首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The responses of seedlings of four species of southwestern Australiansandplain Epacridaceae to added phosphate (P), added NH4N03(N) or Complete nutrients were studied in glasshouse pot cultureusing cores of habitat soil as rooting substrate. Positive responsesto N and Complete nutrients were evident for three species interms of shoot height and shoot dry weight in comparison withControl plants supplied only with deionized water, but no speciesresponded significantly in its shoot growth to P. Root dry weightwas generally less in Complete and N treatments compared toP and Control, leading to considerably higher shoot: root ratiosin the former two treatments. There was no effect of treatmenton infection intensity of hair roots. Root xylem sap compositionshowed greatly elevated levels of nitrogen in the Complete andN treatments and of phosphate in the P treatment. Ammonium comprisedthe major nitrogenous solute of xylem in Control and P treatmentswhile nitrate levels exceeded ammonium in Complete and N treatments.Glutamine levels were particularly high in the P treatments.Labelling of the Complete or N treatments with 15NH3 or 15NO3(supplied as single labelled ammonium nitrate) indicated thatboth forms of N were taken up and incorporated into plant insolubleN. Key words: Epacridaceae, nitrogen, phosphorus, mycorrhiza, south-west Western Australia  相似文献   

2.
Solute composition of root xylem sap of common native hostsof quandong (Santalum acuminatum) was compared with that ofcorresponding xylem sap and ethanolic extracts of endophytictissues of haustoria of the hemiparasite. Each host transporteda characteristic set of organic nitrogenous solutes, but littleor no nitrate, and the data indicated only limited direct flowof amino compounds between xylem streams of hosts and parasite.Proline predominated in the haustorium and xylem ofSantalum,but was at negligible levels in the xylem of most hosts. Sucrose,fructose, glucose, malate and citrate were at high levels inall saps, and fructose especially prominent inSantalum. Chloride,sulphate and phosphate were the principal inorganic anions ofthe xylem. Based on C:N ratios of xylem and dry matter ofSantalumandassuming a 70% or more dependence on the host for N, it wasestimated thatSantalumwould gain approximately one third ofits C requirement for dry matter production heterotrophicallyfrom the xylem of its hosts. Infiltration of xylem of haustoria-bearingroot segments of a major host (Acacia rostellifera) with a rangeof15N labelled substrates resulted in 40–80% of the15Nof endophytes of the attached haustoria being received as proline.Nitrate reductase activity was induced in haustoria followinghost xylem feeding of nitrate. The study concludes that haustoriaofSantalumact as a major site of synthesis and export of prolineand might therefore play an important role in osmotic adjustmentof the parasite and its related acquisition of water from hosts. Root hemiparasite; Santalum acuminatum; 15N labelled substrates; xylem transport; proline; osmoregulation  相似文献   

3.
Amino acid composition of xylem (tracheal) sap and ethanolicextracts of shoots of mistletoes (Amyema spp. and Lysiana casuarinae)and their hosts were compared, using material collected in theirnative habitats. Data indicated that certain host xylem soluteswere transferred directly to the parasite xylem, while otherswere either not absorbed or were metabolized prior to transfer.Certain solutes were major constituents of parasite xylem, butundetected or only in trace amount in the host. Shoot aminoacid pools of parasites differed markedly from those of hosts.The mistletoe, Amyema preissii, exhibited differential storageand transport of arginine when parasitizing three differentspecies, but accumulated proline on only two of these hosts.Host- specific amino acids (djenkolic acid in Acacia saligna,and tyramine in Acacia acuminata) were transported and accumulatedin relatively large amounts by the parasite, but were not detectedin other associations. Proline was the major solute of Amyemalinophyllum parasitizing Casuarina obesa, but arginine predominatedin Lysiana casuarinae on the same host. However, when L. csuarinaeparasitized A. linophyllum, in turn parasitic on C. obesa, theLysiana accumulated equal amounts of proline and arginine andmore asparagine than when directly on the Casuarina. Xylem feedingof 15N-labelled aspartic acid or 13N-(amide labelled) asparagineto cut shoots or whole haustoria-bearing plants of the mistletoeA. preissii resulted in 68–73% of the 15N of aspartateand 24–30% of that of asparagine appearing in ethanol-solubleshoot amino compounds other than the fed solute. 15N labellingpatterns of detached shoots were not noticeably different fromthat of whole plants suggesting that the haustorium had relativelylittle effect on processing incoming solutes. Alanine, glutamine,and arginine were principal recipients of 15N from aspartate,alanine and glutamine in the case of fed asparagine. It is estimatedthat 24% of the carbon requirements for dry matter accumulationin Amyema linophyllm were met by intake of xylem sap solutesfrom its host Casuarina obesa. Key words: Amino acids, xylem transport, mistletoes, host: parasite relations, N metabolism  相似文献   

