首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
G Bessede  C Miguet  P Gambert  D Neel  G Lizard 《FASEB journal》2001,15(11):1927-1940
Hyperhomocysteinemia represents an independent risk factor for atherosclerosis, but the mechanisms leading to cellular dysfunctions remain unknown. Using ECV304 cells, we found that homocysteine (Hcy) plus copper (Cu2+) induced cytotoxic effects: loss of cell adhesion, increased permeability to PI, and the occurrence of morphologically apoptotic cells. This form of apoptosis, inhibited by Z-VAD-fmk, was associated with a loss of mitochondrial potential, a cytosolic release of cytochrome c, activation of caspase-3, degradation of poly(ADP-ribose)polymerase, and internucleosomal DNA fragmentation. However, the ability of Hcy plus Cu2+ to induce apoptosis decreased when the pretreatment culture time increased. As a positive correlation was found between the length of time of culture before treatment and the enhancement of gamma-glutamyl transpeptidase (gamma-GT) activity, we asked whether gamma-GT was involved in the control of Hcy plus Cu2+-induced apoptosis. Therefore, ECV304 cells were treated with either acivicin or dexamethasone, inhibiting and stimulating gamma-GT, respectively. In ECV304 cells and human umbilical venous endothelial cells, acivicin favored Hcy plus Cu2+-induced apoptosis whereas dexamethasone counteracted the apoptotic process. As acivicin and dexamethasone were also capable of modulating cell death in ECV304 cells treated with antitumoral drugs, our data emphasize that the involvement of gamma-GT in the control of apoptosis is not restricted to Hcy but also concerns other chemical compounds.  相似文献   

2.
gamma-Glutamyl transpeptidase (gamma-GT), its substrate (GSH) and hydrolytic product (L-glutamic acid) were measured biochemically in mouse reproductive tissues. The epididymal caput and seminal vesicles showed the highest specific activities of gamma-GT, while GSH and L-glutamic acid were widely distributed in all tissues. Histochemically, gamma-GT displayed a strong apical and supranuclear reaction and a moderate basal activity in the ductuli efferents, a weak luminal reaction in the first, a moderate apical reaction in the second and a strong apical and supranuclear reaction in the third segment of the epididymal caput. In the epididymal corpus and cauda, the gamma-GT reaction was confined to the tubular lumina but an apical reaction was also present in the cauda. The daily administration of acivicin (12 mg/kg body weight), an irreversible inhibitor of gamma-GT, for 14 days resulted in a 60% suppression of the enzyme activity in the epididymal caput, while the gamma-GT inhibition in the kidney was greater than 95%. The treatment caused no change in the activity of alanyl aminopeptidase. Histochemically, the basal and supranuclear gamma-GT activities in the ductuli efferents and the third epididymal segment were suppressed, but the apical reactions were maintained. The in-vivo suppression of epididymal gamma-GT activity may have implications in the control of post-testicular sperm maturation.  相似文献   

3.
Acivicin is an antitumor agent known to inhibit cell growth. A new prodrug 9b of acivicin 10 was synthesized, based on a p-hydroxybenzylcarbamate self-immolative spacer capable to release acivicin under esterase activity. The prodrug includes a maleimide-containing arm for linkage with thiol-containing macromolecules such as antibodies. This molecule is intended for the conception of bioconjugates to target an inactive acivicin precursor to tumor cells, when linked to a monoclonal antibody (mAb) which recognizes a tumor-specific antigen. Prodrug cleavage by plasmatic esterases will then restore the acivicin's activity toward tumor cells. We report here the synthesis and the in vitro characteristics of the prodrug. As expected, its inhibitory activity against the gamma-glutamyl transpeptidase (gamma-GT) enzyme and its cytotoxicity towards HL-60 cells were highly reduced compared to the parent drug. The chemical and plasmatic hydrolysis kinetics of the compound was studied by HPLC. The prodrug is stable, being slowly hydrolyzed in pH 7.6 buffer at 37 degrees C with a half-life of 37 h. It is converted into an active acivicin under the effect of pig liver esterase, and its half-life in human plasma is 3 h. These results indicate this compound may be further used as a prodrug-antibody conjugate, to target acivicin to malignant cells.  相似文献   

