首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Identification of components essential to chromosome structure and behaviour remains a vibrant area of study. We have previously shown that invadolysin is essential in Drosophila, with roles in cell division and cell migration. Mitotic chromosomes are hypercondensed in length, but display an aberrant fuzzy appearance. We additionally demonstrated that in human cells, invadolysin is localized on the surface of lipid droplets, organelles that store not only triglycerides and sterols but also free histones H2A, H2Av and H2B. Is there a link between the storage of histones in lipid droplets and the aberrantly structured chromosomes of invadolysin mutants? We have identified a genetic interaction between invadolysin and nonstop, the de-ubiquitinating protease component of the SAGA (Spt-Ada-Gcn5-acetyltransferase) chromatin-remodelling complex. invadolysin and nonstop mutants exhibit phenotypic similarities in terms of chromosome structure in both diploid and polyploid cells. Furthermore, IX-141/not1 transheterozygous animals accumulate mono-ubiquitinated histone H2B (ubH2B) and histone H3 tri-methylated at lysine 4 (H3K4me3). Whole mount immunostaining of IX-141/not1 transheterozygous salivary glands revealed that ubH2B accumulates surprisingly in the cytoplasm, rather than the nucleus. Over-expression of the Bre1 ubiquitin ligase phenocopies the effects of mutating either the invadolysin or nonstop genes. Intriguingly, nonstop and mutants of other SAGA subunits (gcn5, ada2b and sgf11) all suppress an invadolysin-induced rough eye phenotype. We conclude that the abnormal chromosome phenotype of invadolysin mutants is likely the result of disrupting the histone modification cycle, as accumulation of ubH2B and H3K4me3 is observed. We further suggest that the mislocalization of ubH2B to the cytoplasm has additional consequences on downstream components essential for chromosome behaviour. We therefore propose that invadolysin plays a crucial role in chromosome organization via its interaction with the SAGA complex.  相似文献   

2.
Genes containing the DM domain, a conserved DNA binding motif first found in Doublesex of Drosophila and mab-3 of Caenorhabditis elegans, regulate sexual differentiation in multiple phyla. The DM domain gene Dmrt1 is essential for testicular differentiation in vertebrates. In the mouse, Dmrt1 is expressed in pre-meiotic germ cells and in Sertoli cells, which provide essential support for spermatogenesis. Dmrt1 null mutant mice have severely dysgenic testes in which Sertoli cells and germ cells both fail to differentiate properly after birth. Here we use conditional gene targeting to identify the functions of Dmrt1 in each cell type. We find that Dmrt1 is required in Sertoli cells for their postnatal differentiation, and for germ line maintenance and for meiotic progression. Dmrt1 is required in germ cells for their radial migration to the periphery of the seminiferous tubule where the spermatogenic niche will form, for mitotic reactivation and for survival beyond the first postnatal week. Thus Dmrt1 activity is required autonomously in the Sertoli and germ cell lineages, and Dmrt1 activity in Sertoli cells is also required non-autonomously to maintain the germ line. These results demonstrate that Dmrt1 plays multiple roles in controlling the remodeling and differentiation of the juvenile testis.  相似文献   

3.
4.
5.
The metazoan Wee1-like kinases Wee1 and Myt1 regulate the essential mitotic regulator Cdk1 by inhibitory phosphorylation. This regulatory mechanism, which prevents Cdk1 from triggering premature mitotic events, is also induced during the DNA damage response and used to coordinate cell proliferation with crucial developmental events. Despite the previously demonstrated role for Myt1 regulation of Cdk1 during meiosis, relatively little is known of how Myt1 functions at other developmental stages. To address this issue, we have undertaken a functional analysis of Drosophila Myt1 that has revealed novel developmental roles for this conserved cell cycle regulator during gametogenesis. Notably, more proliferating cells were observed in myt1 mutant testes and ovaries than controls. This can partly be attributed to ectopic division of germline-associated somatic cells in myt1 mutants, suggesting that Myt1 serves a role in regulating exit from the cell cycle. Moreover, mitotic index measurements suggested that germline stem cells proliferate more rapidly, in myt1 mutant females. In addition, male myt1 germline cells occasionally undergo an extra mitotic division, resulting in meiotic cysts with twice the normal numbers of cells. Based on these observations, we propose that Myt1 serves unique Cdk1 regulatory functions required for efficient coupling of cell differentiation with cell cycle progression.  相似文献   

