首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Replacement of perennial grasses with non‐native annual grasses in California's Central Valley grasslands and foothills has increased deep soil water availability. Yellow starthistle (Centaurea solstitialis), a deep‐rooted invasive thistle, can use this water to invade annual grasslands. Native perennial bunchgrasses, such as Purple needlegrass (Nassella pulchra), also use deep soil water, so there is an overlap in resource use between N. pulchra and C. solstitialis. Restoration of N. pulchra to annual grasslands could result in strong competitive interactions between N. pulchra and C. solstitialis, which may reduce survival, growth, and reproduction of the invader. The strength of this competitive interaction can increase as N. pulchra plants mature, increase in size, and develop more extensive root systems. We studied how the size of N. pulchra affected the success of C. solstitialis invasion over 2 years. We allowed C. solstitialis seed to fall naturally into plots containing N. pulchra plants. For each plot, we measured the number of C. solstitialis seedlings and mature plants, as well as C. solstitialis biomass and seedhead production. In both years of the study, C. solstitialis number, biomass, and seedhead production declined significantly as N. pulchra size increased. However, even C. solstitialis grown with the largest N. pulchra plants produced some seed, especially during the higher rainfall year. We conclude that restoration plantings with larger, established N. pulchra plants will be more resistant to invasion by C. solstitialis than young N. pulchra plantings, but site management must continue as long as a C. solstitialis seed source is present.  相似文献   

2.
    
A dominant plant of the California grasslands, purple needlegrass [Nassella pulchra (Hitchc.) Barkworth] is an important revegetation species in its native range. The amplified fragment length polymorphism (AFLP) method was used to elucidate mode of reproduction and nucleotide variation among 11 natural populations and three selected natural germplasm releases of N. pulchra. A total of 12 co-dominant AFLPs, informative within eight populations, failed to reveal any heterozygous individuals, indicating very high selfing rates (S(H)=1). Estimates of nucleotide diversity within populations ranged from 0 to 0.00069 (0.00035 average), whereas the total nucleotide divergence among populations ranged from 0.00107 to 0.00382 (0.00247 average). Measures of population differentiation (GS) in terms of Shannon-Weaver diversity values and estimated nucleotide substitutions were 0.90 and 0.86, respectively. Although some of the sample populations contained a mixture of true breeding genotypes, most populations could be distinguished unambiguously. Moreover, geographical distance between the natural source populations was significantly correlated with genetic distance (r = 0.60) among the corresponding sample populations. Results indicate that inbreeding, combined with founder effects and/or selection, has contributed to the differentiation of N. pulchra populations. Foundation seed populations of the selected natural germplasm releases were genetically well defined and most similar to natural seed collected near the corresponding source populations. Thus, these commercial germplasm sources will be made practically available and useful for conservation plantings within the intended areas of utilization.  相似文献   

3.
    
We found no significant effect (p > 0.38) of clipping surrounding non‐native annuals on the performance or survival of plantings of the native Nassella pulchra. However, the preplanting productivity of the three sites had a significant effect (p < 0.001) on the demography and water relations of Nassella. Survival was 85% on the lowest productivity site and it decreased by 6% for each additional 100 kg in average aboveground productivity between 2,400 and 3,600 kg/ha. Plants experienced greater water stress in higher productivity sites. Together, these results suggest that the original habitat of N. pulchra may have been in more marginal ecological sites rather than the more fertile soils of the Central Valley.  相似文献   

