首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pierre Joliot  Anne Joliot 《BBA》2005,1706(3):204-214
The kinetics of reoxidation of the primary acceptor Qa has been followed by measuring the changes in the fluorescence yield induced by a series of saturating flashes in intact cells of Rhodobacter sphaeroides in anaerobic conditions. At 0 °C, about half of Qa is reoxidized in about 200 ms while reoxidation of the remaining fraction is completed in several seconds to minutes. The fast phase is associated with the transfer of ubiquinone formed at site Qo of the cytochrome bc1 complex while the slowest phase is associated with the diffusion of ubiquinone present in the membrane prior to the flash excitation. The biphasic kinetics of Qa oxidation is interpreted assuming that the electron chain is organized in supercomplexes that associate two RCs and one cyt bc1 complex, which allows a fast transfer of quinone formed at the level of cyt bc1 complex to the RCs. In agreement with this model, the fast phase of Qa reoxidation is inhibited by myxothiazol, a specific inhibitor of cyt bc1. The PufX-deleted mutant displays only the slowest phase of Qa oxidation; it is interpreted by the lack of supramolecular organization of the photosynthetic chain that leads to a larger average distance between cyt bc1 and RCs.  相似文献   

2.
Flash-induced kinetics of the membrane potential increase related to electron transfer within the cytochrome (cyt) b/c1 complex (Phase III) and that of cyt c1+c2 reduction have been measured as a function of myxothiazol concentration in isolated chromatophores and whole cells of Rhodobacter sphaeroides. Upon addition of nonsaturating concentrations of myxothiazol, kinetics of Phase III display two phases, Phase IIIa and Phase IIIb. The amplitude of Phase IIIa, completed in about 10 ms, is proportional to the fraction of non-inhibited cyt b/c1 complexes, while its half-time is independent of the myxothiazol concentration. A fast cyt c1+c2 reduction phase is correlated to Phase IIIa. These experiments demonstrate that, in a range of time of several ms, diffusion of cyt c2 is restricted to domains formed by a supercomplex including two reaction centers (RCs) and a single cyt b/c1 complex, as proposed by Joliot et al. (Biochim Biophys Acta 975: 336–345, 1989). Phase IIIb, completed in about 100 ms, shows that positive charges or inhibitor molecules are exchanged between supercomplexes in this range of time. These exchanges occur within domains including 2 to 3 supercomplexes, i.e. in membrane domains smaller than a single chromatophore. These conclusions apply to both isolated chromatophores and whole cells.Abbreviations cyt cytochrome - MOPS 3-(N-morpholino)propane sulfonic acid - PMS phenazine methosulfate - P primary donor - Rb. Rhodobacter - RC reaction center  相似文献   

3.
The time evolution of the photoinduced differential absorption spectrum of isolated Rhodobacter sphaeroides photosynthetic reaction centers was investigated. The measurements were carried out in the spectral region of 400-500 nm on the time scale of up to 200 microseconds. The spectral changes observed can be interpreted in terms of the effects of proton shift along hydrogen bonds between the primary quinone acceptor and the protein. A theoretical analysis of the spectrum time evolution was performed, which is based on the consideration of the kinetics of proton tunneling along the hydrogen bond. It was shown that the stabilization of the primary quinone electronic state occurs within the first several tens of microseconds after quinone reduction. It slows down upon the deuteration of reaction centers as well as after adding 90% of glycerol; on the other hand, it accelerates as temperature rises up to 40 degrees C.  相似文献   

4.
Native tubular membranes were purified from the purple non-sulfur bacterium Rhodobacter sphaeroides. These tubular structures contain all the membrane components of the photosynthetic apparatus, in the relative ratio of one cytochrome bc1 complex to two reaction centers, and approximately 24 bacteriochlorophyll molecules per reaction center. Electron micrographs of negative-stained membranes diffract up to 25 A and allow the calculation of a projection map at 20 A. The unit cell (a = 198 A, b = 120 A and gamma = 103 degrees) contains an elongated S-shaped supercomplex presenting a pseudo-2-fold symmetry. Comparison with density maps of isolated reaction center and light-harvesting complexes allowed interpretation of the projection map. Each supercomplex is composed of light-harvesting 1 complexes that take the form of two C-shaped structures of approximately 112 A in external diameter, facing each other on the open side and enclosing the two reaction centers. The remaining positive density is tentatively attributed to one cytochrome bc1 complex. These features shed new light on the association of the reaction center and the light-harvesting complexes. In particular, the organization of the light-harvesting complexes in C-shaped structures ensures an efficient exchange of ubihydroquinone/ubiquinone between the reaction center and the cytochrome bc1 complex.  相似文献   

