首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GnRH receptor values are 30-50% of normal in pituitaries of hpg male mice, and testicular LH receptors only 8% of normal (160.4 +/- 17.6 and 2013 +/- 208.1 fmol/testis respectively). In male hpg mice bearing fetal preoptic area (POA) hypothalamic implants for 10 days there was no change in pituitary GnRH receptors, pituitary gonadotrophin content, or seminal vesicle weight. However, testicular weights and LH receptors were doubled in 4/10 mice and 2 had increased serum FSH levels. Between 26 and 40 days after implantation pituitary GnRH receptors and pituitary LH increased to normal male levels, although at 40 days serum and pituitary FSH concentrations had reached only 50% of normal values. Testicular and seminal vesicle weights increased more than 10-fold by 40 days after implantation and LH receptors to 70% of normal. In hpg female mice bearing hypothalamic implants for 30-256 days pituitary gonadotrophin concentrations were normal, even though GnRH receptors reached only 60% of normal values (6.18 +/- 0.4 and 9.8 +/- 0.4 fmol/pituitary respectively). Serum FSH was substantially increased from values of less than 30 ng/ml in hpg mice to within the normal female range in hypothalamic implant recipients. Ovarian and uterine weights increased after hypothalamic grafting from only 4-5% to over 74% of normal values. LH receptors increased from 6.5 +/- 1.3 fmol/ovary for hpg mice to 566.9 +/- 39.2 fmol/ovary for implant recipients. Vaginal opening occurred about 23 days after implantation and these animals displayed prolonged periods of oestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Golden hamster testes regress after short day exposure. The present study asks: 1) are Leydig cell numbers depleted during short days, and 2) if so, how are they replenished during recrudescence. Control hamsters were shown 14 h of light and 10 h of dark (LD 14:10) for 10 weeks (n = 12). Testicular regression was induced by LD 6:18 for 10 weeks (n = 4), and recrudescence by switching regressed hamsters to LD 14:10 for 3 and 5 weeks (n = 8 for each group). All hamsters were injected with [3H]thymidine [3 microCi/gm body wt., intraperitoneally (i.p.)] 1 h or 2 weeks before sacrifice. Leydig cell number per testis was determined by stereological analysis of sections of perfusion-fixed testes, and labeling indices were determined by autoradiography. Leydig cell numbers were reduced significantly from 18.2 X 10(6) in control to 9.0 X 10(6) in regressed testes (p less than 0.05); then increased to 14.0 X 10(6) and 17.9 X 10(6) in 3- and 5-week recrudesced hamsters. The labeling index was nondetectable (n.d.) for regressed hamsters. In control and recrudescing hamsters the labeling index was measured at two times (t1 = 1 h vs. t2 = 2 weeks post-injection): in controls, t1 = 0.22 +/- 0.15% (mean +/- SEM) vs. t2 = 0.28 +/- 0.22%; in 1 week recrudesced, n.d. vs. 1.92 +/- 0.77% (p less than 0.05); at 3 wk, n.d. vs. 4.58 +/- 1.74% (p less than 0.05); at 5 weeks, 1.92 +/- 0.61% vs. 2.25 +/- 0.59%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Moura AA  Erickson BH 《Theriogenology》2001,55(7):1469-1488
This article discusses the interactions between testis criteria and hormone profiles in Angus bulls with spermatogenic arrest. From 2 to 12 months (mo), testis diameter and hormone concentrations (basal and GnRH-stimulated) were evaluated in 27 bulls. At 12 mo, testes were excised. The z statistical test was used to determine whether parameters in three infertile bulls were different (P < 0.05) from those in 24 bulls with normal spermatouenesis. Bull 1 had Sertoli cell-only syndrome and Bull 2 had 90% of the tubules without germ cells and only A1 spermatogonia in the remaining. In Bull 3, germ cells did not advance beyond the primary spermatocyte stage. At 12 mo, testes of Bull 1 (99 g), Bull 2 (105 g) and Bull 3 (32 g) weighed less than those of normal bulls (251.5 +/- 56 g). Sertoli cell numbers/testis in Bull 1 (3.8 x 10(9)) and Bull 2 (4.3 x 10(9)) were not different from those in normal bulls (4.9 +/- 0.3 x 10(9)), but were reduced in Bull 3 (1.6 x 10(9)). The number of Leydig cells per gram of testis parenchyma was higher in Bull 1 (5.4 x 10(7)), Bull 2 (7.3 x 10(7)) and Bull 3 (19 x 10(7)) than in normal bulls (3.6 +/- 0.2 x 10(7)). In Bulls 1 and 2, basal and GnRH-stimulated LH, FSH, testosterone (T), androstenedione (delta4A) and estradiol 17-beta (E2) were within normal ranges at most ages. However, basal FSH and LH were greater in Bull 3 than in normal bulls, probably the causes for higher Leydig cell density. Also in the same animal, GnRH induced lower responses in LH and FSH, consequence of low basal T and E2 at some ages. Basal and GnRH-stimulated delta4A in Bull 3 were greater than in normal bulls after 6 mo, indicating impairment of Leydig cell differentiation. Deficiency in hormone secretion did not appear to be the cause of infertility, which points toward impaired gonadal responses or secretion of intratesticular factors, or genetic defects. Moreover, infertile animals may not always show pronounced changes in hormone secretion, but evaluation of testis growth around puberty can help identify those animals that do not have proper gonadal development.  相似文献   