4.
5.
  总被引:4,自引:1,他引:4  
Restoration of California native perennial grassland is often initiated with cultivation to reduce the density and cover of non‐native annual grasses before seeding with native perennials. Tillage is known to adversely impact agriculturally cultivated land; thus changes in soil biological functions, as indicated by carbon (C) turnover and C retention, may also be negatively affected by these restoration techniques. We investigated a restored perennial grassland in the fourth year after planting Nassella pulchra, Elymus glaucus, and Hordeum brachyantherum ssp. californicum for total soil C and nitrogen (N), microbial biomass C, microbial respiration, CO2 concentrations in the soil atmosphere, surface efflux of CO2, and root distribution (0‐ to 15‐, 15‐ to 30‐, 30‐ to 60‐, and 60‐ to 80‐cm depths). A comparison was made between untreated annual grassland and plots without plant cover still maintained by tillage and herbicide. In the uppermost layer (0‐ to 15‐cm depth), total C, microbial biomass C, and respiration were lower in the tilled, bare soil than in the grassland soils, as was CO2 efflux from the soil surface. Root length near perennial bunchgrasses was lower at the surface and greater at lower depths than in the annual grass–dominated areas; a similar but less pronounced trend was observed for root biomass. Few differences in soil biological or chemical properties occurred below 15‐cm depth, except that at lower depths, the CO2 concentration in the soil atmosphere was lower in the plots without vegetation, possibly from reduced production of CO2 due to the lack of root respiration. Similar microbiological properties in soil layers below 15‐cm depth suggest that deeper microbiota rely on more recalcitrant C sources and are less affected by plant removal than in the surface layer, even after 6 years. Without primary production, restoration procedures with extended periods of tillage and herbicide applications led to net losses of C during the plant‐free periods. However, at 4 years after planting native grasses, soil microbial biomass and activity were nearly the same as the former conditions represented by annual grassland, suggesting high resilience to the temporary disturbance caused by tillage.  相似文献   

6.
Efforts to arrest the spread of invasive weeds with herbivory may be hindered by weak effects of the herbivores or strong compensatory responses of the invaders. We conducted a greenhouse experiment to study the effects of defoliation and soil fungi on competition between the invasive weed Centaurea solstitialis and C. solstitialis and Avena barbata, a naturalized Eurasian annual grass, and Nassella pulchra, a native California bunchgrass. Surprisingly, considering the explosive invasion of grasslands by C. solstitialis, Avena and Nassella were strong competitors and reduced the invader’s biomass by 80.2% and 80.1% over all defoliation and soil fungicide treatments, respectively. However, our experiments were conducted in artificial environments where competition was probably accentuated. When fungicide was applied to the soil, the biomass of C. solstitialis was reduced in all treatment combinations, but reduction in the biomass of the invader had no corollary impact on the grasses. There was no overall effect of defoliation on the final biomass of C. solstitialis as the invader compensated fully for severe clipping. In fact, the directional trend of the clipping effect was +6.4% over all treatments after eight weeks. A significant neighbor × soil fungicide × clipping effect suggested that the compensatory response was the strongest without soil fungicide and when C. solstitialis was alone (+ 19%). Our key finding was that the compensatory response of C. solstitialis in all treatments was associated with an increase in the weed’s negative effects on Nassella and Avena – there was a significant decrease in the total biomass of both grasses and the reproductive biomass of Avena in pots with clipped C. solstitialis. Our results were obtained in controlled conditions that may have been conducive to compensatory growth, but they suggest the existence of mechanisms that may allow C. solstitialis, like other Centaurea species, to resist herbivory.  相似文献   

7.
    
Aims Invasive plants commonly occupy disturbed soils, thereby providing a stage for understanding the role of disturbance-enhanced resources in plant invasions. Here, we addressed how soil space and soil nutrients affect the growth and competitive effect of invasive plants and whether this effect varies with different invaders.Methods We conducted an experiment in which two invasive plants (Bromus tectorum and Centaurea maculosa) and one native species (Poa pratensis) were grown alone or together in four habitats consisting of two levels of soil space and nutrients. At the end of the experiment, we determined the total biomass, biomass allocation and relative interaction intensity of B. tectorum, C. maculosa and P. pratensis .Important findings Across two invaders, B. tectorum and C. maculosa, increased soil nutrients had greater positive effects on their growth than increased soil space, the effects of soil space on root weight ratio were greater than those of soil nutrients, and their competitive effect decreased with soil space but increased with soil nutrients. These findings suggest that changing soil space and nutrients differentially influence the growth and competitive advantages of two invaders. Bromus tectorum benefited more from increased soil resources than C. maculosa. Soil space and nutrients affected the biomass allocation of C. maculosa but not B. tectorum. The competitive effect of B. tectorum was unaffected by soil space and soil nutrients, but the opposite was the case for C. maculosa. Thus, the effects of soil space and nutrients on growth and competitive ability depend on invasive species identity.  相似文献   

