首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A DNA fragment containing a gene homologous to LYS2 gene of Saccharomyces cerevisiae was cloned from a genomic DNA library of Penicillium chrysogenum AS-P-78. It encodes a protein of 1409 amino acids (Mr^ 154?859) with strong similarity to the S.?cerevisiae (49.9% identity) Schizosaccharomycespombe (51.3% identity) and Candida albicans (48.12% identity) α-aminoadipate reductases and a lesser degree of identity to the amino acid-activating domains of the non-ribosomal peptide synthetases, including the α-aminoadipate-activating domain of the α-aminoadipyl-cysteinyl-valine synthetase of P. chrysogenum (12.4% identical amino acids). The lys2 gene contained one intron in the 5′-region and other in the 3′-region, as shown by comparing the nucleotide sequences of the cDNA and genomic DNA, and was transcribed as a 4.7-kb monocistronic mRNA. The lys2 gene was localized on chromosome III (7.5?Mb) in P. chrysogenum AS-P-78 and on chromosome IV (5.6 Mb) in strain P2, whereas the penicillin gene cluster is known to be located in chromosome I in both strains. The lys2-encoded protein is a member of the aminoacyladenylate-forming enzyme family with a reductase domain in its C-terminal region.  相似文献   

2.
A DNA fragment containing a gene homologous to LYS2 gene of Saccharomyces cerevisiae was cloned from a genomic DNA library of Penicillium chrysogenum AS-P-78. It encodes a protein of 1409 amino acids (Mr^ 154 859) with strong similarity to the S. cerevisiae (49.9% identity) Schizosaccharomycespombe (51.3% identity) and Candida albicans (48.12% identity) α-aminoadipate reductases and a lesser degree of identity to the amino acid-activating domains of the non-ribosomal peptide synthetases, including the α-aminoadipate-activating domain of the α-aminoadipyl-cysteinyl-valine synthetase of P. chrysogenum (12.4% identical amino acids). The lys2 gene contained one intron in the 5′-region and other in the 3′-region, as shown by comparing the nucleotide sequences of the cDNA and genomic DNA, and was transcribed as a 4.7-kb monocistronic mRNA. The lys2 gene was localized on chromosome III (7.5 Mb) in P. chrysogenum AS-P-78 and on chromosome IV (5.6 Mb) in strain P2, whereas the penicillin gene cluster is known to be located in chromosome I in both strains. The lys2-encoded protein is a member of the aminoacyladenylate-forming enzyme family with a reductase domain in its C-terminal region. Received: 26 January 1998 / Accepted: 4 May 1998  相似文献   

3.
The alpha-aminoadipate reductase, a novel enzyme in the alpha-aminoadipic acid pathway for the biosynthesis of lysine in fungi, catalyzes the conversion of alpha-aminoadipic acid to alpha-aminoadipic-delta-semialdehyde in the presence of ATP, NADPH and MgCl(2). This reaction requires two distinct gene products, Lys2p and Lys5p. In the presence of CoA, Lys5p posttranslationally activates Lys2p for the alpha-aminoadipate reductase activity. Sequence alignments indicate the presence of all functional domains required for the activation, adenylation, dehydrogenation and alpha-aminoadipic acid binding in the Lys2p. In this report we present the results of site-directed mutational analysis of the conserved amino acid residues in the catalytic domains of Lys2p from the pathogenic yeast Candida albicans. Mutants were generated in the LYS2 sequence of pCaLYS2SEI by PCR mutagenesis and expressed in E. coli BL21 cells. Recombinant mutants and the wild-type Lys2p were analyzed for their alpha-aminoadipate reductase activity. Substitution of threonine 416, glycine 418, serine 419, and lysine 424 of the adenylation domain (TXGSXXXXK, residues 416-424) resulted in a significant reduction in alpha-aminoadipate reductase activity compared to the unmutagenized Lys2p control. Similarly replacement of glycine 978, threonine 980, glycine 981, phenylalanine 982, leucine 983 and glycine 984 of the NADPH binding domain (GXTGFLG, residues 978-984) caused a drastic decrease in alpha-aminoadipate reductase activity. Finally, substitution of histidine 460, aspartic acid 461, proline 462, isoleucine 463, glutamine 464, arginine 465, and aspartic acid 466 of the putative alpha-aminoadipic acid binding domain (HDPIQRD, residues 460-466) resulted in a highly reduced alpha-aminoadipate reductase activity. These results confirm the hypothesis that specific amino acid residues in highly conserved catalytic domains of Lys2p are essential for the alpha-aminoadipate reductase activity.  相似文献   

