首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structural stability of wild-type horse prion protein   总被引:1,自引:0,他引:1  
Prion diseases (e.g. Creutzfeldt-Jakob disease (CJD), variant CJD (vCJD), Gerstmann-Straussler-Scheinker syndrome (GSS), Fatal Familial Insomnia (FFI) and Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (BSE or 'mad-cow' disease) and chronic wasting disease (CWD) in cattles) are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. However, by now there have not been some effective therapeutic approaches or medications to treat all these prion diseases. Rabbits, dogs, and horses are the only mammalian species reported to be resistant to infection from prion diseases isolated from other species. Recently, the β2-α2 loop has been reported to contribute to their protein structural stabilities. The author has found that rabbit prion protein has a strong salt bridge ASP177-ARG163 (like a taut bow string) keeping this loop linked. This paper confirms that this salt bridge also contributes to the structural stability of horse prion protein. Thus, the region of β2-α2 loop might be a potential drug target region. Besides this very important salt bridge, other four important salt bridges GLU196-ARG156-HIS187, ARG156-ASP202 and GLU211-HIS177 are also found to greatly contribute to the structural stability of horse prion protein. Rich databases of salt bridges, hydrogen bonds and hydrophobic contacts for horse prion protein can be found in this paper.  相似文献   

2.
Prion diseases such as Creutzfeldt-Jakob disease, variant Creutzfeldt-Jakob diseases, Gerstmann-Str?ussler-Scheinker syndrome, Fatal Familial Insomnia, Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (or 'mad-cow' disease) and chronic wasting disease in cattle are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. However, by now there have not been some effective therapeutic approaches to treat all these prion diseases. In 2008, canine mammals including dogs (canis familials) were the first time academically reported to be resistant to prion diseases (Vaccine 26: 2601-2614 (2008)). Thus, it is very worth studying the molecular structures of dog prion protein to obtain insights into the immunity of dogs to prion diseases. This paper studies the molecular structural dynamics of wild-type dog prion protein. The comparison analyses with rabbit prion protein show that the dog prion protein has stable molecular structures whether under neutral or low pH environments. We also find that the salt bridges such as D177-R163 contribute to the structural stability of wild-type rabbit prion protein under neutral pH environment.  相似文献   

3.
In this study, the authors investigated normal cellular prion protein (PrP(C)) expression on murine immune systems using prion protein gene-deficient mouse as negative control. Immunocytes expressing PrP(C) in adult and fetal mice were detected by flow cytometry with the monoclonal antibody against PrP(C), 6H4. Cells from thymus and bone marrow reacted positively with 6H4, while spleen cells, peritoneal cells, peripheral blood leukocytes, and intestinal intraepithelial lymphocytes were nonreactive. In thymus, PrP(C) was observed in CD4(-)CD8(-) double-negative thymocytes. PrP(C+) cells of double-negative thymocytes belonged to the CD3(-) subset, but not to the CD3(+) subset. Triple-negative PrP(C+) thymocytes expressed CD44 or CD25 antigens. Furthermore, PrP(C) was observed in c-kit(+) bone marrow cells. In fetuses, PrP(C+) cells were observed in the liver and thymus at day 16.0 and 15.0 of gestation, respectively. These results demonstrated that PrP(C) is expressed on immature immunocytes.  相似文献   

