking the [2Fe2S] cluster domain to the membrane anchor of the Fe-S subunit. Here we report that various substitutions at position 288 on the opposite side of the ef loop also impair Q(o) site catalysis. In particular, we note that while most of the substitutions affect only QH(2) oxidation, yet others like T288S also hinder the rate of the movement of the Fe-S subunit. Thus, position 288 of cyt b appears to be important for both the QH(2) oxidation and the movement of the Fe-S subunit. Moreover, we found that, upon substitution of T288 by other amino acids, additional compensatory mutations located at the [2Fe2S] cluster or the hinge domains of the Fe-S subunit, or on the cd loop of cyt b, arise readily to alleviate these defects. These studies indicate that intimate protein-protein interactions occur between cyt b and the Fe-S subunits to sustain fast movement and efficient QH(2) oxidation and highlight the critical dual role the ef loop of cyt b to fine-tune the docking and movement of the Fe-S subunit during Q(o) site catalysis.  相似文献   

11.
To better understand the mechanism of divergent electron transfer from ubiquinol to the iron-sulfur protein and cytochrome b(L) within the cytochrome bc(1) complex, we have examined the effects of antimycin on the presteady state reduction kinetics of the bc(1) complex in the presence or absence of endogenous ubiquinone. When ubiquinone is present, antimycin slows the rate of cytochrome c(1) reduction by approximately 10-fold but had no effect upon the rate of cytochrome c(1) reduction in bc(1) complex lacking endogenous ubiquinone. In the absence of endogenous ubiquinone cytochrome c(1), reduction was slower than when ubiquinone was present and was similar to that in the presence of ubiquinone plus antimycin. These results indicate that the low potential redox components, cytochrome b(H) and b(L), exert negative control on the rate of reduction of cytochrome c(1) and the Rieske iron-sulfur protein at center P. If electrons cannot equilibrate from cytochrome b(H) and b(L) to ubiquinone, partial reduction of the low potential components slows reduction of the high potential components. We also examined the effects of decreasing the midpoint potential of the iron-sulfur protein on the rates of cytochrome b reduction. As the midpoint potential decreased, there was a parallel decrease in the rate of b reduction, demonstrating that the rate of b reduction is dependent upon the rate of ubiquinol oxidation by the iron-sulfur protein. Together these results indicate that ubiquinol oxidation is a concerted reaction in which both the low potential and high potential redox components control ubiquinol oxidation at center P, consistent with the protonmotive Q cycle mechanism.  相似文献   

12.
In this minireview an overview is presented of the kinetics of electron transfer within the cytochrome bc (1) complex, as well as from cytochrome bc (1) to cytochrome c. The cytochrome bc (1) complex (ubiquinone:cytochrome c oxidoreductase) is an integral membrane protein found in the mitochondrial respiratory chain as well as the electron transfer chains of many respiratory and photosynthetic bacteria. Experiments on both mitochondrial and bacterial cyatochrome bc (1) have provided detailed kinetic information supporting a Q-cycle mechanism for electron transfer within the complex. On the basis of X-ray crystallographic studies of cytochrome bc (1), it has been proposed that the Rieske iron-sulfur protein undergoes large conformational changes as it transports electrons from ubiquinol to cytochrome c (1). A new method was developed to study electron transfer within cytochrome bc (1) using a binuclear ruthenium complex to rapidly photooxidize cytochrome c (1). The rate constant for electron transfer from the iron-sulfur center to cytochrome c (1) was found to be 80,000 s(-1), and is controlled by the dynamics of conformational changes in the iron-sulfur protein. Moreover, a linkage between the conformation of the ubiquinol binding site and the conformational dynamics of the iron-sulfur protein has been discovered which could play a role in the bifurcated oxidation of ubiquinol. A ruthenium photoexcitation method has also been developed to measure electron transfer from cytochrome c (1) to cytochrome c. The kinetics of electron transfer are interpreted in light of a new X-ray crystal structure for the complex between cytochrome bc (1) and cytochrome c.  相似文献   