6.
A variety of different cyclin proteins have been identified in higher eukaryotes. In the case of cyclin B, functional analyses have clearly demonstrated an important role in the control of entry into mitosis. The function of cyclin A is more complex. It appears to function in the control of both S- and M-phase. The results of our genetic analyses in Drosophila demonstrate that cyclin A has a mitotic function and that it acts synergistically with cyclin B during the G2-M transition. In double mutant embryos that express neither cyclin A nor cyclin B zygotically, cell cycle progression is blocked just before the exhaustion of the maternally contributed cyclin A and B stores. BrdU-labeling experiments indicate that cell cycle progression is blocked in G2 before entry into the fifteenth round of mitosis. Expression of either cyclin A or B from heat-inducible transgenes is sufficient to overcome this cell cycle block. This block is also not observed in single mutant embryos deficient for either cyclin A or B. In cyclin B deficient embryos, cell cycle progression continues after the apparent exhaustion of the maternal contribution, suggesting that cyclin B might not be essential for mitosis. However, mitotic spindles are clearly abnormal and progression through mitosis is delayed in these cyclin B deficient embryos.  相似文献   

7.
Lis1 is required for nuclear migration in fungi, cell cycle progression in mammals, and the formation of a folded cerebral cortex in humans. Lis1 binds dynactin and the dynein motor complex, but the role of Lis1 in many dynein/dynactin-dependent processes is not clearly understood. Here we generate and/or characterize mutants for Drosophila Lis1 and a dynactin subunit, Glued, to investigate the role of Lis1/dynactin in mitotic checkpoint function. In addition, we develop an improved time-lapse video microscopy technique that allows live imaging of GFP-Lis1, GFP-Rod checkpoint protein, green fluorescent protein (GFP)-labeled chromosomes, or GFP-labeled mitotic spindle dynamics in neuroblasts within whole larval brain explants. Our mutant analyses show that Lis1/dynactin have at least two independent functions during mitosis: first promoting centrosome separation and bipolar spindle assembly during prophase/prometaphase, and subsequently generating interkinetochore tension and transporting checkpoint proteins off kinetochores during metaphase, thus promoting timely anaphase onset. Furthermore, we show that Lis1/dynactin/dynein physically associate and colocalize on centrosomes, spindle MTs, and kinetochores, and that regulation of Lis1/dynactin kinetochore localization in Drosophila differs from both Caenorhabditis elegans and mammals. We conclude that Lis1/dynactin act together to regulate multiple, independent functions in mitotic cells, including spindle formation and cell cycle checkpoint release.  相似文献   

8.
The kinetochore is a complex molecular machine that serves as the interface between sister chromatids and the mitotic spindle. The kinetochore assembles at a particular chromosomal locus, the centromere, which is essential to maintain genomic stability during cell division. The kinetochore is a macromolecular puzzle of subcomplexes assembled in a hierarchical manner and fulfils three main functions: microtubule attachment, chromosome and sister chromatid movement, and regulation of mitotic progression though the spindle assembly checkpoint. In the present paper we compare recent results on the assembly, organization and function of the kinetochore in human and Drosophila cells and conclude that, although essential functions are highly conserved, there are important differences that might help define what is a minimal chromosome segregation machinery.  相似文献   

9.
Cytoplasmic dynein is a multisubunit minus-end-directed microtubule motor that serves multiple cellular functions. Genetic studies in Drosophila and mouse have demonstrated that dynein function is essential in metazoan organisms. However, whether the essential function of dynein reflects a mitotic requirement, and what specific mitotic tasks require dynein remains controversial. Drosophila is an excellent genetic system in which to analyze dynein function in mitosis, providing excellent cytology in embryonic and somatic cells. We have used previously characterized recessive lethal mutations in the dynein heavy chain gene, Dhc64C, to reveal the contributions of the dynein motor to mitotic centrosome behavior in the syncytial embryo. Embryos lacking wild-type cytoplasmic dynein heavy chain were analyzed by in vivo analysis of rhodamine-labeled microtubules, as well as by immunofluorescence in situ methods. Comparisons between wild-type and Dhc64C mutant embryos reveal that dynein function is required for the attachment and migration of centrosomes along the nuclear envelope during interphase/prophase, and to maintain the attachment of centrosomes to mitotic spindle poles. The disruption of these centrosome attachments in mutant embryos reveals a critical role for dynein function and centrosome positioning in the spatial organization of the syncytial cytoplasm of the developing embryo.  相似文献   

