首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the previous article [Part 1 (8)], we have modelled alternative approaches to design of practical time-gated luminescence (TGL) flow cytometry and examined the feasibility of employing a UV LED as the excitation source for the gated detection of europium dye labelled target in rapid flow stream. The continuous flow-section approach is well suited for rare-event cell counting in applications with a large number of nontarget autofluorescent particles. This article presents details of construction, operation and evaluation of a TGL flow cytometer using a UV LED excitation and a gated high-gain channel photomultiplier tube (CPMT) for detection. The compact prototype TGL flow cytometer was constructed and optimised to operate at a TGL cycle rate of 6 kHz, with each cycle consisting of 100 micros LED pulsed excitation and approximately 60 micros delay-gated detection. The performance of the TGL flow cytometer was evaluated by enumerating 5.7 microm Eu(3+) luminescence beads (having comparable intensity to europium-chelate-labeled Giardia cysts) in both autofluorescence-rich environmental water concentrates and Sulforhodamine 101 (S101) solutions (broadband red fluorescence covering the spectral band of target signals), respectively.The prototype TGL flow cytometer was able to distinguish the target beads, and a maximum signal to background ratio of 38:1 was observed. Neither the environmental water concentrates nor S101 solution contributed to the background in the TGL detection phase. The counting efficiency of the TGL flow cytometer was typically >93% of values determined using conventional counting methods.  相似文献   

2.
The method of time-gated detection of long-lifetime (1-2,000 micros) luminescence-labeled microorganisms following rapid excitation pulses has proved highly efficient in suppressing nontarget autofluorescence (<0.1 micros), scatterings, and other prompt stray light (Hemmila and Mukkala, Crit Rev Clin Lab Sci 2001;38:441-519). The application of such techniques to flow cytometry is highly attractive but there are significant challenges in implementing pulsed operation mode to rapid continuous flowing sample to achieve high cell analysis rates (Leif R, Vallarino L, Rare-earth chelates as fluorescent markers in cell separation and analysis, In: Cell Separation Science and Technology, ACS Symposium Series 464, American Chemical Society, 1991, pp 41-58; Condrau et al., Cytometry 1994;16:187-194; Condrau et al., Cytometry 1994;16:195-205; Shapiro HM, Improving signals from labels: Amplification and other techniques, In: Practical Flow Cytometry, 4th ed., Wiley, New York, 2002, p 345). We present here practical approaches for achieving high cell analysis rates at 100% detection efficiency, using time-gated luminescence (TGL) flow cytometry. In particular, we report that new-generation UV LEDs are practical sources in TGL flow cytometry.Spatial effects of long-lived luminescence from the target fluorophore in a fast-flowing sample stream have been investigated; excitation and detection requirements in TGL flow cytometry were theoretically analyzed; two practical approaches, a triggered model and a continuous flow-section model, were considered as a function of flow speed, sizes and relative positions of the excitation/detection spots, label lifetime, excitation pulse duration/intensity, and detection duration. A particular configuration using LED excitation to detect europium dye-labeled targets in such a system has been modeled in detail.In the triggered model, TGL mode is confined to a low repetition rate (<1 kHz) and engaged only while a target particle is present in the excitation zone. In the flow-section model, TGL mode is engaged continuously at high repetition rates to permit much higher cell arrival rates. The detection of 5.7-microm europium calibration beads in a UV LED-excited TGL flow cytometer has been shown to be feasible with a calculated signal-to-background ratio up to 11:1.  相似文献   

3.
4.
In fluorescence microscopy, images often contain puncta in which the fluorescent molecules are spatially clustered. This article describes a method that uses single-molecule intensity distributions to deconvolve the number of fluorophores present in fluorescent puncta as a way to "count" protein number. This method requires a determination of the correct statistical relationship between the single-molecule and single-puncta intensity distributions. Once the correct relationship has been determined, basis histograms can be generated from the single-molecule intensity distribution to fit the puncta distribution. Simulated data were used to demonstrate procedures to determine this relationship, and to test the methodology. This method has the advantages of single-molecule measurements, providing both the mean and variation in molecules per puncta. This methodology has been tested with the avidin-biocytin binding system for which the best-fit distribution of biocytins in the sample puncta was in good agreement with a bulk determination of the avidin-biocytin binding ratio.  相似文献   