4.
The water and nitrogen relationships of the xylem-tapping roothemiparasite, quandong (Santalum acuminatum) and its principalhosts were examined at a series of sites in native coastal heathlandsof south west Australia. Assessments based on densities of above-groundbiomass, ground cover and frequencies of haustoria on host rootsindicated that woody N2fixers (legumes andAllocasuarina) wereprincipal hosts ofSantalum. 15N values for shoot dry matterof component species suggested these N2fixers were strongly(70% or more) dependent on atmospheric N and thatSantalumderivedN principally from these species. Structural studies of haustoriashowed the interface with host xylem to be almost entirely comprisedof parenchymatous tissue. No luminal continuities were observedbetween xylem conducting elements of the partners. Formationand functional life of haustoria were closely coordinated withseasonal growth of hosts, with some haustoria surviving summerand overlapping functionally with new ones establishing in thenext autumn. Transpiration and photosynthetic rates of the parasitewere consistently less and water use efficiencies very similarto those of the principal hostAcacia rostellifera. 13C valuesof foliage ofSantalumand this host were similar, but large variationsin 13C values for above-ground dry matter of parasite and hostsbetween study sites prevented evaluations of water stress orwater-use-efficiency based on carbon isotope discrimination.Specific hydraulic conductivities of roots ofSantalumwere consistentlylower than those ofAcacia, a finding consistent with more conservativewater use by the parasite than the host. Santalum acuminatum; root hemiparasite; 15N discrimination; water relations; haustorial structure; root conductivity  相似文献   

5.
Nitrate assimilation was examined in two cultivars (Banner Winterand Herz Freya) of Vicia faba L. supplied with a range of nitrateconcentrations. The distribution between root and shoot wasassessed. The cultivars showed responses to increased applied nitrateconcentration. Total plant dry weight and carbon content remainedconstant while shoot: root dry weight ratio, total plant nitrogen,total plant leaf area and specific leaf area (SLA) all increased.The proportion of total plant nitrate and nitrate reductase(NR) activity found in the shoot of both cultivars increasedwith applied nitrate concentrations as did NO3: Kjeldahl-Nratios of xylem sap. The cultivars differed in that a greaterproportion of total plant NR activity occurred in the shootof cv. Herz Freya at all applied nitrate concentrations, andits xylem sap NO3: Kjeldahl-N ratio and SLA were consistentlygreater. It is concluded that the distribution of nitrate assimilationbetween root and shoot of V. faba varies both with cultivarand with external nitrate concentration. Vicia faba L., field bean, nitrate assimilation, nitrate reductase, xylem sap analysis  相似文献   