5.
Illumination of intact cells of Rhodobacter sphaeroides under anaerobic conditions has a dual effect on the redox state of the quinone pool. A large oxidation of the quinone pool is observed during the first seconds following the illumination. This oxidation is suppressed by the addition of an uncoupler in agreement with a light-induced reverse electron transfer at the level of the complex I, present both in the non-invaginated part of the membrane and in the chromatophores. At longer dark times, this illumination increases the reducing power of the cells leading to a significant reduction of the others reaction centers (RCs). From the observation that a significant proportion of RCs could be reduced by the preillumination without affecting the numbers of charge separation for the RCs, we conclude that there is no rapid thermodynamic equilibrium between the quinones present in the non-invaginated part of the membrane and those localized in the chromatophores. Under anaerobic conditions where the chromatophores quinone pool is fully reduced, we deduce, on the basis of flash-induced fluorescence kinetics, that the reduced RCs are exclusively reoxidized by the quinone generated at the Q o site of the cyt bc 1 complex. The supramolecular association between a dimeric RC-LHI complex and one cyt bc 1 complex allows the confinement of a quinone between the RC-LHI directly associated to the cyt bc 1 complex.  相似文献   

6.
Rhodobacter sphaeroides responds to a decrease in light intensity by a transient stop followed by adaptation. There is no measurable response to increases in light intensity. We confirmed that photosynthetic electron transport is essential for a photoresponse, as (i) inhibitors of photosynthetic electron transport inhibit photoresponses, (ii) electron transport to oxidases in the presence of oxygen reduces the photoresponse, and (iii) the magnitude of the response is dependent on the photopigment content of the cells. The photoresponses of cells grown in high light, which have lower concentrations of light-harvesting photopigment and reaction centers, saturated at much higher light intensities than the photoresponses of cells grown in low light, which have high concentrations of light-harvesting pigments and reaction centers. We examined whether the primary sensory signal from the photosynthetic electron transport chain was a change in the electrochemical proton gradient or a change in the rate of electron transport itself (probably reflecting redox sensing). R. sphaeroides showed no response to the addition of the proton ionophore carbonyl cyanide 4-trifluoromethoxyphenylhydrazone, which decreased the electrochemical proton gradient, although a behavioral response was seen to a reduction in light intensity that caused an equivalent reduction in proton gradient. These results strongly suggest that (i) the photosynthetic apparatus is the primary photoreceptor, (ii) the primary signal is generated by a change in the rate of electron transport, (iii) the change in the electrochemical proton gradient is not the primary photosensory signal, and (iv) stimuli affecting electron transport rates integrate via the electron transport chain.  相似文献   

7.
The mechanism of the primary electron transfer (ET) process in the photosynthetic reaction center (PRC) of Rhodobacter sphaeroides has been studied with quantum chemistry method of ab initio density functional theory (DFT) (B3LYP/6-31G) based on the optimized X-ray crystallographic structure. The calculation was carried out on different structural levels. The electronic structure of pigment molecules was first studied, and then the influence of the neighboring protein was taken into account at three approximation levels: (a) the surrounding proteins were treated as a homogeneous medium with a uniform dielectric constant (SCRF); (b) both the influence of axial coordination of His to the special pair P and ABChl as, and the hydrogen bonds between related residues and P and also BPhas were included; and (c) the influence of the electronic structure of the protein subunit chains as a whole was studied. The results suggest that: (1) according to the composition of the HOMO and LUMO of P, there might be a charge-separated state of (BChlL +BChlM ) for the excited state of P; (2) to treat the protein surroundings as a homogeneous medium is not sufficient. Different interactions between pigment molecules and related residues play different roles in the ET process; (3) the axial coordination of His to P raises the E LUMO of P greatly, and it is very important for the ET process to occur in the PRC of wild-type bacterium; the axial coordination of His to ABChl as also raises their E LUMO significantly; (4) the hydrogen-bonds between amino acid residues and P and also BPh as depress the E LUMO of the pigment molecules to some extent, which makes the E LUMO of P lower than those of ABChlas, and the E LUMO of BPh a L lower than that of BPh a M. Consequently, the ET process from P to BPh a L does not, according to our calculation model, occur via ABChl a L. The possibility of the ET pathway from P to BPh a L via ABChl a L was discussed; (5) the frontier orbitals of protein subunit chains L and M are localized at the random coil area and the α–helix areas, respectively. Results mentioned above support the fact that the ET process proceeds in favourable circumstances along the branch L. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
《BBA》2020,1861(10):148238
The photoinduced charge separation in QB-depleted reaction centers (RCs) from Rhodobacter sphaeroides R-26 in solid air-dried and vacuum-dried (~10−2 Torr) films, obtained in the presence of detergent n-dodecyl-β-D-maltoside (DM), is characterized using ultrafast transient absorption spectroscopy. It is shown that drying of RC-DM complexes is accompanied by reversible blue shifts of the ground-state absorption bands of the pigment ensemble, which suggest that no dehydration-induced structural destruction of RCs occurs in both types of films. In air-dried films, electron transfer from the excited primary electron donor P to the photoactive bacteriopheophytin HA proceeds in 4.7 ps to form the P+HA state with essentially 100% yield. P+HA decays in 260 ps both by electron transfer to the primary quinone QA to give the state P+QA (87% yield) and by charge recombination to the ground state (13% yield). In vacuum-dried films, P decay is characterized by two kinetic components with time constants of 4.1 and 46 ps in a proportion of ~55%/45%, and P+HA decays about 2-fold slower (462 ps) than in air-dried films. Deactivation of both P and P+HA to the ground state effectively competes with the corresponding forward electron-transfer reactions in vacuum-dried RCs, reducing the yield of P+QA to 68%. The results are compared with the data obtained for fully hydrated RCs in solution and are discussed in terms of the presence in the RC complexes of different water molecules, the removal/displacement of which affects spectral properties of pigment cofactors and rates and yields of the electron-transfer reactions.  相似文献   

