首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteomic analysis has proved to be an important tool for understanding the complex nature of genetic disorders, such as cystic fibrosis (CF), by defining the cellular protein environment (proteome) associated with wild-type and mutant proteins. Proteomic screens identified the proteome of CF transmembrane conductance regulator (CFTR), and provided fundamental information to studies designed for understanding the crucial components of physiological CFTR function. Simultaneously, high-throughput screens for small-molecular correctors of CFTR mutants provided promising candidates for therapy. The majority of CF cases are caused by nucleotide deletions (ΔF508 CFTR; >75%), resulting in CFTR misfolding, or insertion of premature termination codons (~10%), leading to unstable mRNA and reduced levels of truncated dysfunctional CFTR. In this article, we review recent results of proteomic screens, developments in identifying correctors for the most frequent CFTR mutants, and comment on how integration of the knowledge gained from these studies may aid in finding a cure for CF and a number of other genetic disorders.  相似文献   

2.
The most common mutation in cystic fibrosis (CF) patients is deletion of F508 (ΔF508) in the first nucleotide binding domain (NBD1) of the CF transmembrane conductance regulator (CFTR). ΔF508 causes a decrease in the trafficking of CFTR to the cell surface and reduces the thermal stability of isolated NBD1; it is well established that both of these effects can be rescued by additional revertant mutations in NBD1. The current paradigm in CF small molecule drug discovery is that, like revertant mutations, a path may exist to ΔF508 CFTR correction through a small molecule chaperone binding to NBD1. We, therefore, set out to find small molecule binders of NBD1 and test whether it is possible to develop these molecules into potent binders that increase CFTR trafficking in CF‐patient‐derived human bronchial epithelial cells. Several fragments were identified that bind NBD1 at either the CFFT‐001 site or the BIA site. However, repeated attempts to improve the affinity of these fragments resulted in only modest gains. Although these results cannot prove that there is no possibility of finding a high‐affinity small molecule binder of NBD1, they are discouraging and lead us to hypothesize that the nature of these two binding sites, and isolated NBD1 itself, may not contain the features needed to build high‐affinity interactions. Future work in this area may, therefore, require constructs including other domains of CFTR in addition to NBD1, if high‐affinity small molecule binding is to be achieved.  相似文献   

3.
In comparison to skin fibroblasts from normal subjects, those from patients with cystic fibrosis (CF): (1) bound [20-3H] phorbol 12,13-dibutyrate (PDBu) with a higher affinity (Kd=25.8 vs 12.8 nM respectively) but expressed a similar number of total phorbol ester binding sites (about 2.5 pmol PDBu bound/mg of protein); (2) exhibited a faster and higher response to 4-phorbol 12-myristate 13-acetate (PMA) for the stimulation of [35S]-labelled glycoconjutate release, but were equally sensitive to the synergistic effect of A23187 on this process; and (3) secreted glycoconjugates with similar [35S]-sulfate and [14C]-leucine to [14C]-glucosamine labelling ratios. Taken together, these results provide further evidence for abnormal protein kinase C (PKC) regulation of macromolecule secretion in CF disease.Abbreviations BSA Bovine serum albumin - DBcAMP Dibutyryl cyclic AMP - DMEM Dulbecco's modified Eagle's medium - DMSO Dimethylsulfoxide - LDH Lactate dehydrogenase - PBS Phosphate-buffered saline - PDBu 4-phorbol 12,13-dibutyrate - 4-PDD 4-phorbol 12,13-didecanoate - PMA 4-phorbol 12-myristate 13-acetate - TCA Trichloroacetic acid  相似文献   