6.
Treatments were applied to vary C and N availability in Alnusglutinosa L. and plant growth, nodule activity (including acetylenereduction) and amino acid composition of the xylem sap weremeasured. Removing the buds, a sink for N, caused a decreasein nodule activity. Flushing root systems daily with 100% O2destroyed nitrogenase activity and substantially decreased theamount of citrulline in the xylem sap. The amino acid compositionof xylem saps also altered according to the mode of N nutrition.In plants fed , xylem sap composition was similar to N2-fixing plants, however, when plants were fed, citrulline content increased. The assimilation and subsequent distribution of nitrate wasfollowed in an experiment in which labelled 15 was added to the base of plant pots. After 12 h7% of root N was from applied 15 and this increased to 75% at 7 d; substantial enrichment ofN from 15 also occurred in stems, buds and leaves. After 7 d, 3.5% of nodule N was from15, consistent with some N being supplied by recycling of shoot N. Xylem saps were alsocollected and after 12 h, glutamate and aspartate were enrichedwith 15N to 53% and 37% increasing after 7 d to 80% and 49%,respectively. Citrulline content of the xylem sap increasedfrom 3 to 9 µmol cm–3 following addition of 15 and at 7 d 80% of the N in the citrullinehad been derived from 15N. It is hypothesized that the growthand activity of A. glutinosa root nodules is sensitive to theN status of the plant and that the level of citrulline (or otheramino acids) returning to the nodules may feed back to regulatenodule growth and activity. Key words: Alnus glutinosa, citrulline, nitrate, feedback mechanism, N2-fixation.  相似文献   

7.
HOCKING  P. J. 《Annals of botany》1980,45(6):633-643
The composition of xylem sap and exudate from stem incisionsof Nicotiana glauca Grah. was compared in detail. Exudationfrom stem incisions occurred over a 5 min period in certainplants, enabling collection of 5–30 µl of sap. Therate of exudation showed an exponential decline. Exudate hada high dry matter content (170–196 mg ml–1) andhigh sugar (sucrose) levels. Xylem sap had a low pH (5.8) andexudate a pH of 7.9. Glutamine dominated the amino compoundsin xylem sap and exudate, and K+ was the major cation. Totalamino compounds in stem exudate reached 10.8 mg ml–1 whereasxylem sap contained much lower levels (0.28 mg ml–1).All mineral elements and amino compounds with the exceptionof calcium were more concentrated in stem exudate than in xylemsap. Sucrose was labelled heavily in stem exudate following pulsingof an adjacent leaf with 14CO2. A concentration gradient ofsugar (2.1 bar m–1) was recorded for stems. Levels ofsucrose, amino compounds and K+ ions in stem exudate showeda diurnal periodicity. Each commodity reached maximum concentrationat or near noon and minimum concentration about dawn. The evidencesuggests that exudate from stem incisions of N. glauca is arepresentative sample of solutes translocated in the phloem. Nicotiana glauca Grah., phloem sap, xylem sap, sucrose, amino compounds, mineral ions  相似文献   

8.
Kouchi, H. and Higuchi, T. 1988. Carbon flow from nodulatedroots to the shoots of soybean {Glycine max L. Merr.) plants:An estimation of the contribution of current photosynthate toureides in the xylem stream.–J. exp. Bot. 39: 1015–1023. Well-nodulated, water-cultured soybean plants were allowed toassimilate 13CO2 at a constant specific activity for 10 h andthe 13C-labelling of total carbon and ureides in xylem sap wasinvestigated. Labelled carbon appeared very rapidly in the xylem stream. Percentageof labelled carbon (relative specific activity, RSA) in xylemsap was 18% at 2 h after the start of 13CO2 assimilation andreached 53% at the end of the 10 h assimilation. The amountof labelled carbon exported from nodulated roots to the shootsvia the xylem during the 10 h labelling period accounted for33% of total labelled carbon imported into the nodulated roots.Ureides (allantoin and allantoic acid) in xylem sap were stronglydependent on currently assimilated carbon. The RSA of ureidesin xylem sap had reached 83% at the end of the assimilationperiod. Labelled carbon in ureides accounted for 51% of totallabelled carbon returned from nodulated roots to the shootsvia the xylem during the 10 h assimilation period. A treatmentwith 20 mol m–3 nitrate in the culture medium for 2 ddecreased the ureide concentration in the xylem sap slightly,but greatly decreased the RSA of ureides. By comparing the data with the results of analysis of the xylemsap of nodule-detached plants, it was concluded that the majorityof labelled carbon exported to the xylem stream from noduleswas in ureide form. A considerable amount of carbon was alsoreturned from roots to shoots via the xylem stream but it wasmore dependent on (non-labelled) carbon reserved in the roottissues. Key words: Soybean(Glycine max L.), root nodule, carbon partitoning, 13CO2 assimilation, xylem  相似文献   