4.
Lysine biosynthesis in yeast requires the posttranslational conversion of the alpha-aminoadipate semialdehyde reductase Lys2 by the 4'-phosphopantetheinyl transferase (PPTase) Lys5 from the inactive apo-form into the catalytically active holo-form. In this reaction, the peptidyl carrier domain of Lys2 is modified at a conserved serine residue side chain with the 4'-phosphopantetheine moiety derived from coenzyme A. We have deleted the lys5 gene in Saccharomyces cerevisiae to investigate the substrate specificity of various heterologous PPTase genes of bacterial and fungal origin by testing their ability to complement lys5 in trans. Genes encoding PPTases Sfp and Gsp from Bacillus spp., which are involved in non-ribosomal peptide antibiotic synthesis, complemented the lys5 deletion, whereas ydcB of Bacillus subtilis, which encodes the acyl carrier protein synthase involved in fatty acid synthesis, could not. Two yet uncharacterized fungal genes, q10474 of Schizosaccharomyces pombe, meanwhile annotated as the putative lys7 gene, and npgA of Aspergillus nidulans, also complemented the lys5 deletion and have thus been functionally characterized as PPTases. The complementation system described also provides the basis for a simple method of functional characterization of PPTase candidate genes and their cloning from chromosomal DNA or cDNA libraries of diverse origin.  相似文献   

5.
There are conflicting reports regarding the cellular localization in Saccharomyces cerevisiae and filamentous fungi of homocitrate synthase, the first enzyme in the lysine biosynthetic pathway. The homocitrate synthase (HS) gene (lys1) of Penicillium chrysogenum was disrupted in three transformants (HS(-)) of the Wis 54-1255 pyrG strain. The three mutants named HS1(-), HS2(-) and HS3(-) all lacked homocitrate synthase activity and showed lysine auxotrophy, indicating that there is a single gene for homocitrate synthase in P. chrysogenum. The lys1 ORF was fused in frame to the gene for the green fluorescent protein (GFP) gene of the jellyfish Aequorea victoria. Homocitrate synthase-deficient mutants transformed with a plasmid containing the lys1-GFP fusion recovered prototrophy and showed similar levels of homocitrate synthase activity to the parental strain Wis 54-1255, indicating that the hybrid protein retains the biological function of wild-type homocitrate synthase. Immunoblotting analysis revealed that the HS-GFP fusion protein is maintained intact and does not release the GFP moiety. Fluorescence microscopy analysis of the transformants showed that homocitrate synthase was mainly located in the cytoplasm in P. chrysogenum; in S. cerevisiae the enzyme is targeted to the nucleus. The control nuclear protein StuA was properly targeted to the nucleus when the StuA (targeting domain)-GFP hybrid protein was expressed in P. chrysogenum. The difference in localization of homocitrate synthase between P. chrysogenum and S. cerevisiae suggests that this protein may play a regulatory function, in addition to its catalytic function, in S. cerevisiae but not in P. chrysogenum.  相似文献   

6.
7.
Normal strains of Saccharomyces cerevisiae do not use alpha-aminoadipate as a principal nitrogen source. However, alpha-aminoadipate is utilized as a nitrogen source by lys2 and lys5 strains having complete or partial deficiencies of alpha-aminoadipate reductase and, to a limited extent, by heterozygous lys2/+ strains. Lys2 mutants were conveniently selected on media containing alpha-aminoadipate as a nitrogen source, lysine, and other supplements to furnish other possible auxotrophic requirements. The lys2 mutations were obtained in a variety of laboratory strains containing other markers, including other lysine mutations. In addition to the predominant class of lys2 mutants, low frequencies of lys5 mutants and mutants not having any obvious lysine requirement were recovered on alpha-aminoadipate medium. The mutants not requiring lysine appeared to have mutations at the lys2 locus that caused partial deficiencies of alpha-aminoadipate reductase. Such partial deficiencies are believed to be sufficiently permissive to allow lysine biosynthesis, but sufficiently restrictive to allow for the utilization of alpha-aminoadipate. Although it is unknown why partial or complete deficiencies of alpha-aminoadipate reductase cause utilization of alpha-aminoadipate as a principal nitrogen source, the use of alpha-aminoadipate medium has considerable utility as a selective medium for lys2 and lys5 mutants.  相似文献   