4.
The lethal genetic disease cystic fibrosis is caused predominantly by in‐frame deletion of phenylalanine 508 in the cystic fibrosis transmembrane conductance regulator (CFTR). F508 is located in the first nucleotide‐binding domain (NBD1) of CFTR, which functions as an ATP‐gated chloride channel on the cell surface. The F508del mutation blocks CFTR export to the surface due to aberrant retention in the endoplasmic reticulum. While it was assumed that F508del interferes with NBD1 folding, biophysical studies of purified NBD1 have given conflicting results concerning the mutation's influence on domain folding and stability. We have conducted isothermal (this paper) and thermal (accompanying paper) denaturation studies of human NBD1 using a variety of biophysical techniques, including simultaneous circular dichroism, intrinsic fluorescence, and static light‐scattering measurements. These studies show that, in the absence of ATP, NBD1 unfolds via two sequential conformational transitions. The first, which is strongly influenced by F508del, involves partial unfolding and leads to aggregation accompanied by an increase in tryptophan fluorescence. The second, which is not significantly influenced by F508del, involves full unfolding of NBD1. Mg‐ATP binding delays the first transition, thereby offsetting the effect of F508del on domain stability. Evidence suggests that the initial partial unfolding transition is partially responsible for the poor in vitro solubility of human NBD1. Second‐site mutations that increase the solubility of isolated F508del‐NBD1 in vitro and suppress the trafficking defect of intact F508del‐CFTR in vivo also stabilize the protein against this transition, supporting the hypothesize that it is responsible for the pathological trafficking of F508del‐CFTR.  相似文献   

5.
So far, more than 1800 mutations identified in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In this case report, we presented first report of c. 1499G>C mutation in a 6-month-old girl with cystic fibrosis (CF) diagnosis. A 6-month-old girl with weakness and meconium Ileus referred to the pediatric clinic in Ilam, in the west of Iran. Patient''s skin was dark and suffered from bronchiectasis. The sweat test was performed, and the concentration of chloride and sodium in patient''s sweat was 130-135 mmol/L and 125-128 mmol/L, respectively. The exon 10 mutation analysis of a CF patient was performed. CFTR mutation analysis revealed the identification of 2 mutations in patient, the mutations were p.F508del (ΔF508) and c. 1499G>C (cd500), respectively. The mutation c. 1499G>C (cd500) were found for the first time in the world. Assessing this mutation in future study and genetic investigation is recommended.  相似文献   

6.
Serous cells are the predominant site of cystic fibrosis transmembrane conductance regulator expression in the airways, and they make a significant contribution to the volume, composition, and consistency of the submucosal gland secretions. We have employed the human airway serous cell line Calu-3 as a model system to investigate the mechanisms of serous cell anion secretion. Forskolin-stimulated Calu-3 cells secrete HCO-3 by a Cl-offdependent, serosal Na+-dependent, serosal bumetanide-insensitive, and serosal 4,4'-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive, electrogenic mechanism as judged by transepithelial currents, isotopic fluxes, and the results of ion substitution, pharmacology, and pH studies. Similar studies revealed that stimulation of Calu-3 cells with 1-ethyl-2-benzimidazolinone (1-EBIO), an activator of basolateral membrane Ca2+-activated K+ channels, reduced HCO-3 secretion and caused the secretion of Cl- by a bumetanide-sensitive, electrogenic mechanism. Nystatin permeabilization of Calu-3 monolayers demonstrated 1-EBIO activated a charybdotoxin- and clotrimazole- inhibited basolateral membrane K+ current. Patch-clamp studies confirmed the presence of an intermediate conductance inwardly rectified K+ channel with this pharmacological profile. We propose that hyperpolarization of the basolateral membrane voltage elicits a switch from HCO-3 secretion to Cl- secretion because the uptake of HCO-3 across the basolateral membrane is mediated by a 4,4 '-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive Na+:HCO-3 cotransporter. Since the stoichiometry reported for Na+:HCO-3 cotransport is 1:2 or 1:3, hyperpolarization of the basolateral membrane potential by 1-EBIO would inhibit HCO-3 entry and favor the secretion of Cl-. Therefore, differential regulation of the basolateral membrane K+ conductance by secretory agonists could provide a means of stimulating HCO-3 and Cl- secretion. In this context, cystic fibrosis transmembrane conductance regulator could serve as both a HCO-3 and a Cl- channel, mediating the apical membrane exit of either anion depending on basolateral membrane anion entry mechanisms and the driving forces that prevail. If these results with Calu-3 cells accurately reflect the transport properties of native submucosal gland serous cells, then HCO-3 secretion in the human airways warrants greater attention.  相似文献   