8.
Accelerated seedling emergence in interspecific competitive neighbourhoods   总被引:1,自引:0,他引:1  
Seed dormancy models suggest that evaluation of environmental conditions should influence the decision to germinate and that waiting for more favourable conditions may increase potential fitness. However, because rapid emergence is often positively correlated with performance and survival, an alternative strategy to accelerate the rate of emergence may increase the potential for site pre-emption. This response is more likely to be found in seasonal environments with greater potential for rapid resource depletion in which early emergence may confer a competitive advantage. The experiments reported here found more rapid emergence in a perennial grass species when it was planted in potentially highly competitive interspecific neighbourhoods. This response suggests an inherent ability in seeds of this species to sense and respond to the competitive nature of the immediate neighbourhood.  相似文献   

9.
Evidence of spatial genetic structure in a California bunchgrass population   总被引:1,自引:0,他引:1  
We investigated the scale of genetic variation of purple needlegrass (Nassella pulchra), a species commonly used in California for grassland restoration. Common garden and field data revealed evidence of genetic differentiation between two intermixed microhabitats characterized by differences in soil depth and community composition. We assessed the genetic variation within a single population using randomly amplified polymorphic DNA (RAPD) data collected from clusters of five individuals in 40 locations. We found no evidence for genetic structure at the whole population level. At smaller spatial scales, however, we found strong evidence that genetic subdivision of the population occurs at the level of the maternal neighborhood. We suggest that the interaction between widespread pollen dispersal and restricted seed dispersal may be the primary factor generating these results; panmictic pollen dispersal will make detection of genetic patterning difficult at larger spatial scales while limited seed dispersal will generate local genetic structure. As a result, the detection of population genetic structure will depend on the spatial scale of analysis. Local selection gradients related to topography and soil depth are also likely to play a role in structuring local genetic variation. Since N. pulchra is widely used in California in grassland and woodland habitat restoration, we suggest that, as a general rule, care should be exercised in transferring germplasm for the purposes of conservation when little is known about the within-population genetic subdivision of a plant species. Received: 23 December 1996 / Accepted: 20 May 1997  相似文献   

10.
11.
基于大数据的森林生态系统服务功能评估进展   总被引:3,自引:0,他引:3  
与传统的数据相比,大数据的感知、获取、处理和表示都面临着巨大的挑战。森林生态系统作为陆地生态系统的主体,其所产生的服务功能在全球生态系统中发挥着极为重要的作用。森林生态系统服务功能评估在经历了小数据和表象大数据的评估阶段后,已经进入了大数据评估阶段。基于森林生态站长期监测数据开展的森林生态系统服务功能评估,能够在大数据中获取所需要的详细信息,开展多尺度镶嵌评估工作。同时,还可以避免小数据样本选择所带来的随机性误差,使得评估结果更趋于可靠,进而为森林资源的保护与可持续发展提供数据支撑。  相似文献   

12.
    
One of the major challenges confronting grassland restoration of highly invaded communities is increasing the diversity of native species. There is surprisingly little research investigating how reconstructed native grasslands respond to common management techniques and how these techniques influence the relative establishment of both native grasses and forbs. Despite the diversity and wide distribution of native clovers in California, few practitioners incorporate them into grassland restoration plans. Conversely, non‐native clovers have been seeded extensively onto California rangelands. This study addresses the following questions: (1) Using readily available management tools, is there a strategy that can benefit the growth of both planted native bunchgrasses and seeded clovers? (2) Do native bunchgrasses compete with establishing clovers and non‐native grasses? (3) Do native and non‐native clovers differ in their response to management treatments or in their productivity? Plots were established to test three factors in different combinations over 3 years: (1) early spring clipping, (2) initial broadleaf herbicide, and (3) native bunchgrass planting density. Native and non‐native clovers were seeded in years 2 and 3. Early spring clipping did not have a significant effect on native bunchgrass cover, yet it did result in greater growth of native and non‐native clovers. The direction of the response to broadleaf herbicide changed between years for native bunchgrasses and was consistently negative for native clovers. Plots with higher native grass densities did not adversely affect the seeded clovers, yet non‐native grass cover was reduced. Native and non‐native clovers exhibited similar responses to clipping and established at similar densities.  相似文献   