9.
Chlorella cells were examined in a modulated oxygen polarograph under aerobic and anaerobic conditions. At light intensities below about 600 ergs · cm?2 · s?1 of 650 nm light, the oxygen yield and phase lag are lower under anaerobic conditions. Addition of 25 mM sodium nitrite increases both these parameters to values close to those found in the presence of oxygen. It is proposed that nitrite is reduced by Photosystem I thus diverting electrons from the cyclic electron transport pathway. The intersystem electron transport chain becomes more oxidized and this suppresses a backflow of electrons to the oxidizing side of Photosystem II, hence increasing the oxygen yield and the phase lag. The removal of oxygen from the bathing medium also alters the response of dark adapted Chlorella to a series of saturating light flashes. In terms of the Kok model of Photosystem II (Kok, B., Forbush, B. and McGloin, M. (1970) Photochem. Photobiol. 11, 457–475) there is a large increase in the parameter α. Addition of nitrite reverses this change and virtually restores the response seen in the presence of oxygen. The deactivation of the S2 state is greatly speeded up in the absence of oxygen but the addition of nitrite again reverses this.  相似文献   

10.
Zhu Z  Gunner MR 《Biochemistry》2005,44(1):82-96
Proteins bind redox cofactors, modifying their electrochemistry and affinity by specific interactions of the binding site with each cofactor redox state. Photosynthetic reaction centers from Rhodobacter sphaeroides have three ubiquinone-binding sites, Q(A), and proximal and distal Q(B) sites. Ubiquinones, which can be doubly reduced and bind 2 protons, have 9 redox states. However, only Q and Q(-) are seen in the Q(A) site and Q, Q(-), and QH(2) in the proximal Q(B) site. The distal Q(B) function is uncertain. Multiple conformation continuum electrostatics (MCCE) was used to compare the ubiquinone electrochemical midpoints (E(m)) and pK(a) values at these three sites. At pH 7, the Q(A)/Q(A)(-) E(m) is -40 mV and proximal Q(B)/Q(B)(-) -10 mV in agreement with the experimental values (assuming a solution ubiquinone E(m) of -145 mV). Q(B) reduction requires changes in nearby residue protonation and SerL223 reorientation. The distal Q(B)/Q(B)(-) E(m) is a much more unfavorable -260 mV. Q(A) and proximal Q(B) sites generally stabilize species with a -1 charge, while the distal Q(B) site prefers binding neutral species. In each site, the dianion is destabilized because favorable interactions with the residues and backbone increase with charge (q), while the unfavorable loss of solvation energy increases with q(2). Therefore, proton binding before a second reduction, forming QH and then QH(-), is always preferred to forming the dianion (Q(-)(2)). The final product QH(2) is higher in energy at the proximal Q(B) site than in solution; therefore, it binds poorly, favoring release. In contrast, QH(2) binds more tightly than Q at the distal Q(B) site.  相似文献   