7.
The pathway of transport of the cystic fibrosis transmembrane regulator (CFTR) through the early exocytic pathway has not been examined. In contrast to most membrane proteins that are concentrated during export from the ER and therefore readily detectable at elevated levels in pre-Golgi intermediates and Golgi compartments, wild-type CFTR could not be detected in these compartments using deconvolution immunofluorescence microscopy. To determine the basis for this unusual feature, we analyzed CFTR localization using quantitative immunoelectron microscopy (IEM). We found that wild-type CFTR is present in pre-Golgi compartments and peripheral tubular elements associated with the cis and trans faces of the Golgi stack, albeit at a concentration 2-fold lower than that found in the endoplasmic reticulum (ER). delta F508 CFTR, a mutant form that is not efficiently delivered to the cell surface and the most common mutation in cystic fibrosis, could also be detected at a reduced concentration in pre-Golgi intermediates and peripheral cis Golgi elements, but not in post-Golgi compartments. Our results suggest that the low level of wild-type CFTR in the Golgi region reflects a limiting step in selective recruitment by the ER export machinery, an event that is largely deficient in delta F508. We raise the possibility that novel modes of selective anterograde and retrograde traffic between the ER and the Golgi may serve to regulate CFTR function in the early secretory compartments.  相似文献   

8.
Background information. CF (cystic fibrosis) is a disease caused by mutations within the CFTR (CF transmembrane conductance regulator) gene. The most common mutation, ΔF508 (deletion of Phe‐508), results in a protein that is defective in folding and trafficking to the cell surface but is functional if properly localized in the plasma membrane. We have recently demonstrated that overexpression of the PDZ protein NHERF1 (Na+/H+‐exchanger regulatory factor 1) in CF airway cells induced both a redistribution of ΔF508CFTR from the cytoplasm to the apical membrane and the PKA (protein kinase A)‐dependent activation of ΔF508CFTR‐dependent chloride secretion. In view of the potential importance of the targeted up‐regulation of NHERF1 in a therapeutic context, and since it has been demonstrated that oestrogen treatment increases endogenous NHERF1 expression, we tested the hypothesis that oestrogen treatment can increase NHERF1 expression in a human bronchiolar epithelial CF cell line, CFBE41o, with subsequent rescue of apical ΔF508CFTR chloride transport activity. Results. We found that CFBE41o cells do express ERs (oestrogen receptors) in the nuclear fraction and that β‐oestradiol treatment was able to significantly rescue ΔF508CFTR‐dependent chloride secretion in CFBE41o cell monolayers with a peak between 6 and 12 h of treatment, demonstrating that the ΔF508CFTR translocated to the apical membrane can function as a cAMP‐responsive channel, with a significant increase in chloride secretion noted at 1 nM β‐oestradiol and a maximal effect observed at 10 nM. Importantly, knock‐down of NHERF1 expression by transfection with siRNA (small interfering RNA) for NHERF1 inhibited the β‐oestradiol‐dependent increase in ΔF508CFTR protein expression levels and completely prevented the β‐oestradiol‐dependent rescue of ΔF508CFTR transport activity. Conclusions. These results demonstrate that β‐oestradiol‐dependent up‐regulation of NHERF1 significantly increases ΔF508CFTR functional expression in CFBE41o cells.  相似文献   

9.
The cystic fibrosis transmembrane conductance regulator (CFTR) interacts with multiple N-ethylmaleimide sensitive factor attachment protein (SNARE) molecules largely via its N-terminal cytoplasmic domain. The earliest known among these SNAREs are the cognate Q-SNARE pair of Syntaxin 1A (STX1A) and SNAP23 on the plasma membrane. These SNAREs affect CFTR chloride channel gating. CFTR exocytosis/recycling in intestinal epithelial cells is dependent on another SNARE located in the apical plasma membrane, STX3. Members of the STX8/STX7/vesicle transport through interaction with t-SNAREs homolog 1b/VAMP8 SNARE complex, which function in early to late endosome/lysosome traffic, are all known to interact with CFTR. Two SNAREs, STX6 and STX16 that function at the trans-Golgi network (TGN), have now been revealed as members of the CFTR SNARE interactome. We summarize here the SNAREs that interact with CFTR and discuss the roles of these SNAREs in the intracellular trafficking of CFTR and CFTR-associated pathophysiology.  相似文献   