4.
Insight into the normal function of PrP(C), and how it can be subverted to produce neurotoxic effects, is provided by PrP molecules carrying deletions encompassing the conserved central region. The most neurotoxic of these mutants, Δ105-125 (called ΔCR), produces a spontaneous neurodegenerative illness when expressed in transgenic mice, and this phenotype can be dose-dependently suppressed by co-expression of wild-type PrP. Whether the toxic activity of ΔCR PrP and the protective activity or wild-type PrP are cell-autonomous, or can be exerted on neighboring cells, is unknown. To investigate this question, we have utilized co-cultures of differentiated neural stem cells derived from mice expressing ΔCR or wild-type PrP. Cells from the two kinds of mice, which are marked by the presence or absence of GFP, are differentiated together to yield neurons, astrocytes, and oligodendrocytes. As a surrogate read-out of ΔCR PrP toxicity, we assayed sensitivity of the cells to the cationic antibiotic, Zeocin. In a previous study, we reported that cells expressing ΔCR PrP are hypersensitive to the toxic effects of several cationic antibiotics, an effect that is suppressed by co-expression of wild type PrP, similar to the rescue of the neurodegenerative phenotype observed in transgenic mice. Using this system, we find that while ΔCR-dependent toxicity is cell-autonomous, the rescuing activity of wild-type PrP can be exerted in trans from nearby cells. These results provide important insights into how ΔCR PrP subverts a normal physiological function of PrP(C), and the cellular mechanisms underlying the rescuing process.  相似文献   

5.
The cellular prion protein (PrP(C)) is essential for pathogenesis and transmission of prion diseases. Although prion replication in the brain is accompanied by neurodegeneration, prions multiply efficiently in the lymphoreticular system without any detectable pathology. We have used pulse-chase metabolic radiolabeling experiments to investigate the turnover and processing of PrP(C) in primary cell cultures derived from lymphoid and nervous tissues. Similar kinetics of PrP(C) degradation were observed in these tissues. This indicates that the differences between these two organs with respect to their capacity to replicate prions is not due to differences in the turnover of PrP(C). Substantial amounts of a soluble form of PrP that lacks the glycolipid anchor appeared in the medium of splenocytes and cerebellar granule cells. Soluble PrP was detected in murine and human serum, suggesting that it might be of physiological relevance.  相似文献   

6.
BACKGROUND: The ubiquitin proteasome system (UPS) mediates regulated protein degradation and provides a mechanism for closely controlling protein abundance in spatially restricted domains within cells. We hypothesized that the UPS may acutely determine the local concentration of key regulatory proteins at neuronal synapses as a means for locally modulating synaptic efficacy and the strength of neurotransmission communication. RESULTS: We investigated this hypothesis at the Drosophila neuromuscular synapse by using an array of genetic and pharmacological tools. This study demonstrates that UPS components are present in presynaptic boutons and that the UPS functions locally in the presynaptic compartment to rapidly eliminate a conditional transgenic reporter of proteasome activity. We assayed a panel of synaptic proteins to determine whether the UPS acutely regulates the local abundance of native synaptic targets. Both acute pharmacological inhibition of the proteasome (<1 hr) and targeted genetic perturbation of proteasome function in the presynaptic neuron cause the specific accumulation of the essential synaptic vesicle-priming protein DUNC-13. Most importantly, acute pharmacological inhibition of the proteasome (<1 hr) causes a rapid strengthening of neurotransmission (an approximately 50% increase in evoked amplitude) because of increased presynaptic efficacy. The proteasome-dependent regulation of presynaptic protein abundance, both of the exogenous reporter and native DUNC-13, and the modulation of presynaptic neurotransmitter release occur on an intermediate, rapid (tens of minutes) timescale. CONCLUSIONS: Taken together, these studies demonstrate that the UPS functions locally within synaptic boutons to acutely control levels of presynaptic protein and that the rate of UPS-dependent protein degradation is a primary determinant of neurotransmission strength.  相似文献   