4.
Evidence suggests that exogenous GnRH and agonist analogues have short-term stimulatory effects on rat Leydig cell function - when administered intratesticularly. Since rat Leydig cells possess GnRH receptors and their endogenous ligand has not yet been identified the physiological importance of the observations for testis function is unknown. To address this issue we have determined the consequences of blockade of testis GnRH receptors on Leydig cell function under both normogonadotrophic and hypogonadotrophic stimulation of the testis in vivo. A GnRH antagonist (ANT) was used to achieve receptor blockade but during continuous systemic infusion ANT occupied pituitary GnRH receptors and markedly reduced serum LH, FSH, testosterone, and intratesticular testosterone in adult and 30 d old immature male rats. These results were similar to those obtained by administration of a GnRH antiserum which did not bind to testis GnRH receptors. Thus, blockade of testis GnRH receptors during hypogonadotrophism did not produce additional inhibition of steroidogenesis by Leydig cells. However, direct continuous infusion of ANT into one testis produced greater than 90% occupancy of GnRH receptors while reducing GnRH receptors by only 50% in the contralateral testis. Unilateral intratesticular infusion did not reduce serum LH, FSH, Prolactin or testosterone levels despite 75% occupancy of pituitary GnRH receptors. Thus, both ANT infused and saline infused testes were exposed to the same gonadotrophic stimulants but in the former GnRH-R were essentially non-existent. Compared to the control testis, the ANT infused testis showed a 20-30% reduction in LH, FSH, lactogen receptors and 30-40% fall in testosterone content. Identical results were obtained in adult and 30 d-old male rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Our purpose was to evaluate cellular androgen receptor (AR) distribution and intensity of immunostaining in the human azoospermic testis. Thirty six biopsy specimens from azoospermic men were immunostained, using a monoclonal antibody of human AR. The localization and the intensity of AR immunostaining was evaluated in Sertoli Cell Only (SCO) testis (G1, n = 21), in spermatogenesis arrest testis (G2, n = 11) and in histologically normal testis (G3, n = 4). We found an AR immunostaining in Sertoli, peritubular myoid and Leydig cells, but not in germ cells. The intensity of the immunostaining varied substantially between biopsy specimens of different patients. Sertoli and Leydig cells AR immunostaining (score and intensity) in SCO group was higher than in the other groups. For Sertoli cells, the score means of AR immunoreactivity were 20 +/- 2.36, 10.18 +/- 1.0 and 1 +/- 1, for G1, G2 and G3 groups, respectively. For Leydig cells, the score means were 10.24 +/- 1.37, 6 +/- 0.71 and 0, for G1, G2 and G3 groups, respectively. We found significant differences between G1 and G2 (p = 0.0008), between G1 and G3 (p = 1.54 10-7) and G2 and G3 (p = 0.00032). These results suggest that in the testis AR is located exclusively in somatic cells and its expression is higher in SCO syndrome than in normal and in arrest spermatogenesis testes.  相似文献   