8.
The alpha-aminoadipate pathway for lysine biosynthesis is present only in fungi. The alpha-aminoadipate reductase (AAR) of this pathway catalyzes the conversion of alpha-aminoadipic acid to alpha-aminoadipic-delta-semialdehyde by a complex mechanism involving two gene products, Lys2p and Lys5p. The LYS2 and LYS5 genes encode, respectively, a 155-kDa inactive AAR and a 30-kDa phosphopantetheinyl transferase (PPTase) which transfers a phosphopantetheinyl group from coenzyme A (CoA) to Lys2p for the activation of Lys2p and AAR activity. In the present investigation, we have confirmed the posttranslational activation of the 150-kDa Lys2p of Candida albicans, a pathogenic yeast, in the presence of CoA and C. albicans lys2 mutant (CLD2) extract as a source of PPTase (Lys5p). The recombinant Lys2p or CLD2 mutant extract exhibited no AAR activity with or without CoA. However, the recombinant 150-kDa Lys2p, when incubated with CLD2 extract and CoA, exhibited significant AAR activity compared to that of wild-type C. albicans CAI4 extract. The PPTase in the CLD2 extract was required only for the activation of Lys2p and not for AAR reaction. Site-directed mutational analysis of G882 and S884 of the Lys2p activation domain (LGGHSI) revealed no AAR activity, indicating that these two amino acids are essential for the activation. Replacement of other amino acid residues in the domain resulted in partial or full AAR activity. These results demonstrate the posttranslational activation and the requirement of specific amino acid residues in the activation domain of the AAR of C. albicans.  相似文献   

9.
The activity and regulation of alpha-aminoadipate reductase in three Penicillium chrysogenum strains (Q176, D6/1014/A, and P2), producing different amounts of penicillin, were studied. The enzyme exhibited decreasing affinity for alpha-aminoadipate with increasing capacity of the respective strain to produce penicillin. The enzyme from all three strains was inhibited by L-lysine, and the enzyme from the lowest producer, Q176, was least sensitive. Between pH 7.5 and 6.5, inhibition of alpha-aminoadipate reductase by L-lysine was pH dependent, being more pronounced at lower pH. The highest producer strain, P2, displayed the lowest alpha-aminoadipate reductase activity at pH 7.0. In Q176, the addition of 0.5-1 mM of exogenous lysine stimulated penicillin formation, whereas the same concentration was ineffective or inhibitory with strains D6/1014/A and P2. The addition of higher (up to 5 mM) lysine concentrations inhibited penicillin production in all three strains. In mutants of P. chrysogenum D6/1014/A, selected for resistance to 20 mM alpha-aminoadipate, highest penicillin production was observed in those strains whose alpha-aminoadipate reductase was most strongly inhibited by L-lysine. The results support the conclusion that the in vivo activity of alpha-aminoadipate reductase from superior penicillin producer strains of P. chrysogenum is more strongly inhibited by lysine, and that this is related to their ability to accumulate increased amounts of alpha-aminoadipate, and hence penicillin.  相似文献   

10.
The alpha-aminoadipate pathway for the biosynthesis of lysine is present only in fungi and euglena. Until now, this unique metabolic pathway has never been investigated in the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. Five of the eight enzymes (homocitrate synthase, homoisocitrate dehydrogenase, alpha-aminoadipate reductase, saccharopine reductase, and saccharopine dehydrogenase) of the alpha-aminoadipate pathway and glucose-6-phosphate dehydrogenase, a glycolytic enzyme used as a control, were demonstrated in wild-type cells of these organisms. All enzymes were present in Saccharomyces cerevisiae and the pathogenic organisms except C. neoformans 32608 serotype C, which exhibited no saccharopine reductase activity. The levels of enzyme activity varied considerably from strain to strain. Variation among organisms was also observed for the control enzyme. Among the pathogens, C. albicans exhibited much higher homocitrate synthase, homoisocitrate dehydrogenase, and alpha-aminoadipate reductase activities. Seven lysine auxotrophs of C. albicans and one of Candida tropicalis were characterized biochemically to determine the biochemical blocks and gene-enzyme relationships. Growth responses to alpha-aminoadipate- and lysine-supplemented media, accumulation of alpha-aminoadipate semialdehyde, and the lack of enzyme activity revealed that five of the mutants (WA104, WA153, WC7-1-3, WD1-31-2, and A5155) were blocked at the alpha-aminoadipate reductase step, two (STN57 and WD1-3-6) were blocked at the saccharopine dehydrogenase step, and the C. tropicalis mutant (X-16) was blocked at the saccharopine reductase step. The cloned LYS1 gene of C. albicans in the recombinant plasmid YpB1078 complemented saccharopine dehydrogenase (lys1) mutants of S. cerevisiae and C. albicans. The Lys1+ transformed strains exhibited significant saccharopine dehydrogenase activity in comparison with untransformed mutants. The cloned LYS1 gene has been localized on a 1.8-kb HindIII DNA insert of the recombinant plasmid YpB1041RG1. These results established the gene-enzyme relationship in the second half of the alpha-aminoadipate pathway. The presence of this unique pathway in the pathogenic fungi could be useful for their rapid detection and control.  相似文献   

