首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
邻苯二酚-1,2-双加氧酶能催化邻苯二酚的两个羟基之间裂解,生成顺,顺-己二烯二酸,加水很容易转化为尼龙-6,6的原料己二酸。此外,它有极易起化学反应的共轭双键和羧基,可成为新功能树脂的原料。1955年发现邻苯二酚-1,2-双加氧酶,此后进行了大量研究工作,但是直到近几年由于合成顺,顺-己二烯二酸的需要,才引起人们的高度重视。我们对胞外酶产生菌的发酵条件及其所产的邻苯二酚-1,2-双加氧酶性质进行了研究,为工业规模的生产应用作了准备。  相似文献   

2.
3.
从臭味假单胞菌中提纯97倍的AcAcCoA硫解酶在聚丙烯酰胺凝胶电泳上是均一的一带。该酶分子量为170,000,每分子含有4个亚基,亚基分子量为42,000。该酶的等电点为pI6.7。它的N-末端为丙氨酸,N-末端是单一的。该酶催化反应的Km值为10.2μmol/L,最大反应速度为16.7μmol/min·mg。 臭味假单胞菌细胞粗提液透析后,经DEAE-纤维素(DE-52)柱色谱,从洗脱液中可同时得到四个酶的活力峰:乙酰乙酸琥珀酰辅酶A转移酶,AcAcCoA硫解酶,β-酮已二酸琥珀酰辅酶A转移酶和β-酮己二酸单酰辅酶A硫解酶。一般认为在细菌的芳径代谢中存在β-酮己二酸代谢途径,上述四个酶的活力峰同时存在说明除β-酮已二酸代谢途径外,还同时存在乙酰乙酸代谢途径。  相似文献   

4.
从臭味假单胞菌中提纯了β-酮己二酸单酰辅酶A硫解酶,在聚丙烯酰胺凝腋电泳上是均一的,比活力提高113倍。该酶分子量为1 52000,每个酶分子包含4个相同的亚基,亚基分子量为40000。用等电聚焦电泳测得该酶的等电点pI为6.5。  相似文献   

5.
6.
邻苯二酚2,3—双加氧酶在大肠杆菌的表达与定域   总被引:5,自引:0,他引:5  
夏东翔 《遗传学报》1992,19(2):177-185
本文在大肠杆菌/枮草芽孢杆菌间的穿梭质粒pTG 402的基础上构建了几个新的带有显色标志基闲xylE的表达质粒,摸索了该基因所编码的邻苯二酚2,3-双加氧酶(CatO_2ase)的表达条件,分析了该酶一级结构与二级结构的亲水性和疏水性,测定了它在大肠杆菌中的产量与分布。结果表明,CatO_2ase与各质粒的表达量不等,表达量高低与培养时间、宿主菌及诱导与否等影响因素有关;表达后有部分酶可在胞外测出,但大部分仍定域于膜内,亲、疏水性分析示该酶不具分泌性蛋白的显著特点。因该酶易于检测和定量,可作为一种选择性标记和监测指示系统在基因工程中推广应用,同时亦为用基因工程菌消除芳烃类化合物的污染提供了理论依据。  相似文献   

7.
李钦  李丽 《微生物学报》1989,29(1):39-44
Two strains of Pseudomonus sp. having the extracellular catechol 1, 2-dioxygenase activity were selected from 112 bacterial strains. The conditions for enzyme production of the strains were examined. The optimal temperature and pH for enzyme formation were 30 degrees C and pH 6.8-7.0 respectively. Enzyme formation was enhanced by sodium benzoate, and was markedly inhibited by glucose, maltose and glycerol. Ammoniacal nitrogen sources were essential for cell growth and enzyme production. Sodium succinate was an effective inducer for enzyme formation. When the organism was grown in 0.15% sodium benzoate medium (pH 6.8-7.0) at 30 degrees C for 72 hours, about 10 units of catechol 1,2 dioxygenase per ml was obtained.  相似文献   

