首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Codon-Anticodon Binding in tRNA<Superscript>phe</Superscript>   总被引:5,自引:0,他引:5  
THE anticodon loop of tRNAphe of baker's yeast has the sequence (5′ to 3′) AY A A MeG U MeC. The unusual base Y, adjacent to the anticodon (AA MeG), is the only nucleotide in this tRNA which fluoresces at room temperature and because it absorbs to the red of all other bases, the excitation energy is localized on it exclusively. (7-Methyl guanine is another base in tRNAphe which fluoresces in these conditions but its emission is so weak that it can only be observed in tRNAphe from which Y has been excised.) The fluorescence spectrum undergoes a small blue shift in the presence of the complementary codon1 and we report now the use of this shift to determine the association constants for this binding at several temperatures. The results suggest a simple thermodynamic model for the codon recognition step during protein synthesis.  相似文献   

2.
Function of Y in codon-anticodon interaction of tRNA Phe   总被引:7,自引:0,他引:7  
Molar association constants of binding oligonucleotides to the anticodon loops of (yeast) tRNAPhe, (yeast) tRNAHClPhe and (E. coli) tRNAFMet have been determined by equilibrium dialysis. From the temperature dependence of the molar association constants, ΔF, ΔH and ΔS of oligomer-anticodon loop interaction have been determined. The data indicate that the free energy change of codon-anticodon interaction is highly influenced by the presence of a modified purine (tRNAPhe), of an unmodified purine (tRNAFMet) or its absence (tRNAHClPhe). Excision of the modified purine Y in the anticodon loop of tRNAPhe results in a conformational change of the anticodon loop, which is discussed on the basis of the corresponding changes in ΔF, ΔH and ΔS.  相似文献   

3.
We have noticed that during a long storage and handling, the plant methionine initiator tRNA is spontaneously hydrolyzed within the anticodon loop at the C34-A35 phosphodiester bond. A literature search indicated that there is also the case for human initiator tRNAMet but not for yeast tRNAMet i or E. coli tRNAMet f. All these tRNAs have an identical nucleotide sequence of the anticodon stems and loops with only one difference at position 33 within the loop. It means that cytosine 33 (C33) makes the anticodon loop of plant and human tRNAMet i susceptible to the specific cleavage reaction. Using crystallographic data of tRNAMet f of E. coli with U33, we modeled the anticodon loop of this tRNA with C33. We found that C33 within the anticodon loop creates a pocket that can accomodate a hydrogen bonded water molecule that acts as a general base and catalyzes a hydrolysis of C-A bond. We conclude that a single nucleotide change in the primary structure of tRNAMet i made changes in hydration pattern and readjustment in hydrogen bonding which lead to a cleavage of the phosphodiester bond.  相似文献   

4.
Abstract

Fluorophore of proflavine was introduced onto the 3′-terminal ribose moiety of yeast tRNAPhe. The distance between the fluorophore and the fluorescent Y base in the anticodon of yeast tRNAPhe was measured by a singlet-singlet energy transfer. Conformational changes of tRNAPhe with binding of tRNAGlu 2, which has the anticodon UUC complementary to the anticodon GAA of tRNAPhe, were investigated. The distance obtained at the ionic strength of 100 mM K+ and 10 mM Mg2+ is very close to the distance from x-ray diffraction, while the distance obtained in the presence of tRNAGlu 2 is significantly smaller. Further, using a fluorescent probe of 4-bromomethl-7-methoxycoumarin introduced onto pseudouridine residue Ψ55 in the TΨC loop of tRNAPhe, Stern-Volmer quenching experiments for the probe with or without added tRNAGlu 2were carried out. The results showed greater access of the probe to the quencher with added tRNAGlu 2. These results suggest that both arms of the L-shaped tRNA structure tend to bend inside with binding of tRNAGlu 2 and some structural collapse occurs at the corner of the L-shaped structure.  相似文献   

5.
In mitochondria of Saccharomyces cerevisiae, a single aminoacyl-tRNA synthetase (aaRS), MST1, aminoacylates two isoacceptor tRNAs, tRNA1Thr and tRNA2Thr, that harbor anticodon loops of different size and sequence. As a result of this promiscuity, reassignment of the CUN codon box from leucine to threonine is facilitated. However, the mechanism by which a single aaRS binds distinct anticodon loops with high specificity is not well understood. Herein, we present the crystal structure of MST1 in complex with the canonical tRNA2Thr and non-hydrolyzable analog of threonyl adenylate. Our structure reveals that the dimeric arrangement of MST1 is essential for binding the 5′-phosphate, the second base pair of the acceptor stem, the first two base pairs of the anticodon stem and the first nucleotide of the variable arm. Further, in contrast to the bacterial ortholog that ‘reads’ the entire anticodon sequence, MST1 recognizes bases in the second and third position and the nucleotide upstream of the anticodon sequence. We speculate that a flexible loop linking strands β4 and β5 may be allosteric regulator that establishes cross-subunit communication between the aminoacylation and tRNA-binding sites. We also propose that structural features of the anticodon-binding domain in MST1 permit binding of the enlarged anticodon loop of tRNA1Thr.  相似文献   

