首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
联会复合体:减数分裂的结构基础   总被引:1,自引:0,他引:1  
减数分裂是有性生殖生物产生单倍体配子的特殊分裂方式,其第一次分裂(减数分裂I)过程中同源染色体的行为是最突出的特征。在减数分裂I,同源染色体间形成的联会复合体通过促进和调控程序性DNA双链断裂的形成和修复,确保同源染色体正确的识别、配对、重组和分离,从而为减数分裂I的顺利完成提供保障。本综述对联会复合体的组成和功能研究进展进行了回顾,探讨了联会复合体的组装如何影响程序性DNA双链断裂的修复和交叉互换的形成,并总结了与人类生殖障碍相关的联会复合体成分突变,还对该领域未来研究方向进行了展望。  相似文献   

2.
对减数分裂的新理解   总被引:1,自引:0,他引:1  
胡明 《生物学通报》2000,35(1):12-13
减数分裂历来被认为是:同源染色体联会-重组-分离。染色体配对是其中最早的事件,配对又叫联会,联会由联会复合体(SC)引起或促进。联会复合体又是减数分裂重组所必需的。重组引起细胞学上可见的交叉,能够确保同源染色体分离。这些经典观点在90年代受到了严重挑战,对减数分裂的许多新理解正在取而代之。按照新观点,减数分裂的过程可以用下图表示。1 同源性搜索是减数分裂的第一步减数分裂最早的事件不是同源染色体的配对,其前在细线期还发生了同源性搜索。它是在全染色体组内识别染色体上同源性位点的过程。搜索不仅仅限于染…  相似文献   

3.
Chen J  Luo WX  Li M  Luo Q 《遗传》2011,33(6):648-653
减数分裂在有性生物的生命周期中起着非常重要的作用,其过程高度保守。减数分裂过程中,染色体配对、联会和重组是遗传变异的源泉、有性生物进化的推动力,也是减数分裂研究的热点之一。在植物减数分裂研究中,还不可能直接观察到染色体在减数分裂过程中的交换情况,往往是通过交换后群体的遗传分析来推测。文章通过图示基因型方法分析了来自花药培养的32个水稻双单倍体(DH)株系,发现少数株系某些染色体部分区段为杂合状态,并利用STS分子标记对杂合状态的真实性进行了验证,推测杂合区段的出现可能与染色体的修复不完全或修复错误有关。研究结果为解释植物减数分裂的机理提供了直接证据。  相似文献   

4.
联会复合体——原发无精症发病中的重要角色   总被引:2,自引:0,他引:2  
张炜  张思仲  阿周存 《遗传》2006,28(2):231-235
联会复合体(synaptonemal complex,SC)是一种减数分裂特异性超分子蛋白质结构,与减数分裂I(改罗文)中同源染色体的凝缩、配对、重组和分离密切相关。近年来,联会复合体的研究取得了一系列重要的进展,包括在其组成成分和功能上的一些新发现。在小鼠不育模型中联会复合体及其编码基因的异常可引起精子发生障碍。更重要的是,联会复合体编码基因之一SCP3单个碱基缺失导致的无精症已在人类原发不育患者中得到证实。对联会复合体基因SCP1的进一步研究也正在进行之中。   相似文献   

5.
黄鳝减数分裂和联会复合体组型分析   总被引:7,自引:2,他引:5  
马昆  施立明 《动物学研究》1987,8(2):159-163
联会复合体(Synaptonemal Complex,SC)是减数分裂前期同源染色体配对形成的一种非永久性核内细胞器,同染色体配对、遗传交换以及染色体的分离有着密切的关系。自Moses和Fawcett的早期工作以来,围绕着SC的结构、行为及化学组成等开展了大量的工作,积累了丰富的资料。近年来,由于界面铺张技术的发展,进一步推动了  相似文献   