6.
Hormonal deprivation achieved by hypophysectomy or gonadotropin-releasing hormone (GnRH)-antagonist treatment of immature rats resulted in markedly lower testicular gamma-glutamyl transpeptidase (GGT) activity than in the testes of age-matched controls. When begun 15 days after hypophysectomy, follicle-stimulating hormone (FSH) treatment significantly increased testicular GGT above that in testes from hypophysectomized controls in a time- and dose-dependent manner. In contrast, testosterone propionate had only a small effect. Testicular GGT was higher in adult hypophysectomized rats treated with FSH from the time of surgery than in untreated hypophysectomized rats; testosterone propionate treatment had no effect. GGT activity in Sertoli cells isolated from GnRH antagonist-treated or hypophysectomized immature rats was also lower than in cells from control rats. FSH treatment from the day of hypophysectomy resulted in Sertoli cell GGT values equivalent to those from intact controls. These data indicate that FSH regulates GGT activity in rat testis and Sertoli cells.  相似文献   

7.
Experiments were conducted to partially characterize and to examine the regulation of unoccupied testicular follicle-stimulating hormone (FSH) binding sites in adult golden hamsters. Testicular FSH binding sites were measured in the 1800 X gav fraction of whole testicular homogenates using iodinated bovine FSH. Binding of FSH was highly specific for FSH, located primarily in the testes, was time- and temperature-dependent, initially reversible, saturable, and consistent with a model consisting of a single class of high-affinity binding sites (range of equilibrium association constants (Ka) 2-12 X 10(10) M-1). Exposure of hamsters to a short photoperiod consisting of 5L:19D was associated with an increase in concentration (fmol/mg protein), but a reduction in total content (fmol/testes) of testicular FSH binding sites. There was no appreciable 5L:19D-associated alteration in receptor affinity (average Ka = 7.83 X 10(10) M-1). Injections of ovine prolactin (oPRL), ovine luteinizing hormone (oLH), or ovine FSH (oFSH) for 3 days into hamsters housed in 5L:19D for 12 wk had no effect on photoperiod-induced changes in testicular FSH binding sites. On Days 5 and 6 post hypophysectomy, a dramatic increase in FSH binding site concentration occurred, with but marginal effects on binding site affinity. Injections of 5 micrograms oFSH on Days 2, 3, and 4 after hypophysectomy prevented the increase in binding site concentrations measured on Day 5. Injection of a combination of 5 micrograms oFSH, 50 micrograms oPRL, and 25 micrograms oLH also reduced testicular FSH binding site concentrations in hypophysectomized hamsters, but oPRL or oLH by themselves were ineffective. The data indicate a homologous down-regulation of testicular FSH binding sites, but do not exclude the involvement of other hormones.  相似文献   

8.
1,25(OH)2D3 receptors were studied in whole testes, Sertoli cells, seminiferous tubules, Leydig cells and spermatogonia of adult NMRI mice and SD rats. Specific reversible high affinity binding (KD 1.4 x 10(-10)M; Nmax 72 fmol/mg protein) by a 3.5 S macromolecule was demonstrated in whole testes, Sertoli cells and seminiferous tubules. With identical techniques, no receptors were found in Leydig cells despite previous reports of 1,25(OH)2D3 actions on Leydig cell function.  相似文献   