13.
This minireview summarizes our present view of the supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides and Rhodobacter capsulatus. These two species present a close association between two reaction centers (RCs), one cytochrome (cyt) bc(1) and one cyt c. In R. sphaeroides, the RCs are only partially surrounded by LH1 complexes. This open ring of LH1 complexes is required for an efficient photoinduced cyclic electron transfer only under conditions where the quinone pool totally reduced. When the quinone pool is partially oxidized, a closed ring of LH1 complexes around the RCs does not impair the exchange of quinone molecules between the RC and the cyt bc(1) complex. To explain the efficient photochemistry of the various species which possess a RC surrounded by a closed ring of LH, it is proposed that their quinone pool is partially oxidized even under anaerobic condition.  相似文献   

14.
The kinetics of charge recombination between the primary photoxidized donor (P(+)) and the secondary reduced quinone acceptor (Q(B)(-)) have been studied in reaction centers (RCs) from the purple photosynthetic bacterium Rhodobacter sphaeroides incorporated into lecithin vesicles containing large ubiquinone pools over the temperature range 275 K = (50 +/- 15) nm). Following these premises, we describe the kinetics of P(+)Q(B)(-) recombination with a truncated cumulant expansion and relate it to P(Q) and to the free energy changes for Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer (DeltaG(AB)(o)) and for quinone binding (DeltaG(bind)(o)) at Q(B). The model accounts well for the temperature and quinone dependence of the charge recombination kinetics, yielding DeltaG(AB)(o) = -7.67 +/- 0.05 kJ mol(-1) and DeltaG(bind)(o) = -14.6 +/- 0.6 kJ mol(-1) at 298 K.  相似文献   

15.
Nabedryk E  Breton J  Joshi HM  Hanson DK 《Biochemistry》2000,39(47):14654-14663
The photoreduction of the secondary quinone Q(B) in native reaction centers (RCs) of Rhodobacter capsulatus and in RCs from the GluL212 --> Gln and GluL212 --> Ala mutants has been investigated at pH 7 in (1)H(2)O and (2)H(2)O by light-induced Fourier transform infrared (FTIR) difference spectroscopy. The Q(B)(-)/Q(B) FTIR difference spectra reflect changes of quinone-protein interactions and of protonation state of carboxylic acid groups as well as reorganization of the protein upon electron transfer. Comparison of Q(B)(-)/Q(B) spectra of native and mutant RCs indicates that the interactions between Q(B) or Q(B)(-) and the protein are similar in all RCs. A differential signal at approximately 1650/1640 cm(-1), which is common to all the spectra, is associated with a movement of a peptide carbonyl or a side chain following Q(B) reduction. On the other hand, Q(B)(-)/Q(B) spectra of native and mutant RCs display several differences, notably between 1700 and 1650 cm(-1) (amide I and side chains), between 1570 and 1530 cm(-1) (amide II), and at 1728-1730 cm(-1) (protonated carboxylic acid groups). In particular, the latter region in native RCs is characterized by a main positive band at 1728 cm(-1) and a negative signal at 1739 cm(-1). In the L212 mutants, the amplitude of the positive band is strongly decreased leading to a differential signal at 1739/1730 cm(-1) that is insensitive to (1)H/(2)H isotopic exchange. In native RCs, only the 1728 cm(-1) band is affected in (2)H(2)O while the 1739 cm(-1) signal is not. The effects of the mutations and of (1)H/(2)H exchange on the Q(B)(-)/Q(B) spectra concur in the attribution of the 1728 cm(-1) band in native RCs to (partial) proton uptake by GluL212 upon the first electron transfer to Q(B), as previously observed in Rhodobacter sphaeroides RCs [Nabedryk, E., Breton, J., Hienerwadel, R., Fogel, C., M?ntele, W., Paddock, M. L., and Okamura, M. Y. (1995) Biochemistry 34, 14722-14732]. More generally, strong homologies of the Q(B) to Q(B)(-) transition in the RCs from Rb. sphaeroides and Rb. capsulatus are detected by differential FTIR spectroscopy. The FTIR data are discussed in relation with the results from global proton uptake measurements and electrogenic events concomitant with the reduction of Q(B) and with a model of the Q(B) turnover in Rb. sphaeroides RCs [Mulkidjanian, A. Y. (1999) FEBS Lett. 463, 199-204].  相似文献   