9.
A new method is described for estimating the contributions ofnitrate-N, newly-reduced nitrate-N and remobilization of storednitrogen (N) for new growth of non-leguminous plants. Xylemsap is extracted from 15N-labelled and unlabelled plants. Nitrate-Nand amino-N in sap are separated using cation-exchange resinand analysed for 15N. Remobilization of stored N is estimatedusing [I-(15N enrichment of amino-N/15N enrichment of nitrate-N)]x amino-N. Newly-reduced nitrate-N is estimated by difference.Field-application of this method is described. Actinidia deliciosa, kiwifruit, nitrogen, 15N, remobilization, xylem sap, nitrate reduction  相似文献   

10.
The influence of P deficiency on the uptake, flow and utilizationof C, N and H20 by intact NO3-fed castor bean plants {Ricinuscommunis L.) was studied over a 9 d period in the middle oftheir vegetative growth. The modelling techniques incorporateddata on net increments or losses of C, N and H2O in plant parts,photosynthetic gains in and respiratory losses of C, molar C:Nratios of solutes in phloem and xylem sap and transpirationallosses of H20. Plant growth was inhibited within 3 d of withholdingP supply and dry matter production was less than one-third ofthe controls. Leaf growth was particularly depressed, whileroot growth was much less affected than that of the shoot. Shoot:rootratio of low-P plants was 1.5 compared with 2.6 under P supply.Over the 9 d study period total plant C and N increased by 560and 47 mmol, respectively, in the controls, but by only 113and 6.9 mmol in the low-P treatment. The particularly low incrementof N in P-deficient plants was due principally to decreasedN03- uptake. Flows of C and N during the study period were markedlydifferent between control and P-deficient plants. The partitioningprofile for C in P-deficient plants showed a dramatic inhibitionof net photosynthesis and attendant photoassimilate flow. Proportionaldownward to upward allocation of carbon increased with increasein sink size of the root relative to shoot. This was reflectedin greater relative allocation of C to root dry matter and rootrespiration than in P-sufficient plants, and suppressed cyclingof C from root to shoot via xylem. Nitrogen intake and xylemtransport to the shoot of P-deficient plants were only 15% ofthe control and, as in the case of C, downward allocation ofN predominated over upward phloem translocation. Apart fromthese severe changes, however, the basic patterns of N flowsincluding xylem-to-phloem and xylem-to-xylem transfer of N werenot changed, a feature highlighting the vital nature of thesetransfer processes even under deficiency conditions. The alterationsin flows and partitioning of C, N and H2O in response to low-Pconditions are discussed in relation to the corresponding effectsof moderate salt stress in Ricinus and the conclusion is reachedthat changes in nutrient flows under P deficiency were morehighly co-ordinated than when plants experience salt stress.Flow profiles under P deficiency which favour root growth andactivity are viewed as a means for increasing the potentialcapability of the plant to acquire P from the nutrient medium. Key words: Ricinus communis L., P deficiency, carbon, nitrogen, water, partitioning, xylem transport, phloem transport  相似文献   

11.
Dry matter gains and haustorial production of pot-cultured seedlingsof Nuytsia floribunda were assessed after a 12 month periodof association singly with each of a range of potential woodyhost species. One species,Adenanthos cygnorum , of similar sizeto most parasitized hosts, served as measure of response ofNuytsia in a non-benefiting situation. Rated on this basis,all 23 parasitized hosts elicited greater mean dry weights ofNuytsia than when on Adenanthos, and seven of these instanceswere highly significant. Numbers and weights of penetratingand presumably functional haustoria formed on a host were broadlycorrelated with growth benefit to Nuytsia, but there were notableinstances of unusually poor or great benefit from a host relativeto the complement of haustoria involved. Experiments in whichhaustoria-bearing associations of Nuytsia partnered with nodulatedAcacia hosts (Acacia acuminata and A. cyclops) were fed15N2showedsignificant transfer of15N to the parasite, but failed to determinewhether the label had been acquired through haustoria or directlyby Nuytsia roots following turnover of nodule and root residuesof the host in the rooting medium. A parallel study using theunusual non-protein amino acid, djenkolic acid, as a markerof benefit from the djenkolic acid-containing host A. cyclops,showed appearance and progressive build-up of the compound infoliage of Nuytsia over a 6 month period after partnering thespecies in pot culture. Presence of the compound at final harvestin xylem sap of both partners but not in soil solution of thecultures strongly indicated xylem transfer via haustoria asthe principal avenue for N benefit to the parasite. Resultsare discussed in relation to a recent evaluation of haustorialstructure and functioning of N. floribunda. Copyright 2000 Annalsof Botany Company Root hemiparasite, Nuytsia, Loranthaceae, growth benefit, haustorial production, nitrogen transfer from hosts  相似文献   