11.
D E Ehmann  A M Gehring  C T Walsh 《Biochemistry》1999,38(19):6171-6177
A key step in fungal biosynthesis of lysine, enzymatic reduction of alpha-aminoadipate at C6 to the semialdehyde, requires two gene products in Saccharomyces cerevisiae, Lys2 and Lys5. Here, we show that the 31-kDa Lys5 is a specific posttranslational modification catalyst, using coenzyme A (CoASH) as a cosubstrate to phosphopantetheinylate Ser880 of the 155-kDa Lys2 and activate it for catalysis. Lys2 was subcloned from S. cerevisiae and expressed in and purified from Escherichia coli as a full-length 155-kDa enzyme, as a 105-kDa adenylation/peptidyl carrier protein (A/PCP) fragment (residues 1-924), and as a 14-kDa PCP fragment (residues 809-924). The apo-PCP fragment was covalently modified to phosphopantetheinylated holo-PCP by pure Lys5 and CoASH with a Km of 1 microM and kcat of 3 min-1 for both the PCP and CoASH substrates. The adenylation domain of the A/PCP fragment activated S-carboxymethyl-L-cysteine (kcat/Km = 840 mM-1 min-1) at 16% the efficiency of L-alpha-aminoadipate in [32P]PPi/ATP exchange assays. The holo form of the A/PCP 105-kDa fragment of Lys2 covalently aminoacylated itself with [35S]S-carboxymethyl-L-cysteine. Addition of NADPH discharged the covalent acyl-S-PCP Lys2, consistent with a reductive cleavage of the acyl-S-enzyme intermediate. These results identify the Lys5/Lys2 pair as a two-component system in which Lys5 covalently primes Lys2, allowing alpha-aminoadipate reductase activity by holo-Lys2 with catalytic cycles of autoaminoacylation and reductive cleavage. This is a novel mechanism for a fungal enzyme essential for amino acid metabolism.  相似文献   

12.
13.
A partially purified preparation of alpha-aminoadipate reductase (EC 1.2.1.31) from Penicillium chrysogenum is competitively inhibited by lysine (Ki of 0.26 mM). Exogenous addition of 10 mM L-lysine to resting mycelia of P. chrysogenum increased the intracellular lysine pool concentration 2-fold, but decreased the incorporation of (6-14C)-alpha-aminoadipate into protein-bound lysine to a fifth. The distribution of radioactivity in the pathway metabolites alpha-aminoadipate, saccharopine and lysine was consistent with the assumption of a lysine sensitive enzyme step in vivo between alpha-aminoadipate and saccharopine. Hence lysine inhibition of alpha-aminoadipate reductase may be of physiologic importance.  相似文献   

14.
The growth of Saccharomyces cerevisiae wild-type strain X2180 in minimal medium was inhibited by the addition of higher-than-supplementary levels of alpha-aminoadipate. This inhibitory effect was reversed by the addition of arginine, asparagine, aspartate, glutamine, homoserine, methionine, or serine as single amino acid supplements. Mutants belonging to the lys2 and lys14 loci were able to grow in lysine-supplemented alpha-aminoadipate medium, although not as well as when selected amino acids were added. Growth in alpha-aminoadipate medium by all strains was accompanied by an accumulation of alpha-ketoadipate. Glutamate:keto-adipate transaminase levels were derepressed two- to fivefold in lys2 mutants using alpha-aminoadipate as a nitrogen source. Wild-type strain X2180 growing in amino acid-supplemented AA medium exhibited higher levels of alpha-aminoadipate reductase. Mutants unable to use alpha-aminoadipate without amino acid supplementation were obtained by treatment of lys2 strain MW5-64 and were shown to have glutamate: ketoadipate transaminase activity and to lack alpha-aminoadipate reductase activity. Altered cell morphologies, including increased size, multiple buds, pseudohyphae, and germ tubes, evidenced by cells grown in alpha-aminoadipate medium suggest that higher-than-supplementary levels of alpha-aminoadipate result in an impairment of cell division.  相似文献   