7.
Proteasomes are ring- or cylinder-shaped particles that have a sedimentation coefficient of 20S and are composed of a characteristic set of small polypeptides. These particles have a latent multicatalytic proteinase activity. Recently, proteasomes were found to combine reversibly with multiple protein components to form 26S proteolytic complexes that catalyze ATP-dependent, selective breakdown of proteins ligated with ubiquitin. This suggests that the 26S complexes are a new type of ATP-requiring protease in eukaryotic cells. We have studied the structures of various eukaryotic proteasomes at the molecular level by physicochemical and recombinant DNA techniques and have proposed that the gross structures of proteasomes, such as their size and shape, have been highly conserved during evolution. Proteasome subunits appear to be encoded by a family of homologous genes named the "proteasome gene family," which may have evolved from a common ancestral gene. Evidence obtained by genetic analyses in yeast and studies on the levels of proteasome expression in various eukaryotic cells indicates that proteasomes have essential roles in the cell. In this review, we summarize available information on the protein and gene structures of proteasomes and discuss the biological functions of proteasomes.  相似文献   

8.
A general method for purification of any substrate of the ubiquitin pathway, the major eukaryotic proteolytic pathway, should utilize the common characteristic of covalent linkage of ubiquitin to substrate lysyl residues. The utility of a N-terminal histidine-tagged ubiquitin (HisUb) for in vivo conjugation and isolation of ubiquitinated proteins by metal chelation chromatography is conditioned by the requirement that HisUb conjugate to the same set of proteins as wild-type ubiquitin. Stringent in vivo tests with Saccharomyces cerevisiae strains expressing ubiquitins only from plasmids were performed to show that HisUb could substitute for wild-type ubiquitin. The utility of HisUb as a method for purification of proteins ubiquitinated in vivo was demonstrated by metal chelation chromatography of yeast extracts expressing HisUb and immunoblotting for Rpb1, the largest subunit of RNA polymerase II. A fraction of Rpb1 was present in the ubiquitinated form in vivo. The ability to use HisUb expression in transgenic organisms that retain expression of their endogenous ubiquitin genes was demonstrated through transgenic Arabidopsis thaliana expressing HisUb or its variant HisUbK48R. UbK48R is a version of ubiquitin capable of conjugation to proteins, but cannot serve as an attachment site for ubiquitin via the major in vivo interubiquitin linkage. Whereas transgenic plants expressing HisUb showed insignificant enrichment of ubiquitinated proteins, transgenic Arabidopsis lines expressing HisUbK48R gave a much better yield.  相似文献   

9.
Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes.  相似文献   

10.
Uncoupling protein 3 (UCP3) is implicated in mild uncoupling and the regulation of mitochondrial ROS production. We previously showed that UCP3 turns over rapidly in C2C12 myoblasts, with a half-life of 0.5-4h, and that turnover can be reconstituted in vitro. We show here that rapid degradation of UCP3 in vitro in isolated brown adipose tissue mitochondria required the 26S proteasome, ubiquitin, ATP, succinate to generate a high membrane potential, and a pH of 7.4 or less. Ubiquitin containing lysine-48 was both necessary and sufficient to support UCP3 degradation, implying a requirement for polyubiquitylation at this residue. The 20S proteasome did not support degradation. UCP3 degradation was prevented by simultaneously blocking matrix ATP generation and import, showing that ATP in the mitochondrial matrix was required. Degradation did not appear to require a transmembrane pH gradient, but was very sensitive to membrane potential: degradation was halved when membrane potential decreased 10-20mV from its resting value, and was not significant below about 120mV. We propose that matrix ATP and a high membrane potential are needed for UCP3 to be polyubiquitylated through lysine-48 of ubiquitin and exported to the cytosolic 26S proteasome, where it is de-ubiquitylated and degraded.  相似文献   

11.
Prion diseases are invariably fatal and highly infectious neurodegenerative diseases related to the structure transition of α-helix into β-sheet. In order to gain more direct insight into the molecular basis of the disease, the stability of the wild-type human prion protein (hPrPc) and the R220K mutant (m-hPrPc) was studied by molecular dynamics (MD) and flow MD simulation. Both the thermodynamic stability and the mechanical properties of hPrPc were investigated in this work. It was found that β-sheet was more readily to be unfolded in m-hPrPc. In the case of hPrPc, less content of helix was preserved after water turbulence. The H-bond network formed by the mutation-related residue 220 was found to play a key role in the stability of hPrPc.  相似文献   