11.
The role of the protein environment in determining the redox midpoint potential (E(m)) of Q(A), the primary quinone of bacterial reaction centers, was investigated by mutation of isoleucine at position 265 of the M subunit in Rhodobacter sphaeroides. Isoleucine was changed to threonine, serine, and valine, yielding mutants M265IT, M265IS, and M265IV, respectively. All three mutants, with smaller residues replacing isoleucine, exhibited decreased binding affinities of the Q(A) site for various quinone analogues, consistent with an enlargement or loosening of the headgroup binding domain and a decrease in the van der Waals contact for small quinones. In all other respects, M265IV was like the wild type, but the polar mutants, M265IT and M265IS, had unexpectedly dramatic decreases in the redox midpoint potential of Q(A), resulting in faster rates of P(+)Q(A)(-) charge recombination. For both anthraquinone and native ubiquinone, the in situ E(m) of Q(A) was estimated to be approximately 100 and 85 mV lower in M265IT and M265IS, respectively. The effect on E(m)(Q(A)) indicates destabilization of the semiquinone or stabilization of the quinone. This is suggested to arise from either (i) electrostatic interaction between the partial charges or dipole of the residue hydroxyl group and the charge distribution of quinone and semiquinone states with particular influence near the C4 carbonyl group or (ii) from hydrogen bonding interactions between the hydroxyl oxygen and the N(delta)H of histidine M219, causing a weakening of the hydrogen bond to the C4 carbonyl. The rate of the first electron transfer (k(AB)(()(1)())) in the polar mutants was the same as in the wild type at low pH but decelerated at higher pH with altered pH dependence. The rate of the second electron transfer (k(AB)(()(2)())) was 3-4-fold greater than in the wild type over the whole pH range from 4 to 11, consistent with a larger driving force for electron transfer derived from the lower E(m) of Q(A).  相似文献   

12.
13.
This study deals with effects of oxygen on the kinetics of P(700) photoinduced redox transitions and on induction transients of chlorophyll fluorescence in leaves of C(3) plants Hibiscus rosa-sinensis and Vicia faba. It is shown that the removal of oxygen from the leaf environment has a conspicuous effect on photosynthetic electron transport. Under anaerobic conditions, the concentration of oxidized P700 centers in continuous white light was substantially lower than under aerobic conditions. The deficiency of oxygen released non-photochemical quenching of chlorophyll fluorescence, thus indicating a decrease in the trans-thylakoid pH gradient (DeltapH). Quantitative analysis of experimental data within the framework of an original mathematical model has shown that the steady-state electron flux toward oxygen in Chinese hibiscus leaves makes up to approximately 40% of the total electron flow passing through photosystem 1 (PS1). The decrease in P700+ content under anaerobic conditions can be due to two causes: i) the retardation of electron outflow from PS1, and ii) the release of photosynthetic control (acceleration of electron flow from PS2 to P700+) owing to lower acidification of the intra-thylakoid space. At the same time, cyclic electron transport around PS1 was not stimulated in the oxygen-free medium, although such stimulation seemed likely in view of possible rearrangement of electron flows on the acceptor side of PS1. This conclusion stems from observations that the rates of P700+ reduction in DCMU-poisoned samples, both under aerobic and anaerobic conditions, were negligibly small compared to rates of electron flow from PS2 toward P700+ in untreated samples.  相似文献   

14.
The bacterial reaction center absorbance change at 450 nm (A-450) assigned to an anionic semiquinone, has been suggested as a candidate for the reduced form of the primary electron acceptor in bacterial photosynthesis. In reaction centers of Rhodopseudomonas sphaeroides we have found kinetic discrepancies between the decay of A-450 and the recovery of photochemical competence. In addition, no proton uptake is measurable on the first turnover, although subsequent ones elicit one proton bound per electron. These results are taken to indicate that the acceptor reaction after a long dark period may be different for the first turnover than for subsequent ones. It is suggested that A-450 is still a likely candidate for the acceptor function but that in reaction centers, additional quinone may act as an adventitious primary acceptor when the "true" primary acceptor is reduced. Alternatively, the primary acceptor may act in a "ping-pong" fashion with respect to subsequent photoelectrons.  相似文献   

15.
Rhodobacter sphaeroides showed chemotaxis towards L-alanine but not towards the analog 2-aminoisobutyrate. 2-Aminoisobutyrate and alanine were shown to share a common transport system, but 2-aminoisobutyrate was not metabolized. Chemotaxis towards alanine was inhibited by structurally unrelated metabolites, suggesting cross-inhibition by common metabolic intermediates.  相似文献   