10.
Xie C  Wang XF  Qi XJ  Lu LL  Chan HC 《生理学报》2008,60(1):90-96
本文应用短路电流技术检测了cAMP激动剂forskolin/IBMX和中成药藿香正气水(Huoxiang.zhengqi liquid,HZL)对猪远端气道完整上皮HCO3-分泌的作用.新鲜分离的气道上皮组织可测得(94.9±8.2)μtA/cm2的跨上皮基础电流,其中的16.6%和62.7%可分别被amiloride(上皮钠离子通道阻断剂,100 Ixmol/L)和NPPB(囊性纤维化跨膜电导调节体CI-通道阻断剂,100μmol/L)所阻断.用葡萄糖酸根替代浴液中的CI-,跨上皮基础电流降低为(54.0±6.7)laA/cm2,当进一步替代掉浴液中HCO3-时,此电流可被去除,提示在末受刺激条件下存存HCO3-分泌.forskolin/IBMX可刺激HCO3-依赖的电流增加(7.3±0.5)μA/cm2.值得注意的是,HZL也能引起HCO3-电流增加(7.4±1.9)μA/cm2,而这种刺激作用不受forskolin/IBMX预处理的影响,提示一种不依赖于cAMP的信号通路.以上结果提示,无论是否受刺激,猪远端气道上皮都分泌HC03.HZL对远端气道上皮HC03-分泌的刺激作用,提示其有希望成为一种新的、有治疗意义的远端气道HCO3-分泌刺激剂.  相似文献   

11.
Antibodies raised against the cystic fibrosis transmembrane regulator protein (CFTR) were used to localize CFTR in intestinal tissues of piglets and mice. Positive staining for CFTR was detected in goblet cells of both species. A second population of epithelial cells of unknown phenotype was also labeled by anti-CFTR antibodies. The labeling pattern was abolished by preincubation of anti-CFTR antibodies with the immunogen or when non-immune IgG was used in place of anti-CFTR antibodies. These results support other studies that suggest that alterations in goblet cell function may be involved in the intestinal abnormalities associated with cystic fibrosis. Received: 4 May 1995 / Accepted: 6 September 1995  相似文献   

12.
CFTR型氯离子通道研究进展   总被引:2,自引:0,他引:2  
郭晓强 《生命科学》2007,19(2):189-193
囊性纤维化跨膜传导调节因子(CFTR)是一种重要的氯离子通道,突变易引起囊性纤维化病变,故得名。一系列研究表明,CFTR由5个结构域组成:两个跨膜结构域形成氯离子通道;两个核苷酸结合结构域调节通道的开闭;一个调节结构域主要影响氯通道的活动。这些结构域通过协同作用共同控制了氯离子的跨膜流动,而一些突变可以影响细胞功能而导致囊性纤维化的发生。本文通过介绍CFTR基本结构、调节机制、与囊性纤维化病变的关系及针对CFTR的治疗而对CFTR型氯离子通道有一个的全面的理解。  相似文献   

13.
The present study concerns the involvement of the ceramide produced through sphingomyelinase (SMase)-mediated catalysis in airway anion secretion of Calu-3 cells. Short-circuit current (Isc) measurement revealed that isoproterenol (ISO, 0.1 microM)-induced anion secretion was prevented by pretreatment with SMase (0.3 U/ml, for 30 min) from the basolateral but not the apical side, although basal and 1-ethyl-2-benzimidazolinone (1-EBIO, a Ca2+-activated K+ channel opener)-induced Isc were unaffected. The effects of SMase were reproduced in responses to forskolin (20 microM) or 8-bromo-cAMP (2 mM). C2-ceramide, a cell-permeable analog, also repressed the 8-bromo-cAMP-induced responses. Nystatin permeabilization studies confirmed that the SMase- and C2-ceramide-induced repressions were due to hindrance of augmentation of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated conductance across the apical membrane. Further, SMase failed to influence K+ conductance across the basolateral membrane. These results suggest that the ceramide originating from basolateral sphingomyelin acts on activated CFTR from the cytosolic side, hindering anion secretion.  相似文献   

14.
Putrescine transport was examined in normal and cystic fibrosis fibroblasts. No differences were observed in accumulation pattern, kinetics of uptake, or efflux between CF and normal cells. In both growing and growth-arrested CF and normal fibroblasts, exogenously supplied putrescine remained unchanged for at least 60 min. Some differences were observed in the response of CF and normal cells to environmental (media) changes.This research was supported by a grant from the Cystic Fibrosis Foundation and by a grant from the National Institutes of Health, Training Grant (GM01316 11 GNC).  相似文献   