5.
A newly developed compact instrument is described for the measurement of chlorophyll luminescence induction in plants. The instrument operates with a pulsed light emitting diode (LED) as light source and a photodiode as luminescence detector. A special emitter-detector geometry provides for high irradiance of the sample and efficient collection of luminescence by the detector. With insertion of appropriate filters the same probe is also suited for measuring prompt chlorophyll fluorescence. The instrument shows considerable flexibility with respect to pulse frequency, relative lengths of light/dark intervals and luminescence sampling periods. Due to a selective amplifier system only that part of luminescence is processed which is induced by the individual excitation pulses. By this approach, the problem of slow phase accumulation, encountered with conventional phosphoroscopes, is eliminated. Some examples are given for system operation, demonstrating satisfactory performance in measurements with intact leaves and isolated chloroplasts.  相似文献   

6.
Improvements and extended applications of time-resolved delayed luminescence imaging microscopy (TR-DLIM) in cell biology are described. The emission properties of europium ion complexed to a fluorescent chelating group capable of labeling proteins are exploited to provide high contrast images of biotin labeled ligands through detection of the delayed emission. The streptavidin-based macromolecular complex (SBMC) employs streptavidin cross-linked to thyroglobulin multiply labeled with the europium-fluorescent chelate. The fluorescent chelate is efficiently excited with 340-nm light, after which it sensitizes europium ion emission at 612 nm hundreds of microseconds later. The SBMC complex has a high quantum yield orders of magnitude higher than that of eosin, a commonly used delayed luminescent probe, and can be readily seen by the naked eye, even in specimens double-labeled with prompt fluorescent probes. Unlike triplet-state phosphorescent probes, sensitized europium ion emission is insensitive to photobleaching and quenching by molecular oxygen; these properties have been exploited to obtain delayed luminescence images of living cells in aerated medium thus complementing imaging studies using prompt fluorescent probes. Since TR-DLIM has the unique property of rejecting enormous signals that originate from scattered light, autofluorescence, and prompt fluorescence it has been possible to resolve double emission images of living amoeba cells containing an intensely stained lucifer yellow in pinocytosed vesicles and membrane surface-bound SBMC-labeled biotinylated concanavalin A. Images of fixed cells represented in terms of the time decay of the sensitized emission show the lifetime of the europium ion emission is sensitive to the environment in which it is found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
MOTIVATION: Advances in microscopy technology have led to the creation of high-throughput microscopes that are capable of generating several hundred gigabytes of images in a few days. Analyzing such wealth of data manually is nearly impossible and requires an automated approach. There are at present a number of open-source and commercial software packages that allow the user to apply algorithms of different degrees of sophistication to the images and extract desired metrics. However, the types of metrics that can be extracted are severely limited by the specific image processing algorithms that the application implements, and by the expertise of the user. In most commercial software, code unavailability prevents implementation by the end user of newly developed algorithms better suited for a particular type of imaging assay. While it is possible to implement new algorithms in open-source software, rewiring an image processing application requires a high degree of expertise. To obviate these limitations, we have developed an open-source high-throughput application that allows implementation of different biological assays such as cell tracking or ancestry recording, through the use of small, relatively simple image processing modules connected into sophisticated imaging pipelines. By connecting modules, non-expert users can apply the particular combination of well-established and novel algorithms developed by us and others that are best suited for each individual assay type. In addition, our data exploration and visualization modules make it easy to discover or select specific cell phenotypes from a heterogeneous population. AVAILABILITY: CellAnimation is distributed under the Creative Commons Attribution-NonCommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/). CellAnimationsource code and documentation may be downloaded from www.vanderbilt.edu/viibre/software/documents/CellAnimation.zip. Sample data are available at www.vanderbilt.edu/viibre/software/documents/movies.zip. CONTACT: walter.georgescu@vanderbilt.edu SUPPLEMENTARY INFORMATION: Supplementary data available at Bioinformatics online.  相似文献   