9.
R P Millar  A Garritsen  E Hazum 《Peptides》1982,3(5):789-792
Gonadotropin-releasing hormone (GnRH) binding sites in intact Leydig cells and in membrane preparations were investigated using 125I-labeled GnRH agonist and antagonist. Binding was saturable and involved a single class of high affinity sites. Intact Leydig cells and a membrane preparation had a higher affinity for GnRH agonist (Kd 3.0 +/- 1.7 X 10(-10) M) than for GnRH antagonist (Kd 10.0 +/- 1.8 X 10(-10) M). With anterior pituitary membranes the Kd was 2.8 +/- 0.7 X 10(-10) M for the agonist and 2.4 +/- 1.4 X 10(-10) M for the antagonist. The Kd for GnRH was similar for Leydig cells and the anterior pituitary. Chymotrypsin and trypsin digestion decreased receptor binding, but neuraminidase increased Leydig cell binding in contrast to the decrease in binding observed with pituitary receptors. The results suggest that the Leydig cell GnRH binding sites may differ from the pituitary receptor which may be related to structural differences in GnRH-like peptides recently described in extracts of rat testis.  相似文献   

10.
In an earlier study, estrogen production was much lower in Leydig cells from the abdominal than from the scrotal testis in naturally occurring unilateral cryptorchidism in the boar. A more direct assessment of aromatase activity was made in thirty-two mature male pigs to examine this observation further, using nonradioactive androstenedione (delta 4A 1.0 x 10(-6) M - 1.5 x 10(-5) M) and [1 beta, 2 beta-3H] delta 4A as substrates. Purified Leydig cells were prepared from normal boars and from unilaterally and bilaterally cryptorchid animals. Combined estrone sulfate (E1S) and estrone (E1) formation from delta 4A were measured by radioimmunoassay. Little or no estrogen secretion was seen with cells from the abdominal testis in unilaterally cryptorchid boars (n = 7), and E1S formation from delta 4A was 6- to 14-fold higher for scrotal cells (n = 6). Aromatase activity as reflected in percent conversion of substrate to [3H]-labeled water was clearly lower in cells from the abdominal testis (1.10 +/- 0.08 and 11.22 +/- 0.7%, respectively, p less than 0.01, n = 6). No marked reduction was noted for unilaterally cryptorchid boars with an inguinally located testis (10.18 +/- 0.27 and 13.09 +/- 0.58% for inguinal and scrotal testes, respectively, n = 3). Concentrations of E1S in testicular arterial and venous blood (n = 9) gave additional evidence of lower estrogen production by the undescended testis of the cryptorchid boar. It was concluded that lower aromatase activity is present in Leydig cells of the abdominal testis.  相似文献   

11.
We investigated the effect of retinoids on the development of Sertoli, germ, and Leydig cells using 3-day culture of testes from fetuses 14.5 and 18.5 days post-conception (dpc) and from neonates 3 days postpartum (dpp). Addition of 10(-6) M and 3.10(-8) M retinoic acid (RA) caused a dose-dependent disruption of the seminiferous cords in 14.5-day-old fetal testes, without any change in the 5-bromo-2'-deoxyuridine (BrdU) labeling index of the Sertoli cells. RA caused no disorganization of older testes, but it did cause hyperplasia of the Sertoli cells in 3-dpp testes. Fragmentation of the Sertoli cell DNA was not detected in control or RA-treated testes at any age studied. The cAMP produced in response to FSH was significantly decreased in RA-treated testes for all studied ages. Both 10(-6) M and 3.10(-8) M RA dramatically reduced the number of gonocytes per 14.5-dpc testis. This resulted from a high increase in apoptosis, which greatly exceeded the slight increase of mitosis. RA caused no change in the number of gonocytes in testes explanted on 18.5 dpc (the quiescent period), whereas it increased this number in testes explanted on 3 dpp (i.e., when gonocyte mitosis and apoptosis resume). Lastly, RA and retinol (RE) reduced both basal and acute LH-stimulated testosterone secretion by 14.5-dpc testis explants, without change in the number of 3beta-hydroxysteroid dehydrogenase-positive cells per testis. Retinoids had no effect on basal or LH-stimulated testosterone production by older testes. In conclusion, RE and RA are potential regulators of the development of the testis and act mainly negatively during fetal life and positively during the neonatal period on the parameters we have studied.  相似文献   