15.
Recent efforts have made significant progress in generating transgenic pigs with the ΔF508-CFTR mutation to model the lung and pancreatic disease of human cystic fibrosis. However, species differences in the processing and function of human, pig and mouse ΔF508-CFTR reported recently raise concerns about the phenotypic consequence of the gene-targeted pig model. The purpose of the present study was to characterize the ΔF508 mutant of porcine CFTR to evaluate the severity of its processing defect. Biochemical and immunofluorescence analysis in transfected COS7 and FRT cells indicated that pig ΔF508-CFTR efficiently targets to the plasma membrane and is present mainly as the mature glycosylated protein. Functional characterization in stably transfected FRT cells by fluorometric and electrophysiological assays supported efficient plasma membrane targeting of pig ΔF508-CFTR. The mild cellular processing defect of pig ΔF508-CFTR suggests that its gene-targeted pig model may not develop the lung and pancreatic phenotypes seen in CF patients.  相似文献   

16.
In airway epithelia, purinergic receptor (P2Y2-R) stimulation of intracellular calcium (Ca2+i)-regulated ion transport is restricted to the membrane domain ipsilateral to receptor activation, implying compartmentalization of Ca2+i signaling. Because mitochondria can spatially restrict cellular Ca2+i signals, immunocytochemical, electron microscopic, and fluorescent studies of mitochondria localization were performed in human airway epithelia. Although concentrated at the apical domain, mitochondria were found distributed at both the apical and the basolateral poles and in close association with the endoplasmic reticulum. The role of mitochondria in locally restricting P2Y2-R-induced Ca2+i signals was investigated by measuring changes in mitochondrial Ca2+ (Ca2+m) in human airway epithelial monolayers. P2Y2-R activation induced Ca2+m accumulation in mitochondria confined to the domain ipsilateral to P2Y2-R stimulation, which was blocked by mitochondrial uncoupling with 1 microM CCCP and 2.5 microg/ml oligomycin. The role of mitochondria in restricting the cellular cross-talk between basolateral P2Y2-R-dependent Ca2+i mobilization and apical membrane Ca2+-activated Cl- secretion was investigated in studies simultaneously measuring Ca2+i and Cl- secretion in cystic fibrosis human airway epithelial monolayers. Activation of basolateral P2Y2-Rs produced similar increases in Ca2+i in monolayers without and with pretreatment with uncouplers, whereas Ca2+i-activated Cl- secretion was only efficiently triggered in mitochondria-uncoupled conditions. We conclude that (a) mitochondria function as a Ca2+i-buffering system in airway epithelia, compartmentalizing Ca2+i-dependent functions to the membrane ipsilateral to receptor stimulation; and (b) the mitochondria provide structural barriers that protect the airway epithelia against nonspecific activation of Ca2+i-modulated functions associated with Ca2+i signals emanating from the apical or the basolateral membrane domains.  相似文献   

17.
The present study examined the effect of Bak Foong Pills (BFP), an over-the-counter traditional Chinese medicine (China registration no. Z980035), on anion secretion and the underlying signaling pathways in normal and cystic fibrosis pancreatic duct cell lines, CAPAN-1 and CFPAC-1, respectively, using the short-circuit current technique. Apical addition of BFP ethanol extract (600 microg/ml) induced a fast transient I(SC) peak that was followed by a slower but more sustained increase in I(SC) in CAPAN-1 cells. However, the response to BFP in CFPAC-1 was predominantly the first transient peak. Apical addition of DIDS (200 microM) inhibited the first peak by more than 60% in both cell lines without significantly affecting the second I(SC) rise. More than 85% of the BFP-induced first transient in both cell lines was inhibited when extra and intracellular Ca(2+) was chelated or emptied by pre-treatment with BAPTA (100 microM) and thapsigargin (10 microM), respectively. Acute addition of PMA (1 microM), a PKC activator, blocked more than 95% of the BFP-induced first peak in both cell lines, consistent with previously reported PKC modulation of Ca(2+)-dependent pancreatic anion secretion. The BFP-induced second I(SC) rise in CAPAN-1 could be inhibited by 73.6% and 71.13% by pretreatment of the cells with MDL-12330A (20 microM), an adenylate cyclase inhibitor and Rp-cAMP (200 microM), a cyclic AMP antagonist, respectively. However, less than 25% of the I(SC) was inhibited by combined treatment with BAPTA and thapsigargin. The second rise was also completely blocked by DPC (2mM) or Glibenclamide (1mM). The results indicate that BFP ethanol extract stimulates pancreatic duct anion secretion in normal and CF cells via different signaling pathways involving both Ca(2+) and cAMP.  相似文献   