6.
Abstract

A crystalline complex of yeast tRNAphe and dirhodium tetraacetate (DRTA) was prepared and its X-ray structure determined. The bifunctional DRTA forms an intermolecular crosslink between the N(1) position of adenine A36 in the anticodon triplet and possibly a ribose hydroxyl group of residue A76 at the 3′ terminus of a symmetry related tRNA molecule. The rhodium complex apparently shows a preference for binding to the N(l) position of adenine in a single strand region of the tRNA molecule.  相似文献   

7.
The effect of codon-anticodon interaction on the structure of two tRNAPhe species was investigated by means of nuclear magnetic resonance spectroscopy. To this end n.m.r.2 spectra of yeast and Escherichia coli tRNAPhe were recorded in the absence and the presence of the oligonucleotides U-U-C-A, U-U-C-G and U-U-C-A-G, which all contain the sequence UUC complementary to the anticodon sequence GAA. The spectra of the hydrogen-bonded protons, the methyl protons and the internucleotide phosphorous nuclei served to monitor the structure of the anticodon loop and of the tRNA in the tRNA-oligonucleotide complex. From the changes in the methyl proton spectra and in the phosphorous spectra it could be concluded that the oligonucleotides bind to the anticodon. Moreover it turned out that the binding constants obtained from these n.m.r. experiments were, within experimental error, equal to the values obtained with other techniques. Using the resonances of the protons hydrogen-bonded between the oligonucleotide and the anticodon loop the structure of the latter could be studied. In particular, binding of the pentanucleotide U-U-C-A-G, which is complementary to the five bases on the 5′ side of the anticodon loop, resulted in the resolution of four to five extra proton resonances indicating that four to five base-pairs are formed between the pentanucleotide and the anticodon loop. The formation of five base-pairs was confirmed by an independent fluorescence binding study. The resonance positions of the hydrogen-bonded protons indicate, that an RNA double helix is formed by the anticodon loop and U-U-C-A-G with the five base-pairs forming a continuous stack. This structure can be accomodated in the so-called 5′ stacked conformation of the anticodon loop, a structure that has been suggested earlier as an alternative to the familiar 3′ stacked conformation in the crystal structure models of yeast tRNAPhe. It turned out that structural adjustments of the anticodon loop to the binding of the oligonucleotides are propagated into the anticodon stem. The relevance of these results with respect to the mechanism of protein synthesis is discussed.  相似文献   

8.
The ribonucleotide oligomers U-G-A and U-G-A-A have been synthesized enzymatically. These oligomers are cognates of the U33-Gm34-A35-A36 sequence found in the anticodon loop of t-RNAphe. The 1H-NMR chemical shifts of the base and ribose HI' protons as well as the couplings. J1'–2', of the ribose protons have been examined as a function of temperature. Assignments for these resonances have been completed, and used in the analysis of solution conformation for these oligomers. The results are consistent with the A-RNA structure and suggest the absence of alternative ordered solution structures.  相似文献   