9.
This study involves the single-step, mass-scale productive synthesis, photoconduction, and luminescence characteristics of pure and cerium rare-earth-ion-doped ZnO (CZO) nanophosphors with different Ce concentrations (Ce: 0, 2, 4, 6, and 8 wt.%) synthesized using the solid-state reaction method. The synthesized nanophosphors were characterized for their structural, morphological, optical, and photoconductivity (PC) properties using X-ray diffraction (XRD), field-effect scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, Fourier-transform infrared (FT-IR), photoluminescence (PL), and PC measurements. The sharp diffraction peaks of XRD results exhibit the formation of crystalline hexagonal wurtzite ZnO nanostructures. The decrease in diffraction peak intensities of CZO with an increase in Ce concentrations signifies the deterioration of the ZnO crystal. FE-SEM images exhibit the good crystalline quality of nanophosphors composed of spherical- and elongated-shaped nanoparticles that are distributed consistently on the surface. The energy dispersive X-ray pattern of the 4 wt.% Ce-doped ZnO (CZO4) sample confirms the doping of Ce in ZnO. The presence of chemical bonds and functional groups corresponds to transmittance peaks established using FT-IR spectroscopy. Deconvoluted PL spectra show two major emission peaks, one in the UV region, which is near-band-edge, and the other in the visible region ranging from ~456 to 561 nm. In PC studies, current–voltage (I–V) and current–time (I–T) characteristics, that is, rise/decayin current under dark as well as UV light conditions, are also investigated. Efficient photoconduction is observed in CZO samples. The obtained results indicate the suitability to luminescent and photosensor applications.  相似文献   

10.
Population geneticists and community ecologists have long recognized the importance of sampling design for uncovering patterns of diversity within and among populations and in communities. Invasion ecologists increasingly have utilized phylogeographical patterns of mitochondrial or chloroplast DNA sequence variation to link introduced populations with putative source populations. However, many studies have ignored lessons from population genetics and community ecology and are vulnerable to sampling errors owing to insufficient field collections. A review of published invasion studies that utilized mitochondrial or chloroplast DNA markers reveals that insufficient sampling could strongly influence results and interpretations. Sixty per cent of studies sampled an average of less than six individuals per source population, vs. only 45% for introduced populations. Typically, far fewer introduced than source populations were surveyed, although they were sampled more intensively. Simulations based on published data forming a comprehensive mtDNA haplotype data set highlight and quantify the impact of the number of individuals surveyed per source population and number of putative source populations surveyed for accurate assignment of introduced individuals. Errors associated with sampling a low number of individuals are most acute when rare source haplotypes are dominant or fixed in the introduced population. Accuracy of assignment of introduced individuals is also directly related to the number of source populations surveyed and to the degree of genetic differentiation among them ( F ST). Incorrect interpretations resulting from sampling errors can be avoided if sampling design is considered before field collections are made.  相似文献   

11.
12.
Phosphors are key materials in fluorescent lighting, displays, x-ray scintillation, etc. The rapid development of modern photonic technologies, e.g., mercury-free lamps, flat panel displays, CT-detector array, etc., demands timely discovery of advanced phosphors. To this end, a combinatorial approach has been developed and applied to accelerated experimental search of advanced phosphors and scintillators. Phosphor libraries can be made in both thin film and powder form, using masking strategies and liquid dispensing systems, respectively. High-density libraries with 100 to 1000 discrete phosphor compositions on a 1"-square substrate can be made routinely. Both compositions and synthesis temperatures can be screened in a high-throughput mode. In this article, details on the existing methods of combinatorial synthesis and screening of phosphors will be reported with examples. These methods are generic tools for application of combinatorial chemistry in the discovery of other solid state materials. A few highly efficient phosphors discovered with combinatorial methods have been reproduced in bulk form and their luminescent properties measured.  相似文献   