4.
In Ramos cells, a human Burkitt's lymphoma cell line, stimulation of the B cell antigen receptor with anti-IgM antibody (Ab) induces apoptosis as indicated by a decrease in cell viability and an increase in DNA fragmentation and cell surface exposure of phosphatidylserine. Furthermore, these changes are suppressed by incubating the cells in alpha(1)-acid glycoprotein (AGP)-coated tissue culture plates. Here, we found that, during Anti-IgM Ab-induced apoptosis in Ramos cells, caspase-3 is activated downstream of caspase-8 and the mitochondrial pathway is activated, as indicated by a loss of mitochondrial membrane potential, an increase in the release of cytochrome c to the cytoplasm, and enhanced Bax expression. Anti-IgM Ab-induced apoptosis of neuraminidase-treated Ramos cells was suppressed by incubating the cells on plates coated with AGP, which contains a high concentration of alpha2,6-linked sialic acid. The incubation on plates coated with AGP also suppressed anti-IgM Ab-stimulated caspase-3 activity and increased the level of X-linked inhibitor of apoptosis protein (XIAP), but it did not affect caspase-8 activity, the mitochondrial membrane potential, cytochrome c release, or Bax expression. The results indicate that the interaction of Ramos cells with immobilized alpha2,6-linked sialic acid enhances XIAP expression, directly or indirectly suppressing caspase-3 activity and inhibiting anti-IgM Ab-induced apoptosis.  相似文献   

5.
The role of gamma-glutamyltransferase (gamma-GT) in renal ammoniagenesis, glutamine (Gln), and glutathione (GSH) utilization was evaluated in the intact functioning rat kidney of subtotal nephrectomy (SNX) model of chronic renal failure (CRF). NH4+ derived from extracellular gamma-GT hydrolysis of Gln and GSH was differentiated from the intramitochondrial phosphate-dependent glutaminase by using acivicin, a gamma-GT-specific inhibitor. In the control (C) group Gln extraction accounted for 61% of total NH4+ production (sum of renal venous and urinary NH4+), but only 41% in SNX group. In the SNX group GSH extraction accounted for 10% of total NH4+ production, but only 1% in the C group. Acivicin inhibited 44% and 33% of total NH4+ production in SNX and C group respectively, as compared to baseline before acivicin. In CRF, gamma-GT a key enzyme of the gamma-glutamyl cycle plays a significant role in adaptive ammoniagenesis.  相似文献   

6.
In Ramos cells, a human Burkitt's lymphoma cell line, stimulation of the B cell antigen receptor with anti-IgM antibody (Ab) induces apoptosis as indicated by a decrease in cell viability and an increase in DNA fragmentation and cell surface exposure of phosphatidylserine. Furthermore, these changes are suppressed by incubating the cells in α1-acid glycoprotein (AGP)-coated tissue culture plates. Here, we found that, during Anti-IgM Ab-induced apoptosis in Ramos cells, caspase-3 is activated downstream of caspase-8 and the mitochondrial pathway is activated, as indicated by a loss of mitochondrial membrane potential, an increase in the release of cytochrome c to the cytoplasm, and enhanced Bax expression. Anti-IgM Ab-induced apoptosis of neuraminidase-treated Ramos cells was suppressed by incubating the cells on plates coated with AGP, which contains a high concentration of α2,6-linked sialic acid. The incubation on plates coated with AGP also suppressed anti-IgM Ab-stimulated caspase-3 activity and increased the level of X-linked inhibitor of apoptosis protein (XIAP), but it did not affect caspase-8 activity, the mitochondrial membrane potential, cytochrome c release, or Bax expression. The results indicate that the interaction of Ramos cells with immobilized α2,6-linked sialic acid enhances XIAP expression, directly or indirectly suppressing caspase-3 activity and inhibiting anti-IgM Ab-induced apoptosis.  相似文献   

7.
The ectoenzyme, gamma-glutamyl transpeptidase (GGT, EC ) cleaves glutathione (GSH) to facilitate the recapture of cysteine for synthesis of intracellular GSH. The impact of GGT expression on cell survival during oxidative stress was investigated using the human B cell lymphoblastoid cell line, Ramos. Ramos cells did not express surface GGT and exhibited no GGT enzyme activity. In contrast, Ramos cells stably transfected with the human GGT cDNA expressed high levels of surface GGT and enzymatic activity. GGT-transfected Ramos cells were protected from apoptosis when cultured in cyst(e)ine-deficient medium. The GGT-expressing cells also had lower levels of intracellular reactive oxygen species (ROS). Homocysteic acid and alanine, inhibitors of cystine and cysteine uptake, respectively, caused increased ROS content and diminished viability of GGT expressing cells. Exogenous GSH increased the viability of the GGT-transfected cells more effectively than that of control cells, whereas the products of GSH metabolism prevented death of both the control and GGT-transfected cells comparably. These data indicate that GGT cleavage of GSH and the subsequent recapture of cysteine and cystine allow cells to maintain low levels of cellular ROS and thereby avoid apoptosis induced by oxidative stress.  相似文献   