10.
In the budding yeast Saccharomyces cerevisiae, cell cycle progression and cytokinesis at mitotic exit are proposed to be linked by CDC14 phosphatase antagonizing the function of mitotic B-type cyclin (CLBs). We have isolated a temperature-sensitive mutant, cdc14(A280V), with a mutation in the conserved phosphatase domain. Prolonged arrest in the cdc14(A280V) mutant partially uncoupled cell cycle progression from the completion of cytokinesis as measured by bud re-emergence, in the form of elongated apical projections, and DNA re-replication. In contrast to previous mitotic exit mutants, cdc14(A280V) mutants displayed a strong bias for the first apical projection to form in the mother cell body. Using cdc14(A280V) mutant phenotypes, the functions of the B-type cyclins at mitotic exit were investigated. The preference in mother-daughter apical projection formation was observed to be independent of any individual CLB function. However, cdc14(A280V)clb1Δ cells displayed a pronounced increase in apical projections, while cdc14(A280V)clb3Δ cells were observed to form round cellular chains. While cdc14(A280V) cells arrested at mitotic exit, both cdc14(A280V)clb1Δ and cdc14(A280V)clb3Δ cells completed cytokinesis, but failed cell separation. cdc14(A280V)clb2Δ cells displayed a defect in actin ring assembly. These observations differentiate the functions of CLB1, CLB2, and CLB3 at mitotic exit, and are consistent with the hypothesis that CLB activities are antagonized by the CDC14 phosphatase in order to couple cell cycle progression with cytokinesis at mitotic exit.  相似文献   

11.
12.
13.
14.
《The Journal of cell biology》1995,129(6):1617-1628
Correct assembly and function of the mitotic spindle during cell division is essential for the accurate partitioning of the duplicated genome to daughter cells. Protein phosphorylation has long been implicated in controlling spindle function and chromosome segregation, and genetic studies have identified several protein kinases and phosphatases that are likely to regulate these processes. In particular, mutations in the serine/threonine-specific Drosophila kinase polo, and the structurally related kinase Cdc5p of Saccharomyces cerevisae, result in abnormal mitotic and meiotic divisions. Here, we describe a detailed analysis of the cell cycle-dependent activity and subcellular localization of Plk1, a recently identified human protein kinase with extensive sequence similarity to both Drosophila polo and S. cerevisiae Cdc5p. With the aid of recombinant baculoviruses, we have established a reliable in vitro assay for Plk1 kinase activity. We show that the activity of human Plk1 is cell cycle regulated, Plk1 activity being low during interphase but high during mitosis. We further show, by immunofluorescent confocal laser scanning microscopy, that human Plk1 binds to components of the mitotic spindle at all stages of mitosis, but undergoes a striking redistribution as cells progress from metaphase to anaphase. Specifically, Plk1 associates with spindle poles up to metaphase, but relocalizes to the equatorial plane, where spindle microtubules overlap (the midzone), as cells go through anaphase. These results indicate that the association of Plk1 with the spindle is highly dynamic and that Plk1 may function at multiple stages of mitotic progression. Taken together, our data strengthen the notion that human Plk1 may represent a functional homolog of polo and Cdc5p, and they suggest that this kinase plays an important role in the dynamic function of the mitotic spindle during chromosome segregation.  相似文献   

15.
For successful mitotic entry and spindle assembly, mitosis-promoting factors are activated at the G(2)/M transition stage, followed by stimulation of the anaphase-promoting complex (APC), an E3 ubiquitin ligase, to direct the ordered destruction of several critical mitotic regulators. Given that inhibition of APC activity is important for preventing premature or improper ubiquitination and destruction of substrates, several modulators and their regulation mechanisms have been studied. Emi1, an early mitotic inhibitor, is one of these regulatory factors. Here we show, by analyzing Emi1-deficient embryos, that Emi1 is essential for precise mitotic progression during early embryogenesis. Emi1(-/-) embryos were found to be lethal due to a defect in preimplantation development. Cell proliferation appeared to be normal, but mitotic progression was severely defective during embryonic cleavage. Moreover, multipolar spindles and misaligned chromosomes were frequently observed in Emi1 mutant cells, possibly due to premature APC activation. Our results collectively suggest that the late prophase checkpoint function of Emi1 is essential for accurate mitotic progression and embryonic viability.  相似文献   