9.
Escherichia coli 15T? treated with chloramphenicol produces tRNAphe which is deficient in minor nucleosides. Undermodified tRNAphe chromatographs as two new peaks from a benzoylated diethylaminoethyl-cellulose column. Chloramphenicol tRNAphe was purified by phenoxyacetylation of phenylalanyl-tRNA and subsequent chromatography on benzoylated diethylaminoethyl-cellulose. Purified tRNAphe had an altered Chromatographie profile as a result of the purification procedure. Phenoxyacetylation of an unpurified tRNA preparation, which was either charged with phenylalanine or kept discharged, resulted in a permanent alteration of tRNAphe which was similar to the alteration of the purified tRNAphe. The altered tRNAs eluted with higher salt or ethanol concentrations from benzoylated diethylaminoethyl-cellulose. The alteration was also shown for tRNAphe of phenoxyacetylated tRNA from late log phase E. coli 15T?. tRNAglu and tRNALeu were not changed, but both tRNAArg and tRNAIle were altered. tRNA2Val and tRNAMet shifted in the elution profile; tRNA1Val and tRNAfMet were not affected.Comparison of the primary structures of the alterable and nonalterable tRNA's revealed that all alterable tRNA's have the undefined nucleoside X in the extra loop. Phenoxyacetylation of nucleoside X probably was the cause of the altered profiles.tRNAphe from E. coli 15T? treated with chloramphenicol was less reactive towards phenoxyacetylation than normal tRNA, possibly because of a different conformation of the modification-deficient molecule relative to the normal tRNAphe. tRNAphe from E. coli 15T?, starved for cysteine and methionine and treated with chloram-phenicol, is more deficient in minor nucleosides and showed even less reactivity.Acceptor capacities of the altered tRNA species were not changed significantly; only the acceptor capacity for tRNAIle decreased approximately 25%. The recognition site for the aminoacyl-tRNA synthetases probably is not affected.  相似文献   

10.
tRNA molecules contain 93 chemically unique nucleotide base modifications that expand the chemical and biophysical diversity of RNA and contribute to the overall fitness of the cell. Nucleotide modifications of tRNA confer fidelity and efficiency to translation and are important in tRNA-dependent RNA-mediated regulatory processes. The three-dimensional structure of the anticodon is crucial to tRNA-mRNA specificity, and the diverse modifications of nucleotide bases in the anticodon region modulate this specificity. We have determined the solution structures and thermodynamic properties of Bacillus subtilis tRNATyr anticodon arms containing the natural base modifications N6-dimethylallyl adenine (i6A37) and pseudouridine (ψ39). UV melting and differential scanning calorimetry indicate that the modifications stabilize the stem and may enhance base stacking in the loop. The i6A37 modification disrupts the hydrogen bond network of the unmodified anticodon loop including a C32-A38+ base pair and an A37-U33 base-base interaction. Although the i6A37 modification increases the dynamic nature of the loop nucleotides, metal ion coordination reestablishes conformational homogeneity. Interestingly, the i6A37 modification and Mg2+ are sufficient to promote the U-turn fold of the anticodon loop of Escherichia coli tRNAPhe, but these elements do not result in this signature feature of the anticodon loop in tRNATyr.  相似文献   

11.
The small-angle and wide-angle X-ray scattering of tRNAphe (yeast) and ribosomal 5S RNA (rat liver) in solution have been analysed and compared. tRNAphe in solution is folded into a compact L-shaped structure similar to its structure in crystals. The geometry of the secondary structure of the double helical regions is also equivalent to the A-form in the crystalline state. Despite differences between the molar mosses of 5S rRNA (40 000 g mol?1) and tRNAphe (25 000 g mol?1), and the fact that the 5S rRNA molecule is more anisometric than the tRNAphe molecule, there are many structural similarities. The geometrical parameters of the secondary structure of double helical regions in both RNA molecules are almost identical; the mean rise per base pair is about 0.253–0.28 nm and the mean turn angle is about 32.5–33.5. Identical cross-sectional radii of gyration, Rsq,1 ≈ 1.16 nm and Rsq,2 = 0.92 nm, identical molar mass per unit length, MΔx = 2500 g mol?1 nm?1, and a mean thickness of the molecules D ≈ 1.65 nm suggest a similar, nearly coplanar organization of isolated, double helical arms. Furthermore, there are compact regions in the central parts of both molecules, which are the sites of tertiary interactions in the tRNAphe molecule and are a potential site of tertiary interactions in the SS rRNA molecule for stabilization of the complicated L-shape of the two molecules. Both molecules have a pseudo-twofold axis,w hich may play a role in recognition for binding of specific proteins.  相似文献   

12.
Abstract

The anticodon of yeast tRNAAsp, GUC, presents the peculiarity to be self-complementary, with a slight mismatch at the uridine position. In the orthorhombic crystal lattice, tRNAAsp molecules are associated by anticodon-anticodon interactions through a two-fold symmetry axis. The anticodon triplets of symmetrically related molecules are base paired and stacked in a normal helical conformation. A stacking interaction between the anticodon loops of two two-fold related tRNA molecules also exists in the orthorhombic form of yeast tRNAPhe. In that case however the GAA anticodon cannot be base paired. Two characteristic differences can be correlated with the anticodon-anticodon association: the distribution of temperature factors as determined from the X-ray crystallographic refinements and the interaction between T and D loops. In tRNAAsp T and D loops present higher temperature factors than the anticodon loop, in marked contrast to the situation in tRNAPhe. This variation is a consequence of the anticodon-anticodon base pairing which rigidities the anticodon loop and stem. A transfer of flexibility to the corner of the tRNA molecule disrupts the G19-C56 tertiary interactions. Chemical mapping of the N3 position of cytosine 56 and analysis of self-splitting patterns of tRNAAsp substantiate such a correlation.  相似文献   