12.
Nodulated Lupinus albus L. was grown on quartz sand in the greenhouseand supplied with a N-free culture solution. Half the plantswere infected with Cuscuta reflexa Roxb. at 33 DAS. An empiricallybased modelling technique was developed to quantitatively depictuptake, flow and utilization of C and N in the host plant andbetween host and parasite over a 12 d period. The modellingincorporated C: N ratios of solutes in phloem and pressure-inducedxylem sap, net increments of C and N and respiratory lossesof C. For assessing the transfer of solutes from host phloemto Cuscuta it was not possible to use the C: N ratio of phloemsap close to the site of parasite attachment, a procedure whichwould have assumed non-specific withdrawal of phloem-borne solutes,since this would have implied unimpeded mass flow from hostto parasite. The relative intake of C and N by the parasiteby specific withdrawal of nitrogenous and carbonaceous solutesfrom the phloem was obtained independently by assuming thatxylem intake occurred non-specifically. Xylem import was thusobtained (a) from transpiration and tissue water increment ofCuscuta and the concentrations of N and C in xylem sap and (b)from the Ca2+ increment of Cuscuta and the ratios Ca: N andCa: C in lupin xylem sap, assuming that Ca2+ intake occurredsolely via xylem. By subtracting net xylem import from totaluptake of C and N by Cuscuta the methods resulted in comparableratios of C: N intake from the phloem. The average ratio (53.4)was smaller than the C:N ratio in host phloem (85.6) indicatingspecific withdrawal of solutes with a distinct preference forN. Using this ratio, modelling of flows of C and N was possibleand showed that Cuscuta abstracted C and N mainly from the hostphloem, but xylem supply was nutrient-dependent and amountedto 6.4% of the N but only 0.5% of the C demand. The resultsindicated that Cuscuta exerted a very strong sink and competedefficiently with the root, the major sink of L. albus, by attracting81% of the current photosynthate and more N (223%) than wascurrently fixed. The massive demand of the parasite led to lossesparticularly of N from leaves and the root and apart from causingcarbon losses it appeared to induce a sink-dependent stimulationof photosynthesis. In contrast, nitrogen fixation in the Cuscuta-infectedlupin was inhibited to 37% of the control. Key words: Cuscuta reflexa, Lupinus albus, carbon, nitrogen, phloem, xylem, transport, parasites, modelling  相似文献   