13.
14.
Centaurea stoebe (subspecies C. s. stoebe and C. s. micranthos[S. G. Gmelin ex Gugler) Hayek] and Centaurea diffusa are Eurasian plant species that have invaded much of North America. We isolated seven microsatellite loci from C. stoebe and two loci from C. diffusa. All loci described here amplify in both species and have between six and 25 alleles each. These markers will be useful in examining population structure and addressing questions regarding these invasions.  相似文献   

15.
16.
    
Concerns about the use of genetically appropriate material in restoration often focus on questions of local adaptation. Many reciprocal transplant studies have demonstrated local adaptation in native plant species, but very few have examined how interspecific competition affects the expression of adaptive variation. Our study examined regional scales of adaptation between foothill and coastal populations of two California native bunchgrasses (Elymus glaucus and Nassella pulchra). By combining competitive manipulations with reciprocal transplants, we examined the importance of the vegetation at a site as a selective factor in the process of local adaptation. By monitoring survival and reproduction of reciprocally transplanted populations over the course of 3 years, we also studied the effect of life history stage on the expression of local adaptation. For most of the fitness components we measured, local adaptation was detected and interspecific competition consistently amplified its expression. Expression of local adaptation was especially apparent in the more inbreeding species E. glaucus and suggests that with weaker gene flow, selection may be more effective in creating ecotypes within this species. Local adaptation was detected at all life history stages but was most strongly expressed in traits associated with adult reproduction and the viability of seeds produced by the transplants. Taken together, our results indicate that the importance of local adaptation will become more apparent in the later stages of a restoration project as the plants at a site begin to reproduce and as they experience greater interspecific competition from the maturing vegetation at the site.  相似文献   

17.
Common ragweed, Ambrosia artemisiifolia, is a highly allergenic North American plant that has become invasive in some parts of Europe, Asia and Australia following its introduction to many places in the world. Some earlier works suggested that a microcyclic autoecious rust fungus, Puccinia xanthii, known to infect A. artemisiifolia in the USA only, can be considered as a potential classical biocontrol agent (BCA) of this noxious weed in Europe and elsewhere. However, an extensive field survey did not reveal the presence of either P. xanthii or any other rusts on common ragweed in 14 US states and two Canadian provinces in 2002 and 2003. Moreover, P. xanthii infecting A. artemisiifolia has never been recorded in Canada, although it is known to occur on A. trifida and Xanthium spp. there. Nevertheless, herbarium specimens collected between 1855 and 1963 in five states of the USA confirmed the presence of P. xanthii on A. artemisiifolia. It is concluded that currently P. xanthii cannot be regarded as a promising BCA of A. artemisiifolia, although it did occur on common ragweed at least a few decades ago in the USA and some forms of this rust species have already been evaluated as effective BCAs of Xanthium in Australia.  相似文献   