16.
During Drosophila eye development, cell proliferation is coordinated with differentiation. Immediately posterior to the morphogenetic furrow, cells enter a synchronous round of S phase called second mitotic wave. We have examined the role of RBF, the Drosophila RB family homolog, in cell cycle progression in the second mitotic wave. RBF-280, a mutant form of RBF that has four putative cdk phosphorylation sites mutated, can no longer be regulated by Cyclin D or Cyclin E. Expression of RBF-280 in the developing eye revealed that RBF-280 does not inhibit G1/S transition in the second mitotic wave, rather it delays the completion of S phase and leads to abnormal eye development. These observations suggest that RB/E2F control the rate of S-phase progression instead of G1/S transition in the second mitotic wave. Characterization of the role of RBF in Cyclin D/Cdk4-mediated cellular growth showed that RBF-280 blocks Cyclin D/Cdk4 induced cellular growth in the proliferating wing disc cells but not in the non-dividing eye disc cells. By contrast, RBF-280 does not block activated Ras-induced cellular growth. These results suggest that the ability of Cyclin D/Cdk4 to drive growth in the proliferating wing cells is distinct from that in the none-dividing eye cells or the ability of activated Ras to induce growth, and that RBF may have a role in regulating growth in the proliferating wing discs.  相似文献   

17.
18.
19.
Mitotic spindle regulation by Nde1 controls cerebral cortical size   总被引:1,自引:0,他引:1  
Feng Y  Walsh CA 《Neuron》2004,44(2):279-293
Ablation of the LIS1-interacting protein Nde1 (formerly mNudE) in mouse produces a small brain (microcephaly), with the most dramatic reduction affecting the cerebral cortex. While cortical lamination is mostly preserved, the mutant cortex has fewer neurons and very thin superficial cortical layers (II to IV). BrdU birthdating revealed retarded and modestly disorganized neuronal migration; however, more dramatic defects on mitotic progression, mitotic orientation, and mitotic chromosome localization in cortical progenitors were observed in Nde1 mutant embryos. The small cerebral cortex seems to reflect both reduced progenitor cell division and altered neuronal cell fates. In vitro analysis demonstrated that Nde1 is essential for centrosome duplication and mitotic spindle assembly. Our data show that mitotic spindle function and orientation are essential for normal development of mammalian cerebral cortex.  相似文献   

20.
Functional analysis of a series of phosphorylation mutants reveals that Bcl-xL(Ser62Ala) influences cell entry into anaphase and mitotic exit in taxol-exposed cells compared with cells expressing wild-type Bcl-xL or a series of other phosphorylation mutants, an effect that appears to be independent of its anti-apoptotic activity. During normal mitosis progression, Bcl-xL(Ser62) is strongly phosphorylated by PLK1 and MAPK14/SAPKp38α at the prometaphase, metaphase, and the anaphase boundaries, while it is de-phosphorylated at telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-tubulin and in the mitotic cytosol with some spindle-assembly checkpoint signaling components, including PLK1, BubR1, and Mad2. In taxol- and nocodazole-exposed cells, phospho-Bcl-xL(Ser62) also binds to Cdc20- Mad2-, BubR1-, and Bub3-bound complexes, while Bcl-xL(Ser62Ala) does not. Silencing Bcl-xL expression and expressing the phosphorylation mutant Bcl-xL(Ser62Ala) lead to an increased number of cells harboring mitotic spindle defects including multipolar spindle, chromosome lagging and bridging, aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h. Together, the data indicate that during mitosis, Bcl-xL(Ser62) phosphorylation impacts on spindle assembly and chromosome segregation, influencing chromosome stability. Observations of mitotic cells harboring aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h were also made with cells expressing the phosphorylation mutant Bcl-xL(Ser49Ala) and dual mutant Bcl-xL(Ser49/62Ala).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号