6.
联会复合体的研究进展   总被引:3,自引:0,他引:3  
联会复合体(SC)是性细胞减数分裂前期Ⅰ所特有的结构。其功能主要与同源染色体的配对、重组有关。已清楚,SC是由DNA和蛋白质组成的复合体,它的形成始于细线期,完成于粗线期,它的装配和形成的每一步都是由蛋白质的合成推进。在SC中已鉴定的蛋白组分有肌动蛋白、拓扑异构酶Ⅱ和一些分子量为26-190kDa的多肽。利用单抗已筛选到了某些编码SC蛋白的基因。并在重组节中证明有DNA存在。在昆虫中SC的中心区为  相似文献   

7.
ReviewofStudiesonRecombinationNodulesJinQuanwen.(InstituteofGenetics,AcademiaSinica,Beijing100101)WangYamei(BeijingAgriculturalCollege,Beijing102208)ZhangChuanshan(DepartmentofBiology,NortheastNormalUniversity,Changchun130024)联会复合体(SynaptonemalComPlex,SC)是减数分裂前期染色体配对时,同源染色体之间形成的~种复合结构,这种结构最初是由Moses和Fawcet于1956年在喇站、家鸽、猫及人的初级精母细胞的电税超薄切片中观察到的。到目前为止,几乎所有观察过的真核生物中都有这种结构。一般说来,在…  相似文献   

8.
减数分裂时期染色体行为作为遗传学三大遗传规律(基因分离规律、基因自由组合定律及连锁遗传规律)的细胞学基础,是遗传学教学中的重点,也是生命科学前沿研究的焦点。快速发展的分子生物学为减数分裂的分子机制提供了更深的认识和理解,并出现一些与教科书内容不一致的情况。本文对减数分裂研究前沿进行简单综述,重点阐述对减数分裂时期配对、联会和重组关系的新认识,以期将前沿研究融入遗传学教学之中,从而激发学生的学习兴趣,提高授课效果。  相似文献   

9.
减数分裂是真核生物有性生殖过程中性母细胞成熟时所进行的特殊细胞分裂方式.在减数分裂过程中,同源染色体间需发生一系列有规律的重要事件,包括同源染色体配对、联会、重组、分离等,这些事件被证明是由许多遗传网络精密调控的.尽管许多调控减数分裂过程的基因已经被克隆,但减数分裂同源重组的分子机理仍不太清楚.植物是进行减数分裂研究的理想材料,近年来随着多种模式植物基因组序列测定的完成,大大加速了植物减数分裂相关基因的鉴定与功能研究.本文以拟南芥和水稻为主要对象,综述了植物减数分裂同源重组分子机理研究取得的一些重要进展,着重分析已鉴定同源重组相关蛋白的生物学功能.  相似文献   

10.
首次报道在光镜下观察美味猕猴桃 (品种 :No.2 6原生质体植株的母株 )花粉母细胞( PMC)染色体在减数分裂前期的配对 ,发现其配对和凝缩有明显不同步性。不同细胞间染色体配对形式变化较大 ,一般以二价联会为主 ,其次由其它多种配对方式 (包括有复合配对、重复配对、着丝点或端粒处联合和多价联会 )形成多价体 ,还有少数未配对或发生内配对 (偶见 )的单价体和几条二价体之间的次级配对。粗线期观察到少数染色体有缺失 (或重复 )、倒位、易位和疏松配对等结构性改变。表明该植株是一个复杂的区段异源六位体 ,少数染色体在结构上累积有变异。还认为该植株是研究减数分裂染色体配对和联会机制的好材料。  相似文献   

11.
Meiosis is essential for eukaryotic sexual reproduction and important for genetic diversity among individuals. Although a number of genes regulating homologous chromosome pairing and synapsis have been identified in the plant kingdom, their molecular basis remains poorly understood. In this study, we identified a novel gene, PAIR3 ( HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS 3 ), required for homologous chromosome pairing and synapsis in rice. Two independent alleles, designated pair3-1 and pair3-2 , were identified in our T-DNA insertional mutant library which could not form bivalents due to failure of homologous chromosome pairing and synapsis at diakinesis, resulting in sterility in both male and female gametes. Suppression of PAIR3 by RNAi produced similar results to the T-DNA insertion lines. PAIR3 encodes a protein that contains putative coiled-coil motifs, but does not have any close homologs in other organisms. PAIR3 is preferentially expressed in reproductive organs, especially in pollen mother cells and the ovule tissues during meiosis. Our results suggest that PAIR3 plays a crucial role in homologous chromosome pairing and synapsis in meiosis.  相似文献   