8.
Divalent cations, including Zinc and Manganese ions, are important modulators of cell activation. We investigated the ability of these two divalent cations to modulate apoptosis in human Burkitt lymphoma B cells line (Ramos). We found that Zinc (from 10 to 50 microM) inhibited Manganese-induced caspase-3 activation and apoptosis of Ramos cells. Higher concentration of Zinc (50 to 100 microM) did not prevent Manganese-mediated apoptosis but rather increased cell death among Ramos cells. This Zinc-mediated cell death was associated with apoptotic features such as cell shrinkage, the presence of phosphatidylserine residues on the outer leaflet of the cells, chromatin condensation, DNA fragmentation and decrease of mitochondrial transmembrane potential. Zinc-mediated apoptosis was associated with caspase-9 and caspase-3 activation as revealed by the appearance of active p35 fragment of caspase-9 and p19 and p17 of caspase-3 as well as in vivo cleavage of PARP and of a cell-permeable fluorogenic caspase-3 substrate (Phiphilux-G(1)D(2)). Both Zinc-mediated apoptosis and caspase-3 activation were prevented by the cell-permeable, broad-spectrum inhibitor of caspases (zVAD-fmk) or overexpression of bcl-2. In addition, we show that Zinc-induced loss of transmembrane mitochondrial potential is a caspase-independent event, since it is not modified by the presence of zVAD-fmk, which is inhibited by overexpression of bcl-2. These results indicate that depending on its concentration, Zinc can exert opposite effects on caspase-3 activation and apoptosis in human B lymphoma cells: concentrations below 50 microM inhibit caspase-3 activation and apoptosis whereas higher concentrations of Zinc activate a death pathway associated with apoptotic-like features and caspase-3 activation.  相似文献   

9.
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine protein kinase that regulates numerous cellular processes including cell growth, proliferation, cell cycle, and autophagy. mTOR forms two different multi-protein complexes referred to as mTOR complex 1 (mTORC1) and mTORC2, and each complex exerts distinct functions exclusively. mTORC1 activity is sensitive to the selective inhibitor rapamycin, whereas mTORC2 is resistant. mTORC1 is regulated by many intra- and extra-cellular cues such as growth factors, nutrients, and energy-sensing signals, while mTORC2 senses ribosome maturation and growth factor signaling. This review focuses on current understandings by which mTORC1 pathway senses cellular nutrient availability for its activation.  相似文献   

10.
Increase in oxidative damage and decrease in cellular maintenance is often associated with aging, but, in marine ectotherms, both processes are also strongly influenced by somatic growth, maturation and reproduction. In this study, we used a single cohort of the short-lived catarina scallop Argopecten ventricosus, to investigate the effects of somatic growth, reproduction and aging on oxidative damage parameters (protein carbonyls, TBARS and lipofuscin) and cellular maintenance mechanisms (antioxidant activity and apoptosis) in scallops, caged in their natural environment. The concentrations of protein carbonyls and TBARS increased steeply during the early period of fast growth and during reproduction in one-year-old scallops. However, oxidative damage was transient, and apoptotic cell death played a pivotal role in eliminating damage in gill, mantle and muscle tissues of young scallops. Animals were able to reproduce again in the second year, but the reduced intensity of apoptosis impaired subsequent removal of damaged cells. In late survivors low antioxidant capacity and apoptotic activity together with a fast accumulation of the age pigment lipofuscin was observed. Rates of oxygen consumption and oxidative stress markers were strongly dependent on somatic growth and reproductive state but not on temperature. Compared to longer-lived bivalves, A. ventricosus seems more susceptible to oxidative stress with higher tissue-specific protein carbonyl levels and fast accumulation of lipofuscin in animals surviving the second spawning. Superoxide dismutase activity and apoptotic cell death intensity were however higher in this short-lived scallop than in longer-lived bivalves. The life strategy of this short-lived and intensely predated scallop supports rapid somatic growth and fitness as well as early maturation at young age at the cost of fast cellular degradation in second year scallops.  相似文献   