16.
Light-induced formation of ubiquinol-10 in Rhodobacter sphaeroides reaction centers was followed by rapid-scan Fourier transform IR difference spectroscopy, a technique that allows the course of the reaction to be monitored, providing simultaneously information on the redox states of cofactors and on protein response. The spectrum recorded between 4 and 29 ms after the second flash showed bands at 1,470 and 1,707 cm(-1), possibly due to a QH(-) intermediate state. Spectra recorded at longer delay times showed a different shape, with bands at 1,388 (+) and 1,433 (+) cm(-1) characteristic of ubiquinol. These spectra reflect the location of the ubiquinol molecule outside the Q(B) binding site. This was confirmed by Fourier transform IR difference spectra recorded during and after continuous illumination in the presence of an excess of exogenous ubiquinone molecules, which revealed the process of ubiquinol formation, of ubiquinone/ubiquinol exchange at the Q(B) site and between detergent micelles, and of Q(B)(-) and QH(2) reoxidation by external redox mediators. Kinetics analysis of the IR bands allowed us to estimate the ubiquinone/ubiquinol exchange rate between detergent micelles to approximately 1 s. The reoxidation rate of Q(B)(-) by external donors was found to be much lower than that of QH(2), most probably reflecting a stabilizing/protecting effect of the protein for the semiquinone form. A transient band at 1,707 cm(-1) observed in the first scan (4-29 ms) after both the first and the second flash possibly reflects transient protonation of the side chain of a carboxylic amino acid involved in proton transfer from the cytoplasm towards the Q(B) site.  相似文献   

17.
Recent progress in understanding the Q-cycle mechanism of the bc(1) complex is reviewed. The data strongly support a mechanism in which the Q(o)-site operates through a reaction in which the first electron transfer from ubiquinol to the oxidized iron-sulfur protein is the rate-determining step for the overall process. The reaction involves a proton-coupled electron transfer down a hydrogen bond between the ubiquinol and a histidine ligand of the [2Fe-2S] cluster, in which the unfavorable protonic configuration contributes a substantial part of the activation barrier. The reaction is endergonic, and the products are an unstable ubisemiquinone at the Q(o)-site, and the reduced iron-sulfur protein, the extrinsic mobile domain of which is now free to dissociate and move away from the site to deliver an electron to cyt c(1) and liberate the H(+). When oxidation of the semiquinone is prevented, it participates in bypass reactions, including superoxide generation if O(2) is available. When the b-heme chain is available as an acceptor, the semiquinone is oxidized in a process in which the proton is passed to the glutamate of the conserved -PEWY- sequence, and the semiquinone anion passes its electron to heme b(L) to form the product ubiquinone. The rate is rapid compared to the limiting reaction, and would require movement of the semiquinone closer to heme b(L) to enhance the rate constant. The acceptor reactions at the Q(i)-site are still controversial, but likely involve a "two-electron gate" in which a stable semiquinone stores an electron. Possible mechanisms to explain the cyt b(150) phenomenon are discussed, and the information from pulsed-EPR studies about the structure of the intermediate state is reviewed. The mechanism discussed is applicable to a monomeric bc(1) complex. We discuss evidence in the literature that has been interpreted as shown that the dimeric structure participates in a more complicated mechanism involving electron transfer across the dimer interface. We show from myxothiazol titrations and mutational analysis of Tyr-199, which is at the interface between monomers, that no such inter-monomer electron transfer is detected at the level of the b(L) hemes. We show from analysis of strains with mutations at Asn-221 that there are coulombic interactions between the b-hemes in a monomer. The data can also be interpreted as showing similar coulombic interaction across the dimer interface, and we discuss mechanistic implications.  相似文献   