18.
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) family of membrane transport proteins. CFTR is unique among ABC proteins in that it functions not as an active transporter but as an ATP-gated Cl? channel. As an ion channel, the function of the CFTR transmembrane channel pore that mediates Cl? movement has been studied in great detail. On the other hand, only low resolution structural data is available on the transmembrane parts of the protein. The structure of the channel pore has, however, been modeled on the known structure of active transporter ABC proteins. Currently, significant barriers exist to building a unified view of CFTR pore structure and function. Reconciling functional data on the channel with indirect structural data based on other proteins with very different transport functions and substrates has proven problematic. This review summarizes current structural and functional models of the CFTR Cl? channel pore, including a comprehensive review of previous electrophysiological investigations of channel structure and function. In addition, functional data on the three-dimensional arrangement of pore-lining helices, as well as contemporary hypotheses concerning conformational changes in the pore that occur during channel opening and closing, are discussed. Important similarities and differences between different models of the pore highlight current gaps in our knowledge of CFTR structure and function. In order to fill these gaps, structural and functional models of the membrane-spanning pore need to become better integrated.  相似文献   

19.
胰管细胞以至少6倍浓度差逆向分泌HCO3^-(人体浓度约140mmol/L)。HCO3^-跨顶膜转运的可能机制包括SLC26阴离子转运体的Cl-HCO3^-交换和囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,cFrR)对HCO3^-的传导扩散。SLC26家族成员介导上皮顶膜Cl^--HCO3^-交换,胰管中检测到SLC26A6和SLC26A3。共表达研究揭示,鼠类slc26a6和slc26a3通过slc26的STAS结构域与CFTR的R结构域相互作用,导致活性互相增强。研究显示这些交换体是产电的:slc26a6介导1Cl^--2HCO3^-交换,slc26a3介导2Cl^--1HCO3^-交换。近期slc26a6^-/-小鼠离体胰管研究显示,slc26a6介导大部分Cl^-依赖的HCO3^-跨顶膜分泌,与slc26a6的产电性一致。然而,因为人体能分泌非常高浓度的HCO3^-,SLC26A6在胰管HCO3^-分泌中的作用并不十分清楚。SLC26A6的作用只能在与人类似能分泌约140mmol/LHCO3^-的物种,如豚鼠中研究。现有的豚鼠研究数据显示,像slc26a6介导的1Cl^--2HCO3^-交换不可能完成这种高浓度差的HCO3^-分泌。另一方面,CFTR的HCO3^-电导性可以在理论上支持HCO3^-逆向分泌。所以,在豚鼠和人胰腺HCO3^-的分泌中,CFTR可能比SLC26A6发挥更大作用。  相似文献   

20.
囊性纤维化:太多NaCl,太少HCO3-   总被引:2,自引:0,他引:2  
Quinton PM 《生理学报》2007,59(4):397-415
胰腺囊性纤维化(cystic fibrosis,CF)是一种单基因缺陷导致的致死性遗传疾病,在高加索人种中广泛分布。这种疾病在其它人种的发生率非常低,但据报道大部分人种中发现有该基因的突变。本文对CF发生的分子和病理生理学基本概念进行阐述。首先,阐述了CF的病理学和遗传特征,其基因产物囊性纤维化跨膜电导调节体(cystic fibrosis transmembranecon-ductance regulator,CFTR)的分子结构、特征、功能和调控。其次,由于突变的主要表现是电解质转运失调,其病理学效应和机制在两个典型受累器官中得到了很好的阐明,一个是汗腺,其病理发生是由于分泌过多NaCl,另一个是胰腺,其病理发生是由于分泌太少HCO3^-。然而,CF的发病率和死亡率主要来自难治性呼吸道感染,其发生机制存在争议,我们推断可能的机制为阴离子转运失调导致CF肺部慢性感染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号