15.
16.
Pipecolic acid serves as a precursor of the biosynthesis of the alkaloids slaframine and swainsonine (an antitumor agent) in some fungi. It is not known whether other fungi are able to synthesize pipecolic acid. Penicillium chrysogenum has a very active alpha-aminoadipic acid pathway that is used for the synthesis of this precursor of penicillin. The lys7 gene, encoding saccharopine reductase in P. chrysogenum, was target inactivated by the double-recombination method. Analysis of a disrupted strain (named P. chrysogenum SR1-) showed the presence of a mutant lys7 gene lacking about 1,000 bp in the 3'-end region. P. chrysogenum SR1- lacked saccharopine reductase activity, which was recovered after transformation of this mutant with the intact lys7 gene in an autonomously replicating plasmid. P. chrysogenum SR1- was a lysine auxotroph and accumulated piperideine-6-carboxylic acid. When mutant P. chrysogenum SR1- was grown with L-lysine as the sole nitrogen source and supplemented with DL-alpha-aminoadipic acid, a high level of pipecolic acid accumulated intracellularly. A comparison of strain SR1- with a lys2-defective mutant provided evidence showing that P. chrysogenum synthesizes pipecolic acid from alpha-aminoadipic acid and not from L-lysine catabolism.  相似文献   

17.
Three lysine auxotrophs, strains AU363, 7305d, and 8201-7A, were investigated genetically and biochemically to determine their gene loci, biochemical lesions, and roles in the lysine biosynthesis of Saccharomyces cerevisiae. These mutants were leaky and blocked after the alpha-aminoadipate step. Complementation studies placed these three mutations into a single, new complementation group, lys14. Tetrad analysis from appropriate crosses provided evidence that the lys14 locus represented a single nuclear gene and that lys14 mutants were genetically distinct from the other mutants (lys1, lys2, lys5, and lys9) blocked after the alpha-aminoadipate step. The lys14 strains, like lys9 mutants, accumulated alpha-aminoadipate-semialdehyde and lacked significant amounts of saccharopine reductase activity. On the bases of these results, it was concluded, therefore, that LYS9 and LYS14, two distinct genes, were required for the biosynthesis of saccharopine reductase in wild-type S. cerevisiae.  相似文献   

18.
alpha-Aminoadipate-semialdehyde dehydrogenase catalyzes the conversion of alpha-aminoadipate to alpha-aminoadipate-semialdehyde in the biosynthetic pathway of lysine in yeasts and molds. Mutants belonging to lys2 and lys5 loci of Saccharomyces cerevisiae lacked the alpha-aminoadipate-semialdehyde dehydrogenase activity. Complementation in vitro was demonstrated by combining the extracts from different lys2 and lys5 mutants. Some of the revertants of lys2 and lys5 mutants exhibited lower specific activity and higher thermolability of alpha-aminoadipate-semialdehyde dehydrogenase than the enzyme from wild-type cells. The enzyme was partially purified from wild-type cells and the molecular weight of the enzyme was estimated on a Sephacryl S-300 column at 180,000. Results from the revertant analysis and in vitro complementation indicated LYS2 and LYS5 as structural genes, each encoding a subunit of this large enzyme.  相似文献   

19.
20.
In contrast to wild-type strains of the yeast Saccharomyces cerevisiae, lys2 and lys5 mutants are able to utilize alpha-aminoadipate as a primary source of nitrogen. Chattoo et al. (B. B. Chattoo, F. Sherman, D. A. Azubalis, T. A. Fjellstedt, D. Mehnert, and M. Ogur, Genetics 93:51-65, 1979) relied on this difference in the effective utilization of alpha-aminoadipate to develop a procedure for directly selecting lys2 and lys5 mutants. In this study we used a range of mutant strains and various media to determine why normal strains are unable to utilize alpha-aminoadipate as a nitrogen source. Our results demonstrate that the anabolism of high levels of alpha-aminoadipate through the biosynthetic pathway of lysine results in the accumulation of a toxic intermediate and, furthermore, that lys2 and lys5 mutants contain blocks leading to the formation of this intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号