12.
These studies examined whether the decrease in pituitary responsiveness to gonadotropin-releasing hormone (GnRH) observed during lactation in the rat results from a change in pituitary GnRH receptors. GnRH binding capacity was determined by saturation analysis using D-Ala6 as both ligand and tracer. During the estrous cycle, the number of GnRH binding sites increased from 199 +/- 38 fmol/mg protein on estrus to 527 +/- 31 fmol/mg protein on the morning of proestrus, whereas there was no change in receptor affinity (Ka, 6-10 X 10(9) M-1), During lactation, females nursing 8 pups on Days 5 or 10 postpartum had 50% fewer GnRH receptors (109-120 fmol/mg protein) than observed during estrus or diestrus 1 (199-242 fmol/mg protein) although receptor affinity was similar among all the groups. No deficits in pituitary GnRH receptors were observed in females nursing 2 pups on Day 10 postpartum. Removal of the 8-pup suckling stimulus for 24 or 48 h resulted in a dramatic increase in GnRH receptor capacity by 24 h from 120 +/- 16 to 355 +/- 39 fmol/mg protein. The rise in GnRH receptors after pup removal was accompanied by an increase in serum luteinizing hormone (LH) and estradiol concentrations. To assess the role of ovarian steroids in determining GnRH receptor capacity during lactation, females were ovariectomized (OVX) on Day 2 postpartum. Suckling of a large litter (8 pups) completely blocked the postcastration rise in serum LH and in pituitary GnRH receptors on Day 10 postpartum (OVX+ 8, 77 +/- 12 fmol/mg protein; OVX+ 0, 442 +/- 38 fmol/mg protein).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Mouse Leydig cells were obtained by dispersion of testes of adult animals (aged 6-15 months) with a neutral protease from B. polymxa (dispase; EC 3.4.24.4). The crude Leydig cell suspension was purified by centrifugation on a discontinuous Percoll gradient using a special centrifugation procedure similar to elutriation. The crude cell suspension obtained from 50 testes could be processed in one run. The combination of these two methods yielded 320000 +/- 53000 Leydig cells/testis (n = 554 testes). The purity of the Leydig cell fraction was greater than or equal to 95% (nucleated cells) based on morphological and histochemical (staining for naphthyl esterase) identification. The purified Leydig cells showed an excellent ultrastructural appearance. More than 98% excluded trypan blue. In the presence of NADPH, testosterone biosynthesis was increased only 1.15 +/- 0.1-fold yielding a "quality factor" of 34.8. Maximal hCG doses induced 10(6) purified Leydig cells to produce 5 nmol testosterone/hr. (40-fold stimulation in comparison to basal values). The Leydig cells showed 43100 +/- 2500 LH/hCG receptors and an association constant of Ka = 1.95 x 10(9) M-1. Due to the reproducibility of the method, to the yield as well as to the morphological and functional state of the purified Leydig cells at least 25% of laboratory animals could be saved.  相似文献   