12.
A recent study has linked the butyrylcholinesterase (BChE) K-variant and the apolipoprotein epsilon4 isoform to late-onset Alzheimer's disease. These findings have been controversial and have led us to examine the differences between wild-type and K-variant BChE in enzyme activity, protein stability, and quaternary structure. J-variant BChE (E497V/A539T) was also studied because it is associated with the K-variant mutation. The K-variant mutation (A539T) is located in the C-terminal tetramerization domain. Wild-type, K-variant, and J-variant BChE were expressed in Chinese hamster ovary cells and purified. The purified enzymes had similar binding affinity (Km) values and catalytic rates for butyrylthiocholine and benzoylcholine. In pulse-chase studies the K-variant, J-variant, and wildtype BChE were degraded rapidly within the cell, with a half-time of approximately 1.5 h. Less than 5% of the intracellular BChE was exported. The C-terminal peptide containing the K-variant mutation interacted with itself as strongly as did the wild-type peptide in the yeast two-hybrid system. Both K-variant and wild-type BChE assembled into tetramers in the presence of poly-L-proline or the proline-rich attachment domain of the collagen tail. The native K-variant BChE in serum showed the same proportion of tetramers as the native serum wild-type BChE. We conclude that the K-variant BChE is similar to wild-type BChE in enzyme activity, protein turnover, and tetramer formation.  相似文献   

13.
We have investigated the intracellular traffic of PrP(c), a glycosylphosphatidylinositol (GPI)-anchored protein implicated in spongiform encephalopathies. A fluorescent functional green fluorescent protein (GFP)-tagged version of PrP(c) is found at the cell surface and in intracellular compartments in SN56 cells. Confocal microscopy and organelle-specific markers suggest that the protein is found in both the Golgi and the recycling endosomal compartment. Perturbation of endocytosis with a dynamin I-K44A dominant-negative mutant altered the steady-state distribution of the GFP-PrP(c), leading to the accumulation of fluorescence in unfissioned endocytic intermediates. These pre-endocytic intermediates did not seem to accumulate GFP-GPI, a minimum GPI-anchored protein, suggesting that PrP(c) trafficking does not depend solely on the GPI anchor. We found that internalized GFP-PrP(c) accumulates in Rab5-positive endosomes and that a Rab5 mutant alters the steady-state distribution of GFP-PrP(c) but not that of GFP-GPI between the plasma membrane and early endosomes. Therefore, we conclude that PrP(c) internalizes via a dynamin-dependent endocytic pathway and that the protein is targeted to the recycling endosomal compartment via Rab5-positive early endosomes. These observations indicate that traffic of GFP-PrP(c) is not determined predominantly by the GPI anchor and that, different from other GPI-anchored proteins, PrP(c) is delivered to classic endosomes after internalization.  相似文献   

14.
Prion (PrP) diseases are neurodegenerative diseases characterized by the formation of β-sheet rich, insoluble and protease resistant protein deposits (called PrPSc) that occur throughout the brain. Formation of synthetic or in vitro PrPSc can occur through on-pathway toxic oligomers. Similarly, toxic and infectious oligomers identified in cell and animal models of prion disease indicate that soluble oligomers are likely intermediates in the formation of insoluble PrPSc. Despite the critical role of prion oligomers in disease progression, little is known about their structure. In order, to obtain structural insight into prion oligomers, we generated oligomers by shaking-induced conversion of recombinant, monomeric prion protein PrPc (spanning residues 90–231). We then obtained two-dimensional solution NMR spectra of the PrPc monomer, a 40% converted oligomer, and a 94% converted oligomer. Heteronuclear single-quantum correlation (1H–15N) studies revealed that, in comparison to monomeric PrPc, the oligomer has intense amide peak signals in the N-terminal (residues 90–114) and C-terminal regions (residues 226–231). Furthermore, a core region with decreased mobility is revealed from residues ~127 to 225. Within this core oligomer region with decreased mobility, there is a pocket of increased amide peak signal corresponding to the middle of α-helix 2 and the loop between α-helices 2 and 3 in the PrPc monomer structure. Using high-resolution solution-state NMR, this work reveals detailed and divergent residue-specific changes in soluble oligomeric models of PrP.  相似文献   