12.
李丽 《生物技术通讯》2006,17(4):631-633
减数分裂是生物体重要的有性生殖方式,它提供来自母本和父本的基因信息,产生具有生物多样性的子代,使其能够适应环境的变化而不断进化。本文简述了现已阐明的酿酒酵母减数分裂的重要事件如同源染色体配对、联会、基因重组、染色体分裂和特异性基因。在同源染色体配对的过程中现已发现了2条途径,一条由Rad51独立完成,另一条有Dmc1、Hop2、Rad51和Mnd1参与,同时Rad51也可能参与。Red1、Hop1和Zip1是联会复合体的组成成分,而联会也要求其他减数分裂的特异性基因如Hop2的参与。基因重组是减数分裂中最重要的事件,它为子代提供了新的遗传信息,是生物多样性的基础之一。Spo11、Rad52组、Dmc1、Mnd1、Msh4、Msh5、Mek1、Red1和Hop1参与了基因重组。Spo11是发现和研究得最早的启动基因重组的基因之一;Rec8、Spo13和Sgo1参与了染色体分裂的过程。  相似文献   

13.
Ding X  Xu R  Yu J  Xu T  Zhuang Y  Han M 《Developmental cell》2007,12(6):863-872
Prior to the pairing and recombination between homologous chromosomes during meiosis, telomeres attach to the nuclear envelope and form a transient cluster. However, the protein factors mediating meiotic telomere attachment to the nuclear envelope and the requirement of this attachment for homolog pairing and synapsis have not been determined in animals. Here we show that the inner nuclear membrane protein SUN1 specifically associates with telomeres between the leptotene and diplotene stages during meiotic prophase I. Disruption of Sun1 in mice prevents telomere attachment to the nuclear envelope, efficient homolog pairing, and synapsis formation in meiosis. Massive apoptotic events are induced in the mutant gonads, leading to the abolishment of both spermatogenesis and oogenesis. This study provides genetic evidence that SUN1-telomere interaction is essential for telomere dynamic movement and is required for efficient homologous chromosome pairing/synapsis during mammalian gametogenesis.  相似文献   

14.
In Saccharomyces cerevisiae, Rad51p plays a central role in homologous recombination and the repair of double-strand breaks (DSBs). Double mutants of the two Zea mays L. (maize) rad51 homologs are viable and develop well under normal conditions, but are male sterile and have substantially reduced seed set. Light microscopic analyses of male meiosis in these plants reveal reduced homologous pairing, synapsis of nonhomologous chromosomes, reduced bivalents at diakinesis, numerous chromosome breaks at anaphase I, and that >33% of quartets carry cells that either lack an organized nucleolus or have two nucleoli. This indicates that RAD51 is required for efficient chromosome pairing and its absence results in nonhomologous pairing and synapsis. These phenotypes differ from those of an Arabidopsis rad51 mutant that exhibits completely disrupted chromosome pairing and synapsis during meiosis. Unexpectedly, surviving female gametes produced by maize rad51 double mutants are euploid and exhibit near-normal rates of meiotic crossovers. The finding that maize rad51 double mutant embryos are extremely susceptible to radiation-induced DSBs demonstrates a conserved role for RAD51 in the repair of mitotic DSBs in plants, vertebrates, and yeast.  相似文献   