8.
耐热邻苯二酚2,3—双加氧酶的高表达,纯化及性质   总被引:7,自引:0,他引:7  
来自嗜热脂肪芽孢杆菌中的邻苯二酚2,3-双加氧酶显示出较高的热稳定性。为了获得足够量的酶以研究其理化性质并分析热稳定性的分子基础,从克有编码该蛋白质的pheB基因的E.coli中获取它的高表达产物,经热变性处理,硫酸铵分级沉淀,DEAE-52离子交换层析,phenyl-Sepharose CL-4B疏水层析,得到电泳呈单一条带的酶蛋白,得率16%以上。该酶是由4个分子量为36.4kD的相同亚基组成  相似文献   

9.
10.
对肿瘤有抑制作用的假单胞菌新种——济南假单胞菌   总被引:2,自引:0,他引:2  
1973年自山东省无影山表土中分离出一株革兰氏阴性杆菌(编号161)。它对小鼠的宫颈癌、肝癌和黑色素瘤有明显抑制作用;对金黄色葡萄球菌、枯草芽孢杆菌和微球菌也有拮抗作用。  相似文献   

11.
The ability of an isolated isozyme of catechol 1,2-dioxygenase from Pseudomonas putida DSM 437 to function in a non-aqueous environment was investigated. The lyophilized enzyme is able to keep its catalytic function catalyzing the oxidation of catechol in n-hexane. Electron paramagnetic resonance (EPR) spectroscopy at liquid helium temperatures was applied to compare the properties of the non-heme iron of the enzyme in the organic solvent and in the aqueous solution. The catalytic performance of the enzyme in the organic solvent is correlated with the spectroscopic properties of the non-heme iron.  相似文献   

12.
Catechol 1,2-dioxygenase (pyrocatechase) has been purified to homogeneity from Pseudomonas putida mt-2. Most properties of this enzyme, such as the absorption spectrum, iron content, pH stability, pH optimum, substrate specificity, Km values, and amino acid composition, were similar to those of catechol 1,2-dioxygenase obtained from Pseudomonas arvilla C-1 [Y. Kojima et al. (1967) J. Biol. Chem. 242, 3270-3278]. These two catechol 1,2-dioxygenases were also found, from the results of Ouchterlony double diffusion, to share several antigenic determinants. The molecular weight of the putida enzyme was estimated to be 66,000 and 64,000 by sedimentation equilibrium analysis and Sephadex G-200 gel filtration, respectively. The enzyme gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, corresponding to Mr 32,000. The NH2-terminal sequence, which started with threonine, was determined up to 30 residues by Edman degradation. During the degradation, a single amino acid was released at each step. The NH2-terminal sequence up to 20 residues was identical to that of the beta subunit of the arvilla enzyme, with one exception at step 16, at which arginine was observed instead of glutamine. The COOH-terminal residue was deduced to be arginine on carboxypeptidase A and B digestions and on hydrazinolysis. These results indicate that the putida enzyme consists of two identical subunits, in contrast to the arvilla enzyme which consists of two nonidentical subunits, alpha and beta [C. Nakai et al. (1979) Arch. Biochem. Biophys. 195, 12-22], although these two enzymes have very similar properties.  相似文献   

13.
Dioxygenases are nonheme iron enzymes that biodegrade recalcitrant compounds, such as catechol and derivatives, released into the environment by modern industry. Intradiol dioxygenases have attracted much attention due to the interest in their use for bioremediation, which has demanded efforts towards understanding their action mechanism and also how to control it. The role of unexpected amphipatic molecules, observed in crystal structures of intradiol dioxygenases, during catalysis has been poorly explored. We report results obtained with the intradiol enzyme chlorocatechol 1,2-dioxygenase (1,2-CCD) from Pseudomonas putida subjected to delipidation. The delipidated enzyme is more stable and shows more cooperative thermal denaturation. The kinetics changes from Michaelis–Menten to a cooperative scheme, indicating that conformational changes propagate between monomers in the absence of amphipatic molecules. Furthermore, these molecules inhibit catalysis, yielding lower v max values. To the best of our knowledge, this is the first report concerning the effects of amphipatic molecules on 1,2-CCD function.  相似文献   