11.
The present study investigates the mechanism behind induction of cell death by eicosapentaenoic acid (EPA) in leukemia cells. The PUFA-sensitive cell lines Raji and Ramos, which die by necrosis and apoptosis upon incubation with EPA respectively, had 2- to 3-fold higher uptake rate of EPA than the PUFA-resistant U-698 cell line. Furthermore, Ramos cells contained more lipid bodies and 3-fold more triacylglycerol than U-698 cells after 24 h incubation with 60 microm EPA. The mechanism behind the increased rate of EPA uptake in the PUFA-sensitive cell lines was examined by comparing the expression of 6 different fatty acid binding proteins (FABPs) and 3 acyl-CoA synthetases (ACSs) in U-698 and Ramos cells. Moreover, enzymatic activity of ACS and acyl-CoA:1,2-diacylglycerol acyltransferase (ADGAT) was investigated. The protein expression level of CD36 and p-FABPpm, the mRNA level of FABP, liver-FABP, heart-FABP, intestinal-FABP, ACS1, ACS2, and enzymatic ADGAT activity were similar in the two cell lines. However, an mRNA signal observed with a probe for ACS3 was 1.7 times higher in Ramos than in U-698 cells, and lysate from Ramos cells had a higher capacity to activate EPA to EPA-CoA than U-698 cell lysate.In conclusion, the present findings indicate that cellular uptake, activation and incorporation of EPA into lipids may be related to induction of cell death in leukemia cell lines.  相似文献   

12.
13.
The dynamic properties of microtubules (MTs) are important for a wide variety of cellular processes, including cell division and morphogenesis. MT assembly and disassembly in vivo are regulated by cellular factors that influence specific parameters of MT dynamics. Here, we describe the characterization of a previously reported MT assembly inhibitor activity from Xenopus oocytes [Gard and Kirschner, 1987: J. Cell Biol. 105:2191-2201]. Video microscopy measurements reveal that the inhibitor specifically decreases the plus end growth rate of MTs and increases the critical concentration for tubulin. However, catastrophe frequency, rescue frequency, and shrinkage rates are not affected by the activity. Chromatography on Mono Q and hydroxyapatite columns has shown that the activity cofractionates with a subpopulation of tubulin. This tubulin subpopulation and the MT assembly inhibitor activity also co-migrate with a large S value (25-30S) on sucrose gradients. The high molecular weight tubulin complex and the MT assembly inhibitor activity are both developmentally regulated and disappear after oocyte maturation with progesterone.  相似文献   

14.
The addition of ferric citrate to Burkitt's lymphoma (BL) cell lines inhibits growth, leads to the accumulation of cells in the phase G2/M of the cell cycle and to the modulation of translocated c-myc expression. The increase in the labile iron pool (LIP) of iron-treated BL cells leads to cytotoxicity. Indeed, intracellular free iron catalyzes the formation of highly reactive compounds such as hydroxyl radicals and nitric oxide (NO) that damages macromolecular components of cells, eventually resulting in apoptosis. In this report, we have investigated the possible involvement of free radicals in the response of Ramos cells to iron. When added to Ramos cells, iron increased the intracellular levels of peroxide/peroxynitrite and NO. Moreover, the addition of free radicals scavengers (TROLOX® and Carboxy-PTIO) neutralized the effects of iron on Ramos cells while addition of an NO donor or hydrogen peroxide (H2O2) to cells generated effects which partially mimicked those induced by iron addition. Collectively, our results suggest the involvement of free radicals as effectors in the iron specific growth inhibition of BL cells observed in vitro.  相似文献   

15.
The enzyme gamma-glutamyl transferase (gamma-GT) is involved in many biochemical systems, including the signal transduction of hematopoietic growth factors. Standard colorimetric gamma-GT assays require larger cell numbers than may be obtainable in many cases, such as with highly purified stem-cell populations. To study gamma-GT expression in limited populations, we used a histochemical stain to analyze gamma-GT semiquantitatively in cells of hematopoietic origin. Several human leukemic cell lines, including one with inducible increases in gamma-GT, were stained for gamma-GT and graded 0 through 4+ for the amount of positive granules. The gamma-GT activity demonstrated by this stain was found to be directly proportional to the gamma-GT activity obtained with a colorimetric assay and could be used to calculate approximate gamma-GT activity. This stain therefore provides a useful method for determining gamma-GT activity when limited cell numbers are available.  相似文献   