15.
Homologous pairing and chromosome dynamics in meiosis and mitosis   总被引:2,自引:0,他引:2  
Pairing of homologous chromosomes is an essential feature of meiosis, acting to promote high levels of recombination and to ensure segregation of homologs. However, homologous pairing also occurs in somatic cells, most regularly in Dipterans such as Drosophila, but also to a lesser extent in other organisms, and it is not known how mitotic and meiotic pairing relate to each other. In this article, I summarize results of recent molecular studies of pairing in both mitosis and meiosis, focusing especially on studies using fluorescent in situ hybridization (FISH) and GFP-tagging of single loci, which have allowed investigators to assay the pairing status of chromosomes directly. These approaches have permitted the demonstration that pairing occurs throughout the cell cycle in mitotic cells in Drosophila, and that the transition from mitotic to meiotic pairing in spermatogenesis is accompanied by a dramatic increase in pairing frequency. Similar approaches in mammals, plants and fungi have established that with few exceptions, chromosomes enter meiosis unpaired and that chromosome movements involving the telomeric, and sometimes centromeric, regions often precede the onset of meiotic pairing. The possible roles of proteins involved in homologous recombination, synapsis and sister chromatid cohesion in homolog pairing are discussed with an emphasis on those for which mutant phenotypes have permitted an assessment of effects on homolog pairing. Finally, I consider the question of the distribution and identity of chromosomal pairing sites, using recent data to evaluate possible relationships between pairing sites and other chromosomal sites, such as centromeres, telomeres, promoters and heterochromatin. I cite evidence that may point to a relationship between matrix attachment sites and homologous pairing sites.  相似文献   

16.
Meiotic prophase I is a complex process involving homologous chromosome (homolog) pairing, synapsis, and recombination. The budding yeast (Saccharomyces cerevisiae) RAD51 gene is known to be important for recombination and DNA repair in the mitotic cell cycle. In addition, RAD51 is required for meiosis and its Arabidopsis (Arabidopsis thaliana) ortholog is important for normal meiotic homolog pairing, synapsis, and repair of double-stranded breaks. In vertebrate cell cultures, the RAD51 paralog RAD51C is also important for mitotic homologous recombination and maintenance of genome integrity. However, the function of RAD51C in meiosis is not well understood. Here we describe the identification and analysis of a mutation in the Arabidopsis RAD51C ortholog, AtRAD51C. Although the atrad51c-1 mutant has normal vegetative and flower development and has no detectable abnormality in mitosis, it is completely male and female sterile. During early meiosis, homologous chromosomes in atrad51c-1 fail to undergo synapsis and become severely fragmented. In addition, analysis of the atrad51c-1 atspo11-1 double mutant showed that fragmentation was nearly completely suppressed by the atspo11-1 mutation, indicating that the fragmentation largely represents a defect in processing double-stranded breaks generated by AtSPO11-1. Fluorescence in situ hybridization experiments suggest that homolog juxtaposition might also be abnormal in atrad51c-1 meiocytes. These results demonstrate that AtRAD51C is essential for normal meiosis and is probably required for homologous synapsis.  相似文献   

17.
Meiosis is the crucial process by which sexually propagating eukaryotes give rise to haploid gametes from diploid cells. Several key processes, like homologous chromosomes pairing, synapsis, recombination, and segregation, sequentially take place in meiosis. Although these widely conserved events are under both genetic and epigenetic control, the accurate details of molecular mechanisms are continuing to investigate. Rice is a good model organism for exploring the molecular mechanisms of meiosis in higher plants. So far, 28 rice meiotic genes have been characterized. In this review, we give an overview of the discovery of rice meiotic genes in the last ten years, with a particular focus on their functions in meiosis.  相似文献   

18.
During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains.  相似文献   

19.
The RecA homolog, RAD51, performs a central role in catalyzing the DNA strand exchange event of meiotic recombination. During meiosis, RAD51 complexes develop on pairing chromosomes and then most disappear upon synapsis. In the maize meiotic mutant desynaptic2 (dsy2), homologous chromosome pairing and recombination are reduced by ~70% in male meiosis. Fluorescent in situ hybridization studies demonstrate that a normal telomere bouquet develops but the pairing of a representative gene locus is still only 25%. Chromosome synapsis is aberrant as exemplified by unsynapsed regions of the chromosomes. In the mutant, we observed unusual RAD51 structures during chromosome pairing. Instead of spherical single and double RAD51 structures, we saw long thin filaments that extended along or around a single chromosome or stretched between two widely separated chromosomes. Mapping with simple sequence repeat (SSR) markers places the dsy2 gene to near the centromere on chromosome 5, therefore it is not an allele of rad51. Thus, the normal dsy2 gene product is required for both homologous chromosome synapsis and proper RAD51 filament behavior when chromosomes pair. Edited by: P. Moens  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号