13.
In this paper, we present an integrated account of the diurnal variation in the stable isotopes of water (δD and δ18O) and dry matter (δ15N, δ13C, and δ18O) in the long‐distance transport fluids (xylem sap and phloem sap), leaves, pod walls, and seeds of Lupinus angustifolius under field conditions in Western Australia. The δD and δ18O of leaf water showed a pronounced diurnal variation, ranging from early morning minima near 0‰ for both δD and δ18O to early afternoon maxima of 62 and 23‰, respectively. Xylem sap water showed no diurnal variation in isotopic composition and had mean values of ?13·2 and ?2·3‰ for δD and δ18O. Phloem sap water collected from pod tips was intermediate in isotopic composition between xylem sap and leaf water and exhibited only a moderate diurnal fluctuation. Isotopic compositions of pod wall and seed water were intermediate between those of phloem and xylem sap water. A model of average leaf water enrichment in the steady state (Craig & Gordon, pp. 9–130 in Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Palaeotemperatures, Lischi and Figli, Pisa, Italy, 1965; Dongmann et al., Radiation and Environmental Biophysics 11, 41–52, 1974; Farquhar & Lloyd, pp. 47–70 in Stable Isotopes and Plant Carbon–Water Relations, Academic Press, San Diego, CA, USA, 1993) agreed closely with observed leaf water enrichment in the morning and early afternoon, but poorly during the night. A modified model taking into account non‐steady‐state effects (Farquhar and Cernusak, unpublished) gave better predictions of observed leaf water enrichments over a full diurnal cycle. The δ15N, δ13C, and δ18O of dry matter varied appreciably among components. Dry matter δ15N was highest in xylem sap and lowest in leaves, whereas dry matter δ13C was lowest in leaves and highest in phloem sap and seeds, and dry matter δ18O was lowest in leaves and highest in pod walls. Phloem sap, leaf, and fruit dry matter δ18O varied diurnally, as did phloem sap dry matter δ13C. These results demonstrate the importance of considering the non‐steady‐state when modelling biological fractionation of stable isotopes in the natural environment.  相似文献   

14.
Selected epacrids (92 species in 15 genera) were examined withrespect to fire response type, morphology, root anatomy andstarch storage. Seeders, 75% of the species investigated, possesseda single main stem and a small root system with lateral rootswhich in most cases did not spread beyond the shoot canopy.Resprouter species were generally multi-stemmed with large lignotuberousroot stocks. Certain seeder and resprouter species were intermediatein form and showed small root systems and basally branched mainstems. Amounts of starch in roots of seeders (1.9±0.5mgstarch gd.wt per root) were much less than in resprouters (14.1±3.3)whereas amounts in shoots were similar (1.9±0.5 and 1.6±0.6mgstarch gd.wt per shoot, respectively). Starch storage in rootswas mostly confined to rays of xylem parenchyma and inter-rayxylem parenchyma and the greater storage capacity of resprouterswas generally due to broader rays. Growth zones in root xylemranged from clear, verifiable annual rings, as in many seederspecies, to indistinct growth zones, typical of many resprouterspecies. Shoot:root dry weight ratios were higher in seedersthan resprouters. The study suggests that speciation withinthe Epacridaceae into seeder and resprouter forms involved divergentdifferentiation in terms of morphology, shoot:root dry weightratio root storage of starch. Seeder; starch storage; growth rings; growth zones; south-west Australia; resprouter; Epacridaceae  相似文献   

15.
Arabidopsis halleri is a Cd hyperaccumulator; however, the mechanismsinvolved in the root to shoot translocation of Cd are not wellunderstood. In this study, we characterized Cd transfer fromthe root medium to xylem in this species. Arabidopsis halleriaccumulated 1,500 mg kg–1 Cd in the shoot without growthinhibition. A time-course experiment showed that the releaseof Cd into the xylem was very rapid; by 2 h exposure to Cd,Cd concentration in the xylem sap was 5-fold higher than thatin the external solution. The concentration of Cd in the xylemsap increased linearly with increasing Cd concentration in theexternal solution. Cd transfer to the xylem was completely inhibitedby the metabolic inhibitor carbonyl cyanide 3-chlorophenylhydrazone(CCCP). Cd concentration in the xylem sap was decreased by increasingthe concentration of external Zn, but enhanced by Fe deficiencytreatment. Analysis with 113Cd-nuclear magnetic resonance (NMR)showed that the chemical shift of 113Cd in the xylem sap wasthe same as that of Cd(NO3)2. Metal speciation with Geochem-PCalso showed that Cd occurred mainly in the free ionic form inthe xylem sap. These results suggest that Cd transfer from theroot medium to the xylem in A. halleri is an energy-dependentprocess that is partly shared with Zn and/or Fe transport. Furthermore,Cd is translocated from roots to shoots in inorganic forms.  相似文献   