14.
2,3-Dihydroxybiphenyl 1,2-dioxygenase (2,3-DBPD) is an extradiol-type dioxygenase that catalyzes the aromatic ring fission of 2,3-dihydroxybiphenyl, the third step in the biphenyl degradation pathway. The nucleotide sequence of the Pseudomonas putida OU83 gene bphC, which encodes 2,3-DBPD, was cloned into a plasmid pQE31. The His-tagged 2,3-DBPD produced by a recombinant Escherichia coli strain, SG13009(pREP4)(pAKC1), and purified with a Ni-nitrilotriacetic acid resin affinity column using the His-bind Qiagen system. The His-tagged 2,3-DBPD construction, carrying a single 6×His tail on the N-terminal of the polypeptide, was active. SDS-PAGE analysis of the purified active 2,3-DBPD gave a single band of 34 kDa; this is in agreement with the size of the bphC coding region. The Km for 2,3-dihydroxybiphenyl was 14.5±2 μM. The enzyme activity was enhanced by ferrous ion but inhibited by ferric ion. The enzyme activity was inhibited by thiol-blocking reagents and heavy metals HgCl2, CuSO4, NiSO4, and CdCl2. The yield was much higher and the time required to purify recombinant 2,3-DBPD from clone pAKC1 was faster than by the conventional chromatography procedures.  相似文献   

15.
The benzoate 1,2-dioxygenase system (BZDOS) from Pseudomonas putida mt-2 catalyzes the NADH-dependent oxidation of benzoate to 1-carboxy-1,2-cis-dihydroxycyclohexa-3,5-diene. Both the oxygenase (BZDO) and reductase (BZDR) components of BZDOS have been purified and characterized kinetically and by optical, EPR, and M?ssbauer spectroscopies. BZDO has an (alpha beta)(3) subunit structure in which each alpha subunit contains a Rieske [2Fe-2S] cluster and a mononuclear iron site. Two different purification protocols were developed for BZDO allowing the mononuclear iron to be stabilized in either the Fe(III) or the Fe(II) state for spectroscopic characterization. Using single turnover reactions, it is shown that fully reduced BZDO alone is capable of yielding the cis-diol product in high yield at rates that exceed the BZDOS turnover number. At the conclusion of turnover, quantification of each oxidation state of the metal sites by EPR and M?ssbauer spectroscopies shows that the Rieske cluster and mononuclear iron are each oxidized in amounts equal to the product yield, suggesting that the two electrons required for catalysis derive from the two metal centers. These results are in agreement with our previous study of naphthalene 1,2-dioxygenase [Wolfe, M. D., Parales, J. V., Gibson, D. T., and Lipscomb, J. D. (2001) J. Biol. Chem. 276, 1945-1953], which belongs to a different Rieske dioxygenase subclass, suggesting that it is a universal characteristic of Rieske dioxygenases that oxygen activation and substrate oxidation are catalyzed by the oxygenase component alone. The EPR spectrum of the Fe(III) center after a single turnover is distinct from either of those of substrate-free or substrate-bound enzyme. The complex with this spectrum is not formed by addition of cis-diol product to the resting Fe(III) form of the enzyme but is observed when the Fe(II) form is oxidized in the presence of product. Together, these results suggest that product exchange occurs only when the mononuclear iron is reduced. Stopped-flow and rapid scan analyses monitoring the oxidation of the Rieske cluster during the single turnover reaction show that it occurs in three phases that are kinetically competent for catalysis. The rate of each phase was found to be dependent on the type of substrate present, suggesting that the substrate influences the rate of electron transfer between the metal clusters. The participation of substrate in the oxygen activation reaction suggests a new aspect of the mechanism of this process by the Rieske dioxygenase class.  相似文献   