18.
  总被引:8,自引:0,他引:8  
Little is known about the potential for coexistence between native and non-native plants after large-scale biological invasions. Using the example of native perennial bunchgrasses and non-native annual grasses in California grasslands, we sought to determine the effects of interference from non-native grasses on the different life stages of the native perennial bunchgrass Nassella pulchra. Further, we asked whether N. pulchra interferes with non-native annual grasses, and whether competition for water is an important component of these interspecific interactions in this water-limited system. In a series of field and greenhouse experiments employing neighbor removals and additions of water, we found that seedling recruitment of N. pulchra was strongly seed-limited. In both field and greenhouse, natural recruitment of N. pulchra seedlings from grassland soil was extremely low. In field plots where we added seeds, addition of water to field plots increased density of N. pulchra seedlings by 88% and increased total aboveground N. pulchra seedling biomass by almost 90%, suggesting that water was the primary limiting resource. In the greenhouse, simulated drought early in the growing season had a greater negative effect on the biomass of annual seedlings than on the seedlings of N. pulchra. In the field, presence of annuals reduced growth and seed production of all sizes of N. pulchra, and these effects did not decrease as N. pulchra individuals increased in size. These negative effects appeared to be due to competition for water, because N. pulchra plants showed less negative pre-dawn leaf water potentials when annual neighbors were removed. Also, simply adding water caused the same increases in aboveground biomass and seed production of N. pulchra plants as removing all annual neighbors. We found no evidence that established N. pulchra plants were able to suppress non-native annual grasses. Removing large N. pulchra individuals did not affect peak biomass per unit area of annuals. We conclude that effects of interference from non native annuals are important through all life stages of the native perennial N. pulchra. Our results suggest that persistence of native bunchgrasses may be enhanced by greater mortality of annual than perennial seedlings during drought, and possibly by reduced competition for water in wet years because of increased resource availability. Received: 12 November 1998 / Accepted: 4 August 1999  相似文献   

19.
Field studies were conducted to determine the competitive interactions between introduced biological control agents that attack the seed heads of spotted knapweed (Centaurea stoebe ssp. micranthos) and diffuse knapweed (Centaurea diffusa). Two weevils, Bangasternus fausti and Larinus minutus (Coleoptera: Curculionidae), were each paired with the previously established fly, Urophora affinis (Diptera: Tephritidae). Each species was released either alone or in pair-wise combinations inside screen cages placed over existing knapweed plants at six field sites in Montana and one in Oregon. Larinus minutus produced almost three times as many progeny on diffuse knapweed as on spotted knapweed. Larinus minutus reproduction was not affected by competition with U. affinis, but U. affinis reproduction was reduced by the presence of L. minutus (by 71% on spotted and 77% on diffuse knapweed). Bangasternus fausti reproduction generally was not affected by competition with U. affinis, nor was U. affinis affected by B. fausti on either host plant. There were extremely few cases of successful production of both weevil and fly in the same capitulum, which was probably because weevil larvae consume the developing flies. Both weevils increased the total proportion of seed heads infested on diffuse knapweed, and B. fausti increased it on spotted knapweed. However, the release of either weevil did not significantly further reduce seed production on either plant. The results and experimental design are discussed in light of the subsequent establishment and impact of these agents.  相似文献   

20.
Abstract Annual grasslands in California are often managed with seasonal grazing and prescribed burning on the assumption that such practices have long‐term benefits for native species. Mature native perennial bunchgrasses, particularly Nassella pulchra (purple needlegrass), are often the focal species, although very little is known about responses at different life history stages. Thus, important questions remain about long‐term population dynamics of both mature plants and seedling recruitment. In plots receiving repeated grazing and burning events over 7 years, mortality of mature plants was threefold higher on mounds than on intermounds and likely reflected increased competition intensity associated with increased resource availability in deeper soil. Burning and grazing treatments had strong positive effects on basal area of mature N. pulchra. However, plants in grazed plots that were not burned contained considerable standing dead biomass. Topographic location strongly influenced growth as intermound plants grew relatively more than mound plants, but the effects on growth of burning and grazing did not vary with topographic location. In mapped plots N. pulchra recruitment was very low, and overall density dropped an average of 31%. However, a significant time‐by‐burning effect indicated that survival was significantly higher in burned plots. After 7 years of repeated treatments, effects of burning and grazing management on mature N. pulchra were positive but not for all phenological stages. Understanding long‐term influence of management on bunchgrass populations may not be easy to determine because short‐term results may not reflect long‐term responses and some life cycle dynamics may be observed only over very long periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号