13.
The hexanucleotide Gm-A-A-Y-A-ψp excised from the anticodon loop of yeast tRNAPhe and its constituent oligonucleotides have been studied by ultraviolet absorption spectroscopy, static fluorescence, and circular dichroism. Gm-Ap has a melting point of 45°C and a high melting enthalpy when compared with G-Ap; hence 2′-O-methylation seems to stabilize stacking interactions. The nucleobase Y adjacent to the 3′-side of the anticodon triplet interacts stronger with its 3′-neighboring A than with its 5′-neighboring A. It is concluded that the base Y disconnects the stack of the anticodon itself from the stack of the anticodon stem, thereby setting a reading frame for the mRNA in the course of protein biosynthesis. From the opposite signs of the short-wavelength Cotton effects in the spectra of Gm-A-A-Y-Ap and Gm-A-A-Y, it is concluded that Y after removal of its 3′ neighbor undergoes a dramatic change in its conformation. The fluorescence of the nucleobase Y upon addition of Mg2+ is enhanced in oligonucleotides longer than two. An identical enhancement is observed for tRNAPhe, indicating that this Mg2+ effect is a property of an oligonucleotide segment and does not reflect conformational changes of the whole tRNA. The data presented here reveal that the basic structural features of the anticodon loop are already present in the hexanucleotide Gm-A-A-Y-A-ψp and are not determined by the overall structure of tRNA.  相似文献   

14.
Localization of Two Recognition Sites in Yeast Valine tRNA I   总被引:7,自引:0,他引:7  
AS a part of our research on the structure–function relationships of tRNAvalI we have been mapping the regions that take part in the recognition of valyl tRNA ligase. Using the “dissected molecule” method1, we have shown that associated molecules consisting of tRNAValI fragments lacking nucleotides in the anticodon loop, the dihydrouridine loop (D) or the thymidine loop (T) retain their acceptor activity. By contrast, dissected molecules devoid of the pentanucleotide A36CACGp (the sequence A36C belongs to the anticodon T35AC) or lacking any quarter (F1–19, F17–35 or F36–57) are inactive2–4. Here we report a study of the acceptor activity of other incomplete tRNAvalI molecules. The principal inference is that the dinucleotides A36Cp in the anticodon loop and 5′-terminal pG1Gp in the CCA stem are at least parts of two different recognition sites of this tRNA.  相似文献   

15.
Ultraviolet absorption and static fluorescence properties of hexanucleotide (Gm-A-A-Y-A-ψp) and a dodecanucleotide (A-Cm-U-Gm-A-A-Y-A-ψ-m5C-U-Gp) excised from the anticodon region of phenylalanine tRNA from yeast have been studied with respect to temperature, pH, ionic strength, and Mg2+ concentration. At low temperature these oligomers have a largely stacked structure. Only the melting data of the dodecanucleotide in absence of Mg2+ fit a two-state model. From the different melting behavior of the oligonucleotides after excision of base Y, a rodlike structure of the hexanucleotide produced by stacking interactions can be concluded. The Y fluorescence increase produced by Mg2+ has been used to evaluate the binding equilibria between Mg2+ and the oligonucleotides. One strong binding site per oligonucleotide and a greater number of weak binding sites have been found. The fluorescence of the free base Y is not influenced by Mg2+. The dodecanucleotide enhances the ethidium fluorescence to the same extent as tRNAPhe and produces comparable shifts in the excitation and emission spectra. Therefore a double helical structure for this oligomer under the assay conditions is suggested. Only weak binding of ethidium to the hexanucleotide is observed, indicating that intercalation of the dye into its structure is not favored. The data show the decisive role of the nucleobase Y in maintaining a rigid stacked structure of the anticodon nucleotides. This structure is stabilized by high ionic strength, Mg2+, and ethidium.  相似文献   