16.
Porphyrin production under aerobic in the dark condition was carried out using the photosynthetic bacterium, Rhodobacter sphaeroides IFO12203 and its mutant, CR 386 which can produce 5-aminolevulinic acid (ALA) under aerobic in the dark conditions. IFO12203 produced about 1.0 mg/l of porphyrin even if 2.0 mg of ALA/l was added to the glucose–glutamate–yeast extract (GGY2) medium. However, CR 386 produced 15.0 mg/l of porphyrin after 55 h culture with the addition of 2.0 g of ALA/l and sufficient oxygen supply (dissolved oxygen, DO > 7.0 mg/l). The porphyrin produced by CR 386 consisted only of coproporphyrin III. Under conditions of strict DO control (DO = 2.0 ± 0.2 mg/l), the maximum porphyrin production attained 56.3 mg/l. Low DO (1.0 ± 0.2 mg/l) and high DO control (3.0 ± 0.2 mg/l) did not enhance porphyrin production. It is suggested that oxygen supply seems to control the step(s) of porphyrin biosynthesis of CR 386 in the stages after ALA synthase in the Shemin pathway.  相似文献   

17.
A. Vermeglio  R.K. Clayton 《BBA》1977,461(1):159-165
Photoreduction of the two ubiquinone molecules, UQ1 and UQ2, bound to purified reaction center from Rhodopseudomonas sphaeroides induces different absorption band shifts of bacteriochlorophyll and bacteriopheophytin molecules depending on which ubiquinone is photoreduced. This allows us to study electron transfer between UQ1 and UQ2 directly by absorption spectrometry. The results support a model in which electrons are transferred one by one from UQ1 to UQ2 with a half-time of 200 μs, and two by two from fully reduced UQ2 to the secondary acceptor pool.  相似文献   

18.
Rhodobacter sphaeroides is a free-living, photoheterotrophic bacterium known for its genomic and metabolic complexity. We have discovered that this purple photosynthetic organism possesses a quorum-sensing system. Quorum sensing occurs in a number of eukaryotic host-associated gram-negative bacteria. In these bacteria there are two genes required for quorum sensing, the luxR and luxI homologs, and there is an acylhomoserine lactone signal molecule synthesized by the product of the luxI homolog. In R. sphaeroides, synthesis of a novel homoserine lactone signal, 7,8-cis-N-(tetradecenoyl)homoserine lactone, is directed by a luxI homolog termed cerI. Two open reading frames immediately upstream of cerI are proposed to be components of the quorum-sensing system. The first of these is a luxR homolog termed cerR, and the second is a small open reading frame of 159 bp. Inactivation of cerI in R. sphaeroides results in mucoid colony formation on agar and formation of large aggregates of cells in liquid cultures. Clumping of CerI mutants in liquid culture is reversible upon addition of the acylhomoserine lactone signal and represents a phenotype unlike those controlled by quorum sensing in other bacteria.  相似文献   

19.
20.
The photosynthetic bacterium Rhodobacter sphaeroides is capable of producing H2 via nitrogenase when grown photoheterotrophically in the absence of N2. By using 14C-labeled malate, it was found that greater than 95% of this substrate was catabolized completely to CO2 during H2 production. About 60% of this catabolism was associated with H2 biosynthesis, while almost 40% provided reductant for other cellular purposes. Thus, only a small fraction of malate provided carbon skeletons. The addition of ammonium, which inhibited nitrogenase activity, increased substrate conversion into carbon skeletons threefold. Catabolism of malate occurred primarily via the tricarboxylic acid cycle, but gluconeogenesis was also observed. The wild-type organism grew poorly on glucose, accumulated gluconate and 2-keto-3-deoxygluconate, and did not produce H2. More than 50% of metabolized glucose appeared in carbon skeletons or in storage compounds. A glucose-utilizing mutant was five times more effective in utilizing this substrate. This mutant produced H2 from glucose, using 74% of metabolized substrate for this purpose. Glucose converted to storage products or to other carbon skeletons was reduced to 8%. Fixation of CO2 competed directly with H2 production for reducing equivalents and ATP. Refixation of CO2 released from these substrates under H2-producing conditions was, at most, 10 to 12%. Addition of ammonium increased refixation of respired CO2 to 83%. Patterns of carbon flow of fixation products were associated with the particular strains and culture conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号