13.
14.
15.
S H Song  S A Asher 《Biochemistry》1991,30(5):1199-1205
We examine the utility of SO4(2-), ClO4-, cacodylic acid, and SeO4(2-) as internal intensity standards for Raman spectral measurements of protein structure. We find that 0.1 M SO4(2-) and ClO4- perturb the protein tertiary structure of aquomethemoglobin (met-Hb) and its fluoride (met-HbF) and azide (met-HbN3) complexes. Changes occur for the tryptophan near-UV absorption bands, the iron spin state is altered, and the fluoride ligand affinity decreases. Concentrations of ClO4- and SO4(2-) as low as 0.1 M suppress the met-HbF quaternary R----T transition induced by the allosteric effector inositol hexaphosphate (IHP). In contrast, similar concentrations of cacodylic acid and SeO4(2-) show little effect on the hemoglobin tertiary or quaternary protein structures or upon the R----T transition induced by IHP. We measure the Raman cross sections of cacodylic acid and SeO4(2-) between 218 and 514.5 nm and find that for UV excitation they are ca. 5-fold larger than ClO4- or SO4(2-). Thus, cacodylic acid and selenate can be used at lower concentrations. Cacodylic acid and SeO4(2-) are superior Raman internal intensity standards for protein structural studies.  相似文献   

16.
A fundamental advance in the development and application of cell- and tissue-based biosensors would be the ability to achieve air-dry stabilization of mammalian (especially human) cells with subsequent recovery following rehydration. The would allow for the preparation of sensors with extended shelf lives, only requiring the addition of water for activation. By understanding and subsequently employing the tactics used by desiccation-tolerant extremophiles, it may be possible to design stabilized mammalian cell-based biosensors. The approaches required to realize this goal are discussed and illustrated with several examples.  相似文献   

17.
An image-tracking procedure for atomic force microscopy is proposed and tested, which allows repeated imaging of the same area without suffering from lateral drift. The drift correction procedure is based on on-line cross-correlation of succeeding images. Using the image-tracking procedure allows zooming in on a small scan area over a long period and thus increases the frame rate inversely proportional to the scan area. Application of the procedure is demonstrated for diffusion of 5.4-kb DNA plasmids. With a scan area of 500 * 500 nm(2), a single plasmid can be imaged for more than 30 min at 4 s per frame, with a drift less than 10 nm. The high temporal resolution allows detailed analysis of the diffusion of DNA molecules. A diffusion coefficient of 30 nm(2)/s is found for most DNA molecules, though many molecules are temporally pinned to the mica surface, restricting diffusion.  相似文献   

18.
V N Latysh  V I Knysh 《Antibiotiki》1978,23(10):926-931
The method of fluorescent microscopy was used for studying the diagnostic value of the reaction of the leucocyte specific alteration (LSA) in patients with different syndromes of hypersensitivity, allergy in the anamnesis and without hypersensitivity to penicillin and streptomycin. It was found that only markedly positive results of the LSA reaction (independent of the sensibilization type) were of diagnostic value, the results of the reaction being stated in half of the patient with hypersensitivity in the anamnesis and in 3/5 of the patients with allergy. Simultaneous use of other tube immunological or skin tests was recommended for the other patients with lower levels of the positive results of the LSA reaction with a purpose of etiological diagnostics or revealing latent sensibilization before treatment with the antibiotics. The LSA reaction is recommended for practical use in complex with other methods of allergological examination.  相似文献   

19.
1,1-Di(4-hydroxyphenyl)-2-cyrhetrenylbut-1-ene 1 is an organometallic conjugate where a [(Cp)Re(CO)3] unit is linked to a hydroxytamoxifen-like structure. Its subcellular nuclear distribution was previously observed in a single cell using the near-field technique AFMIR. We show here that synchrotron radiation FTIR spectromicroscopy (SR-FTIR-SM) enabled the mapping of 1 based on its IR-signature (characteristic bands in the 1850–2200 cm− 1 range) and pointed out the colocalization of 1 with an area of high amide density. Fluorescence microscopy using DAPI staining performed on the same cells confirmed that this area corresponds to the cell nucleus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号