14.
Pituitary and testicular endocrine responses to exogenous gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH), respectively, were assessed for adult rams in an investigation of the regulation of seasonal changes in the patterns of episodic LH and testosterone secretion. Concurrent variations in testis size and in circulating levels of follicle stimulating hormone (FSH) and prolactin (PRL) were also examined. On 10 occasions throughout the year, serum hormone levels were assessed over 6- to 8-h periods during which time rams were left untreated (day 1) or were injected (iv) with single doses of either 10 micrograms synthetic GnRH (day 2) or 30 micrograms NIH-LH-S18 (day 3); blood samples were collected from the jugular vein at 10- to 20-min intervals. Testicular redevelopment during the summer, as indicated by increasing testis diameter measurements, was associated with increases in mean FSH level and was preceded by a springtime rise in mean PRL level; "spontaneously" occurring LH pulses and those produced in response to GnRH treatment were relatively large during this period. Increases in the magnitude of testosterone elevations in response to both endogenously and exogenously produced LH pulses occurred in August. Mean testosterone levels were elevated fourfold in the fall as a consequence of relatively frequent and small LH pulses stimulating a more responsive testis to produce more frequent and larger testosterone elevations; endogenous LH pulses, however, did not appear to stimulate the testes maximally at this time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The objective was to ascertain fibroblast growth factor-2 (FGF2), epidermal growth factor (EGF), and transforming growth factor-alpha (TGFalpha) mRNA expression and testis morphology during accelerated testicular growth after hemicastration in the neonatal boar. On Day 10 after birth (Day 0), boars were assigned to control (n = 28), no treatment; hemicastrated (n = 28), left testis removed. The right testis in both groups (n = 7) was removed on Days 5, 10, 15, and 20. Expression of mRNA for FGF2, EGF, and TGFalpha was determined by qRT-PCR using TaqMan. Testicular morphology was determined on Day 15. On Day 10, hemicastrated boars had a greater (P = 0.01) testis weight (6.2 +/- 0.8 g; mean +/- SEM) than controls (4.3 +/- 0.4 g) and on Day 15 testis weight in hemicastrated boars (8.8 +/- 0.8 g) was twice (P < 0.01) that of control boars (4.2 +/- 0.3 g). Seminiferous tubule volume was approximately doubled in hemicastrated boars (P < 0.01) and was associated with an increase (P < 0.01) in Sertoli cell number. Interstitial compartment volume was greater (P < 0.01) in hemicastrated boars. Leydig cell numbers were similar (P = 0.14) but volume was greater (P < 0.01) for hemicastrates. There were no differences (P > 0.05) between control and hemicastrated boars in TGFalpha or FGF2 expression on Day 5 or Day 10, and EGF was not detected. It was concluded that upregulation of TGFalpha or FGF2 expression is not a pre-requisite for enhanced testicular growth and increased Sertoli cell proliferation that occurs subsequent to hemicastration in the neonatal boar.  相似文献   

16.
Testicular growth is depressed in the genetically sterile male rat (hd/hd) relative to its LE phenotype littermates (by 50% and 73% at 27 and 90 days of age, respectively). Within the hd/hd testis, both the tubular and seminiferous tubule tissues are affected by the mutation. In addition, there is significantly less germ cell production from the primary spermatocyte stage of spermatogenesis onwards and the total number of Sertoli cells observed is less. In the intertubular tissue, the total volume and the total number of Leydig cells per testis is significantly less, but the mean volume of an average Leydig cell is not modified. The serum gonadotropin levels are higher in the hd/hd rat, whereas from 40 days of age onwards the level of testosterone is lower. The FSH and LH binding affinity constants are unchanged by the mutation; however, the total number of FSH binding sites per 10(6) Sertoli cells is lower while that of LH per 10(6) Leydig cells is greater. Indeed, it is likely that the lesser concentration of serum testosterone in the hd/hd rat is a result of a smaller number of Leydig cells since their individual function is not modified. The testicular androgen binding protein (ABP) content and the ABP output towards the epididymis are lower as a consequence of both a lesser number and an altered function of the Sertoli cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The jaguar, like most wild felids, is an endangered species. Since there are few data regarding reproductive biology for this species, our main goal was to investigate basic aspects of the testis and spermatogenesis. Four adult male jaguars were utilized; to determine the duration of spermatogenesis, two animals received an intratesticular injection of H(3)-thymidine. Mean (+/-SEM) testis weight and the gonadosomatic index were 17.7+/-2.2g and 0.05+/-0.01%, respectively, whereas the seminiferous tubules and the Leydig cells volume density were 74.7+/-3.8 and 16.7+/-1.6%. Eight stages of spermatogenesis were characterized, according to the tubular morphology system and acrosome development. Each spermatogenic cycle and the entire spermatogenic process (based on 4.5 cycles) lasted approximately 12.8+/-0.01 and 57.7+/-0.07 d. The number of Sertoli and Leydig cells per gram of testis was 29+/-4x10(6) and 107+/-12x10(6). Based on the number of round spermatids per pachytene spermatocyte (2.8+/-0.3:1; meiotic index); significant cell loss (30%) occurred during the two meiotic divisions. There were approximately eight spermatids for each Sertoli cell (Sertoli cell efficiency), whereas the daily sperm production per gram of testis was 16.9+/-1.2x10(6). We expect that in the near future, the knowledge obtained in the present investigation will facilitate, utilizing germ cell transplantation, preservation of the germinal epithelium and the ability to generate sperm from jaguars in testes of domestic cats.  相似文献   