16.
The 2,3-dihydroxybiphenyl 1,2-dioxygenase (2,3-DBPD) of Pseudomonas putida OU83 was constitutively expressed and purified to apparent homogeneity. The apparent molecular mass of the native enzyme was 256 kDa, and the subunit molecular mass was 32 kDa. The data suggested that 2,3-DBPD was an octamer of identical subunits. The nucleotide sequence of a DNA fragment containing the bphC region was determined. The deduced protein sequence for 2,3-DBPD consisted of 292 amino acid residues, with a calculated molecular mass of 31.9 kDa, which was in agreement with data for the purified 2,3-DBPD. Nucleotide and amino acid sequence analyses of the bphC gene and its product, respectively, revealed that there was a high degree of homology between the OU83 bphC gene and the bphC genes of Pseudomonas cepacia LB400 and Pseudomonas pseudoalcaligenes KF707.  相似文献   

17.
The investigations presented in this paper were performed on two enzyme systems from Pseudomonas putida: (a) 4-methoxybenzoate monooxygenase, consisting of a NADH: putidamonooxin oxidoreductase and putidamonooxin, the oxygen-activating component, and (b) benzene 1,2-dioxygenase, a three-component enzyme system with an NADH: ferredoxin oxidoreductase, functioning together with a plant-type ferredoxin as electron-transport chain, and an oxygen-activating component similar to putidamonooxin in its active sites. The influence of temperature, ionic strength, and pH on the activities of 4-methoxybenzoate monooxygenase and of NADH: putidamonooxin oxidoreductase were investigated. The studies revealed that the activity of 4-methoxybenzoate monooxygenase is determined by the behaviour of the reductase. Spectroscopic measurements showed that the interaction between the two components of 4-methoxybenzoate monooxygenase influences the optical-absorption behaviour of one or both components. As a criterion for the affinity between the two components of 4-methoxybenzoate monooxygenase, the Km value of the reductase for putidamonooxin was determined and found to be 31 +/- 11 microM. Antibodies against both components of 4-methoxybenzoate monooxygenase were obtained from rabbits. The antibodies against putidamonooxin inhibited the O-demethylation reaction (up to 80%) and also the reduction of putidamonooxin by the reductase (up to 40%). The antibodies against putidamonooxin did not interact with the oxygen-activating component of benzene 1,2-dioxygenase. The electron-transport chains of 4-methoxybenzoate monooxygenase and benzene 1,2-dioxygenase could not be replaced by one another without a complete loss of enzyme activity.  相似文献   

18.
Partially purified preparations of catechol 2,3-dioxygenase from toluene-grown cells of Pseudomonas putida catalyzed the stoichiometric oxidation of 3-methylcatechol to 2-hydroxy-6-oxohepta-2,4-dienoate. Other substrates oxidized by the enzyme preparation were catechol, 4-methylcatechol, and 4-fluorocatechol. The apparent Michaelis constants for 3-methylcatechol and catechol were 10.6 and 22.0 muM, respectively. Substitution at the 4-position decreases the affinity and activity of the enzyme for the substrate. Catechol 2,3-dioxygenase preparations did not oxidize 3-chlorocatechol. In addition, incubation of the enzyme with 3-chlorocatechol led to inactivation of the enzyme. Kinetic analyses revealed that both 3-chlorocatechol and 4-chlorocatechol were noncompetitive or mixed-type inhibitors of the enzyme. 3-Chlorocatechol (Ki = 0.14 muM) was a more potent inhibitor than 4-chlorocatechol (Ki = 50 muM). The effect of the ion-chelating agents Tiron and o-phenanthrolene were compared with that of 3-chlorocatechol on the inactivation of the enzyme. Each inhibitor appeared to remove iron from the enzyme, since inactive enzyme preparations could be fully reactivated by treatment with ferrous iron and a reducing agent.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号