16.
Nucleoside base modifications can alter the structures and dynamics of RNA molecules and are important in tRNAs for maintaining translational fidelity and efficiency. The unmodified anticodon stem–loop from Escherichia coli tRNAPhe forms a trinucleotide loop in solution, but Mg2+ and dimethylallyl modification of A37 N6 destabilize the loop-proximal base pairs and increase the mobility of the loop nucleotides. The anticodon arm has three additional modifications, ψ32, ψ39, and A37 C2-thiomethyl. We have used NMR spectroscopy to investigate the structural and dynamical effects of ψ32 on the anticodon stem-loop from E.coli tRNAPhe. The ψ32 modification does not significantly alter the structure of the anticodon stem–loop relative to the unmodified parent molecule. The stem of the RNA molecule includes base pairs ψ32-A38 and U33–A37 and the base of ψ32 stacks between U33 and A31. The glycosidic bond of ψ32 is in the anti configuration and is paired with A38 in a Watson–Crick geometry, unlike residue 32 in most crystal structures of tRNA. The ψ32 modification increases the melting temperature of the stem by ~3.5°C, although the ψ32 and U33 imino resonances are exchange broadened. The results suggest that ψ32 functions to preserve the stem integrity in the presence of additional loop modifications or after reorganization of the loop into a translationally functional conformation.  相似文献   

17.
To estimate the effect of modified nucleotide 37, the interaction of two yeast aminoacyl-tRNAs (Phe-tRNAPhe +Y and Phe-tRNAPhe –Y) with the A site of complex [70S · poly(U) · deacylated tRNAPhe in the P site] was assayed at 0–20°C. As comparisons with native Phe-tRNAPhe +Y showed, removal of the Y base decreased the association constant of Phe-tRNAPhe –Y and the complex by an order of magnitude at every temperature tested, and increased the enthalpy of their interaction by 23 kJ/mol. When the Y base was present in the anticodon loop of deacylated tRNAPhe bound to the P site of the 70S ribosome, twice higher affinity for the A site was observed for Phe-tRNAPhe –Y but not for Phe-tRNAPhe +Y. Thus, the modified nucleotide 3" of the Phe-tRNAPhe anticodon stabilized the codon–anticodon interaction both in the A and P sites of the 70S ribosome.  相似文献   

18.
It is shown that yeast tRNAPhe, chemically coupled by its oxidized 3′CpCpA end behaves exactly as free tRNAPhe in its ability to form a specific complex with E. coli tRNA2Glu having a complementary anticodon. The results support models of tRNA in which the 3′CpCpAOH end and the anticodon are not closely associated in the tertiary structure, and provide a convenient tool of general use to characterize others pairs of tRNA having complementary anticodons, as well as for highly selective purification of certain tRNA species.  相似文献   

19.
Using singlet-singlet energy transfer, we have measured the distance between the anticodons of two transfer RNAs simultaneously bound to a messengerprogramed Escherichia coli 70 S ribosome. The fluorescent Y base adjacent to the anticodon of yeast tRNAYPhe serves as a donor. A proflavine (Pf) chemically substituted for the Y base in tRNAPfPhe serves as an acceptor. By exploiting the sequential binding properties of 70 S ribosomes for two deacylated tRNAs, we can fill the strong site with either tRNAYPhe or tRNAPfPhe and then the weak site with the other tRNA. In both cases donor quenching and sensitized emission of the acceptor are observed. Analysis of these results leads to an estimate for the Y-proflavine distance of 18 ± 2 Å. This distance is very short and suggests strongly that the two tRNAs are simultaneously in contact with adjacent codons of the message. Separate experiments show that binding of a tRNA to the weak site does not perturb the environment of the hypermodified base of a tRNA bound to the strong site. This supports the assignment of the strong site as the peptidyl site. It also indicates that binding of the second tRNA proceeds without a change in the anticodon structure of a pre-existing tRNA at the peptidyl site.  相似文献   

20.
The high-resolution (300 MHz) proton nmr spectrum of E. coli tRNAfMet has been examined in 0.17M NaCl, with and without Mg2+, and at various temperatures. In light of recent studies of other E. coli tRNA and fragments of tRNAfMet, some low field (11–15 ppm) resonances previously assigned to secondary structure base pairs are reassigned to a tertiary structure A14–S4U8 base pair and a protected uridine residue in the anticodon loop. These two resonances and other low field resonances which are assigned to secondary structure base pairs are used to monitor the thermal unfolding of the molecule. In the absence of Mg2+ the tertiary structure base pair is present only to ~45°C, but in the presence of Mg2+ it remains until at least 70°C. Analysis of the temperature dependence of other low field resonances indicates that the melting of the dihydrouridine stem occurs more or less simultaneously with the loss of tertiary structure. The observation of the resonance from the A14–S4U8 base pair proves that tertiary structure is present in this molecule below 40°C, even in the absence of Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号