15.
Prion diseases are fatal neurodegenerative diseases that are characterized by the conformational conversion of the normal, mainly alpha-helical cellular prion protein (PrP) into the abnormal beta-sheet-rich infectious isoform (PrP(Sc)). The immune system neither shows reaction against cellular PrP nor PrP(Sc), most likely due to profound self-tolerance. In previous studies, we were able to partly overcome self-tolerance using recombinantly expressed dimeric PrP (tandem PrP (tPrP)), in association with different adjuvants. Proof of principle for antiprion efficacy was obtained in vitro and in vivo. In this study, we demonstrate the induction of a specific Th1 T cell response in wild-type mice immunized with tPrP and CpG-oligonucleotide (ODN). Biochemical influences such as refolding conditions, ionic strength, pH, and interaction with CpG-ODN affected antigenic structure and thus improved immunogenicity. Furthermore, s.c. immunization with tPrP and CpG-ODN co-encapsulated in biodegradable polylactide-coglycolide microspheres (PLGA-MS) enhanced CD4 T cell responses and, more prominent, the induction of CD8 T cells. In this vaccination protocol, PLGA-MS function as endosomal delivery device of Ag plus CpG-ODN to macrophages and dendritic cells. In contrast, PLGA-MS-based DNA vaccination approaches with a tPrP construct generated poor humoral and T cell responses. Our data show that prophylactic and therapeutic immunization approaches against prion infections might be feasible using tPrP Ag and CpG-ODN adjuvant without detectable side effects.  相似文献   

16.
The purpose of this report was to determine the effect of prion protein (PrP) gene disruption on T lymphocyte function. Previous studies have suggested that normal cellular prion protein (PrP(c)) binds to copper and Cu(2+) is essential for interleukin-2 (IL-2) mRNA synthesis. In this study, IL-2 mRNA levels in a copper-deficient condition were investigated using T lymphocytes from prion protein gene-deficient (PrP(0/0)) and wild-type mice. Results showed that Cu(2+) deficiency had no effect on PrP(c) expression in Con A-activated splenocytes. However, a delay in IL-2 gene expression was observed in PrP(0/0) mouse T lymphocyte cultures using Con A and Cu(2+)-chelator. These results suggest that PrP(c) expression may play an important role in rapid Cu(2+) transfer in T lymphocytes. The rapid transfer of Cu(2+) in murine T lymphocytes could be one of the normal functions of PrP(c).  相似文献   

17.
Covalent modification reactions are marking steps in protein turnover   总被引:9,自引:0,他引:9  
E R Stadtman 《Biochemistry》1990,29(27):6323-6331
  相似文献   

18.
Approximately 25% of eukaryotic proteins possessing homology to at least two transmembrane domains are predicted to be embedded in biological membranes. Nevertheless, this group of proteins is not usually well represented in proteome-wide experiments due to their refractory nature. Here we present a quantitative mass spectrometry-based comparison of membrane protein expression in cerebellar granule neurons grown in primary culture that were isolated from wild-type mice and mice lacking the cellular prion protein. This protein is a cell-surface glycoprotein that is mainly expressed in the central nervous system and is involved in several neurodegenerative disorders, though its physiological role is unclear. We used a low specificity enzyme α-chymotrypsin to digest membrane proteins preparations that had been separated by SDS-PAGE. The resulting peptides were labeled with tandem mass tags and analyzed by MS. The differentially expressed proteins identified using this approach were further analyzed by multiple reaction monitoring to confirm the expression level changes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号