16.
John Pate  David Arthur 《Oecologia》1998,117(3):301-311
A recently described phloem-bleeding technique was used to study seasonal changes in δ13C, sugar levels and the amino acid:sugar balance of phloem translocate of 2- to 3-year old trees of Eucalyptus globulus at a rain-fed site (Eulup) and a waste-effluent-irrigated site (Albany) in south-west Australia. δ13C of phloem sap from the Eulup site fluctuated widely between winter (−27.6‰) and peak summer stress (−20.2‰), compared with a much smaller range of −28.4 to −26.3 at Albany. Seasonal changes in sugar concentrations in sap fluctuated closely with those of phloem δ13C, with highest concentrations and least negative δ13C values at times of greatest soil water deficit. Molar ratios of amino acids to sugars in phloem sap were similar between plantations in winter through to early summer. They then remained high at the nitrogen-rich effluent-treated site, but fell dramatically once soils dried out at Eulup. Mature leaf dry matter sampled at peak yearly stress (early autumn) showed more negative δ13C values than concurrently harvested phloem sap or recently initiated shoot apex dry matter, presumably because the sampled foliage had laid down its structural carbon earlier under relatively unstressed winter/spring conditions. Differences between Albany and Eulup were much greater for δ13C of phloem and new apical dry matter than for dry matter of mature foliage. Comparisons of δ13C signatures of phloem sap carbon with those of dry matter of nascent xylem tissues showed seasonal fluctuations in δ13C of phloem translocate which were mirrored a month or so later by those for xylem carbon. δ13C analyses of trunk growth rings from Eulup and Albany showed well-defined seasonal oscillations over the first 2 or 3 years of growth until irrigation commenced at Albany. Fluctuations in δ13C at the latter site then became noticeably less pronounced than at Eulup. Future use of phloem sap δ13C and solute analyses for studying seasonal water and nutrient status of E. globulus is discussed. Received: 9 April 1998 / Accepted: 20 August 1998  相似文献   

17.
Sap flows in the xylem of plant roots in response to gradientsin water potential, either between soil and atmosphere (transpiration)or soil layers of different moisture content (termed hydraulicredistribution). The latter has the potential to influence waterbudgets and species interactions, but we lack information forall but a few plant communities. We combined heat pulse measurementsof sap flow with dye and isotope tracing techniques to gaugethe movement of xylem sap within, and exudation from, rootsof Banksia prionotes (Lindley). We demonstrated ‘ hydrauliclift’ during the dry season and provide some evidencethat extremely dry soils limit hydraulic lift. In addition wereport difficulties posed by spiralled xylem tissue in rootsfor the application of heat pulse techniques. Copyright 2000Annals of Botany Company Banksia prionotes, sap flow, hydraulic lift, heat ratio method, deuterium, stable isotopes, root architecture.  相似文献   

18.
The effects of plant phosphorus (P) status and the mycorrhizal(M) fungus, Glomus intraradices Schenck & Smith, on thecarbon (C) economy of sour orange (Citrus aurantium L.) weredetermined during and following active M colonization. Therewere four treatments: M seedlings grown at standard-strength(1 mM) P (M1) and nonmycorrhizal (NM) plants grown at one, twoand five times standard-strength P (NM1, NM2 and NM5). Mycorrhizalcolonization, tissue dry mass, P content, root length and leafarea were determined in five harvests from 6 to 15 weeks ofage. Rate of C assimilation (A) was determined at 7, 8 and 12weeks by gas exchange. Partitioning of 14 C was determined from7 to 15 weeks using a 10-min pulse followed by a 24-h chaseperiod. For a given attribute, M1 plants were compared to thecurve defining the NM response as a function of tissue P concentration.In contrast to the large effects of P nutrition on C economyof sour orange, M effects were generally subtle. Mycorrhizaeincreased the root biomass fraction, the root length/leaf arearatio and the percentage of 14C recovered from below-groundcomponents. A higher percentage of below-ground 14 C was inthe respiration and soil fractions in M than NM plants of equivalentP status. Mycorrhizal plants tended to enhance A only for abrief period. Mycorrhizal plants had lower relative growth ratesthan NM plants of equivalent P status, suggesting that the temporarilyenhance A of M plants did not fully compensate for their greaterbelow-ground carbon expenditure. Problems of interpreting thedynamic effects of mycorrhizae on C economy that are independentof P nutrition are discussed.Copyright 1993, 1999 Academic Press Citrus aurantium L., sour orange, carbon economy, 14carbon, CO2 assimilation, vesicular-arbuscular mycorrhizae, phosphorus fertilization, phosphorus nutrition  相似文献   