16.
17.
The antibiotic acivicin is a known inhibitor of gamma-glutamyl transpeptidase (gammaGTP). We found that acivicin can induce filamentous growth in both diploid and haploid cells of Saccharomyces cerevisiae. This phenomenon is not related to the inhibition of gammaGTP or interference in glutathione metabolism. Interestingly, yeasts used in the brewing industry are more sensitive to acivicin, suggesting that this dimorphological differentiation may be related to some characteristics of these particular strains.  相似文献   

18.
Gamma-glutamyl transpeptidase (gamma-GT) plays a central role in the metabolism of glutathione and is also a marker for neoplasia and cell transformation. We have investigated the compound L-2-amino-4-boronobutanoic acid (ABBA) as a structural analog of the putative ternary complex formed by the enzyme, L-serine, and borate, proposed to function as a transition state analog inhibitor. ABBA was found to be a potent inhibitor of the enzyme, with Ki = 17 nM using typical assay conditions (pH 8, gamma-glutamyl-p-nitroanilide substrate, 20 mM glycyl-glycine acceptor). ABBA is a stable amino acid analog with pK values determined from 13C and 11B NMR to be 2.3, 11.0 (amino titration), and 7.9 (boronate titration). The structural similarity to glutamate suggested that it might function as a glutamate analog for some glutamate-dependent enzymes or receptors. Transamination of pyruvate by ABBA to yield alanine in the presence of glutamic pyruvic transaminase was demonstrated by 13C NMR. The 2-keto-4-boronobutanoic acid transamination product is apparently fairly labile to hydrolysis, leading to formation of 2-ketobutanoic acid plus borate. The latter is also subsequently transaminated to yield 2-aminobutanoic acid. Both of these metabolites were observed in the 13C NMR spectrum. However, the corresponding transamination of oxaloacetate by ABBA in the presence of glutamic oxaloacetic transaminase was not observed. Effects of ABBA on the growth of cultured rat liver cell lines ARL-15C1 (nontumorigenic, low gamma-GT activity) and ARL-16T2 (tumorigenic, high gamma-GT activity) were also investigated, both in standard Williams Media as well as in a low cysteine growth medium. A high concentration (1 mM) of ABBA inhibited the growth of both cell lines in both media, with the degree of inhibition greater in the low cysteine medium. Alternatively, growth inhibition by 10 microM ABBA could be observed only in the low cysteine media. In general, there were no significant differences between the two cell lines in terms of sensitivity to ABBA.  相似文献   

19.
Proteasomes play an important role in protein turnover in living cells. The inhibition of proteasomes affects cell cycle processes and induces apoptosis. Thus, 20 S proteasomal inhibitors are potential tools for the modulation of neoplastic growth. Based on MG132, a potent but nonspecific 20 S proteasome inhibitor, we designed and synthesized 22 compounds and evaluated them for the inhibition of proteasomes. The majority of the synthesized compounds reduced the hydrolysis of LLVY-7-aminomethylcoumarin peptide substrate in cell lysates, some of them drastically. Several compounds displayed inhibitory effects when tested in vitro on isolated 20 S proteasomes, with lowest IC(50) values of 58 nm (chymotrypsin-like activity), 53 nm (trypsin-like activity), and 100 nm (caspase-like activity). Compounds 16, 21, 22, and 28 affected the chymotrypsin-like activity of the beta5 subunit exclusively, whereas compounds 7 and 8 inhibited the beta2 trypsin-like active site selectively. Compounds 13 and 15 inhibited all three proteolytic activities. Compound 15 was shown to interact with the active site by x-ray crystallography. The potential of these novel inhibitors was assessed by cellular tolerance and biological response. HeLa cells tolerated up to 1 microm concentrations of all substances. Intracellular reduction of proteasomal activity and accumulation of polyubiquitinated proteins were observed for compounds 7, 13, 15, 22, 25, 26, 27, and 28 on HeLa cells. Four of these compounds (7, 15, 26, and 28) induced apoptosis in HeLa cells and thus are considered as promising leads for anti-tumor drug development.  相似文献   

20.
Cell proliferation and apoptosis   总被引:19,自引:0,他引:19  
Cell proliferation and cell death are essential yet opposing cellular processes. Crosstalk between these processes promotes a balance between proliferation and death, and it limits the growth and survival of cells with oncogenic mutations. New insights into the mechanisms by which strong signals to proliferate and activation of cyclin-dependent kinases promote apoptosis have recently been published, and a novel cell cycle regulated caspase inhibitor, Survivin, has been described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号