18.
M S Graige  M L Paddock  G Feher  M Y Okamura 《Biochemistry》1999,38(35):11465-11473
A proton-activated electron transfer (PAET) mechanism, involving a protonated semiquinone intermediate state, had been proposed for the electron-transfer reaction k(2)AB [Q(A)(-)(*)Q(B)(-)(*) + H(+) <--> Q(A)(-)(*)(Q(B)H)(*) --> Q(A)(Q(B)H)(-)] in reaction centers (RCs) from Rhodobacter sphaeroides [Graige, M. S., Paddock, M. L., Bruce, M. L., Feher, G., and Okamura, M. Y. (1996) J. Am. Chem. Soc. 118, 9005-9016]. Confirmation of this mechanism by observing the protonated semiquinone (Q(B)H)(*) had not been possible, presumably because of its low pK(a). By replacing the native Q(10) in the Q(B) site with rhodoquinone (RQ), which has a higher pK(a), we were able to observe the (Q(B)H)(*) state. The pH dependence of the semiquinone optical spectrum gave a pK(a) = 7.3 +/- 0.2. At pH < pK(a), the observed rate for the reaction was constant and attributed to the intrinsic electron-transfer rate from Q(A)(-)(*) to the protonated semiquinone (i.e., k(2)AB = k(ET)(RQ) = 2 x 10(4) s(-)(1)). The rate decreased at pH > pK(a) as predicted by the PAET mechanism in which fast reversible proton transfer precedes rate-limiting electron transfer. Consequently, near pH 7, the proton-transfer rate k(H) > 10(4) s(-)(1). Applying the two step mechanism to RCs containing native Q(10) and taking into account the change in redox potential, we find reasonable values for the fraction of (Q(B)H)(*) congruent with 0.1% (consistent with a pK(a)(Q(10)) of approximately 4.5) and k(ET)(Q(10)) congruent with 10(6) s(-)(1). These results confirm the PAET mechanism in RCs with RQ and give strong support that this mechanism is active in RCs with Q(10) as well.  相似文献   

19.
The mitochondrial bc(1) complex catalyzes the oxidation of ubiquinol and the reduction of cytochrome (cyt) c. The cyt b mutation A144F has been introduced in yeast by the biolistic method. This residue is located in the cyt b cd(1) amphipathic helix in the quinol-oxidizing (Q(O)) site. The resulting mutant was respiration-deficient and was affected in the quinol binding and electron transfer rates at the Q(O) site. An intragenic suppressor mutation was selected (A144F+F179L) that partially alleviated the defect of quinol oxidation of the original mutant A144F. The suppressor mutation F179L, located at less than 4 A from A144F, is likely to compensate directly the steric hindrance caused by phenylalanine at position 144. A second set of suppressor mutations was obtained, which also partially restored the quinol oxidation activity of the bc(1) complex. They were located about 20 A from A144F in the hinge region of the iron-sulfur protein (ISP) between residues 85 and 92. This flexible region is crucial for the movement of the ISP between cyt b and cyt c(1) during enzyme turnover. Our results suggested that the compensatory effect of the mutations in ISP was due to the repositioning of this subunit on cyt b during quinol oxidation. This genetic and biochemical study thus revealed the close interaction between the cyt b cd(1) helix in the quinol-oxidizing Q(O) site and the ISP via the flexible hinge region and that fine-tuning of the Q(O) site catalysis can be achieved by subtle changes in the linker domain of the ISP.  相似文献   

20.
A new reaction center (RC) quadruple mutant, called LDHW, of Rhodobacter sphaeroides is described. This mutant was constructed to obtain a high yield of B-branch electron transfer and to study P(+)Q(B)(-) formation via the B-branch. The A-branch of the mutant RC contains two monomer bacteriochlorophylls, B(A) and beta, as a result of the H mutation L(M214)H. The latter bacteriochlorophyll replaces bacteriopheophytin H(A) of wild-type RCs. As a result of the W mutation A(M260)W, the A-branch does not contain the ubiquinone Q(A); this facilitates the study of P(+)Q(B)(-) formation. Furthermore, the D mutation G(M203)D introduces an aspartic acid residue near B(A). Together these mutations impede electron transfer through the A-branch. The B-branch contains two bacteriopheophytins, Phi(B) and H(B), and a ubiquinone, Q(B.) Phi(B) replaces the monomer bacteriochlorophyll B(B) as a result of the L mutation H(M182)L. In the LDHW mutant we find 35-45% B-branch electron transfer, the highest yield reported so far. Transient absorption spectroscopy at 10 K, where the absorption bands due to the Q(X) transitions of Phi(B) and H(B) are well resolved, shows simultaneous bleachings of both absorption bands. Although photoreduction of the bacteriopheophytins occurs with a high yield, no significant (approximately 1%) P(+)Q(B)(-) formation was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号