19.
Heterotrophic gains of carbon from various host species by the root hemiparasitic shrub Olax phyllanthi (Labill) R.Br. were assessed using techniques based on carbon isotope discrimination (13C) on C3 and C4 hosts and C:N ratios of xylem sap and dry matter of host and parasite. Heterotrophic benefits (H) to Olax based on 13C values were 30% and 19% from two nonnative C4 hosts (Portulaca oleracea and Amaranthus caudatus respectively) compared with 13% and 15% from these hosts when computed on the basis of C:N ratios of host xylem sap and C and N increments of Olax dry matter. Nitrate was the source of N available to pot cultures of the above species and estimates based on C:N ratios assumed that all N accumulated by Olax had come from nitrate absorbed by the host. Equivalent estimates of H for Olax, grown in nitrogen-free pot culture with the native N2-fixing host Acacia littorea as its sole source of N, indicated 63% and 51% dependence on host carbon when assessed in terms of xylem sap composition of host parasite respectively. Comparisons of xylem sap solutes of Olax and a range of partner hosts indicated marked selectivity in haustorial uptake and transfer of nitrate, amino compounds, organic acids and sugars. Possible implications of variations between hosts in absolute levels of C and inorganic and organic forms of N in xylem are discussed in relation to evidence of much better growth performance of Olax on Acacia littorea and other N2-fixing legumes than on non-fixers.  相似文献   

20.
Distribution of Nitrogen during Growth of Sunflower (Helianthus annuus L.)   总被引:1,自引:0,他引:1  
The accumulation, distribution and redistribution of dry matterand nitrogen is described for Helianthus annuus L. cv. Hysun21 grown on 6 mM urea in glasshouse culture. Seed dry matterand nitrogen were transferred to seedlings with net efficienciesof 40 and 86 per cent respectively. At flowering, the stem hadmost of the plant's dry matter and the leaves most of its nitrogen.About 35 per cent of the plant's nitrogen accumulated afterthree-row anthesis. The amount of protein in vegetative parts,especially leaves, declined after flowering. Concentrationsof free amino compounds also decreased during growth. Matureseeds had 38 per cent of the total plant dry weight and 68 percent of the total nitrogen. Seeds acquired 33 per cent of theirdry matter and nitrogen from redistribution from above-groundplant parts. The stem was most important for storage of carbohydrate,leaves the most important for nitrogen. Over 50 per cent ofthe nitrogen in the stem and leaves was redistributed. Plantsthat received 6 mM nitrate accumulated more dry matter thanurea-grown plants. Seeds from nitrate-grown plants were heavier(58 mg) than those of urea-grown plants (46 mg), and their percentageoil was greater (50 and 41 respectively). The amount of nitrogenper seed was the same. Little or no urea was detected in xylem sap of plants suppliedwith 5 mM urea, but it was detected in sap of plants which received25 mM. Concentrations of urea and amino compounds in the sapdecreased up the stem. Plants supplied with nitrate had mostof the nitrogen in xylem sap as NO2, suggesting littlenitrate reduction in roots. Plants grown on 6 mM nitrate andchanged to high levels of urea-nitrogen for 14 days still hadhigh levels of nitrate; little nitrate remained in plants receivinglow levels of urea. When urea is applied in irrigation waterto field-grown sunflower, the nitrogen is subsequently takenup as nitrate due to rapid nitrogen transformations in the soil. Helianthus annuus L., sunflower, urea, nitrate, nitrogen transport, xylem sap, nitrogen accumulation nitrogen distribution  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号