18.
In various species, androgens and estrogens regulate the function of testicular Leydig, Sertoli, peritubular myoid, and germ cells by binding to their respective receptors and eliciting a cellular response. Androgen receptor (AR) is expressed in Sertoli cells, peritubular myoid cells, Leydig cells and perivascular smooth muscle cells in the testis depending on the species, but its presence in germ cells remains controversial. Two different estrogen receptors have been identified, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), and their localization and function in testicular cells varies depending on the species, developmental stage of the cell and type of receptor. The localization of AR in an immature and mature stallion has been reported but estrogen receptors have only been reported for the mature stallion. In the present study, the localizations of AR and ERα/ERβ were investigated in pre-pubertal, peri-pubertal and post-pubertal stallions. Testes were collected by routine castration from 21 horses, of light horse breeds (3 months-27 years). Animals were divided into the following age groups: pre-pubertal (3-11 months; n=7), peri-pubertal (12-23 months; n=7) and post-pubertal (2-27 years; n=7). Testicular tissue samples were fixed and embedded, and the presence of AR, ERα and ERβ was investigated by immunohistochemistry (IHC) using procedures previously validated for the horse. Primary antibodies used were rabbit anti-human AR, mouse anti-human ERβ and rabbit anti-mouse ERα. Sections of each region were incubated with normal rabbit serum (NRS; AR and ERα) or mouse IgG (ERβ) instead of primary antibody to generate negative controls. Androgen receptors were localized in Leydig, Sertoli and peritubular myoid cells of all ages. Estrogen receptor alpha was localized in Leydig and germ cells of all ages but only in pre- and peri-pubertal Sertoli cells and post-pubertal peritubular myoid cells. Estrogen receptor beta was localized in Leydig and Sertoli cells of all ages but in only pre-pubertal germ cells and absent in peritubular myoid cells of all ages. Taken together, the data suggest that estrogen regulates steroidogenesis by acting through ERα and ERβ in the Leydig cells and promotes gametogenesis by acting through ERβ in the Sertoli cells and ERα in the germ cells. In contrast androgen receptors are not found in germ cells throughout development and thus are likely to support spermatogenesis by way of a paracrine/autocrine pathway via its receptors in Leydig, Sertoli and peritubular myoid cells.  相似文献   

19.
We obtained the testes, ductuli efferentes, and epididymides from adult rhesus and cynomolgus macaques and examined these tissues for estrogen receptors (ER) with immunocytochemistry (ICC) and a sucrose gradient assay. Both techniques employed monoclonal antibodies prepared against ER, and both showed that high concentrations of ER were present OFFy in the ductuli efferentes. Moreover, all specific staining was confined to the nuclei of the nonciliated, absorptive epithelial cells. The quantity of salt-extractable ER in the ductuli efferentes (834 +/- 161 [SEM] fmol/mg DNA [n = 8]) did not differ significantly from the amounts measured with the identical assay in oviducts and endometrium of estrogenized female macaques. Testes and epididymides of macaques had no specific staining by ICC and barely detectable amounts by biochemical analysis (7 +/- 4 [n = 3], 8 +/- 2 [n = 5], 33 +/- 16 [n = 3], and 6 +/- 3 [n = 8] fmol/mg DNA for testis and caput, corpus, and cauda epididymis, respectively). The functional significance of the high levels of ER in the ductuli efferentes of macaques remains to be determined.  相似文献   

20.
Summary Leydig cells in testes of adult rats were selectively destroyed by a single intraperitoneal injection of ethane dimethane sulphonate. Four days later rats were made unilaterally cryptorchid and 1, 2 and 4 weeks later the histology of the testes was examined by light microscopy and morphometry. After induction of unilateral cryptorchidism, the volume of abdominal compared to scrotal testes was reduced by 45–60% due to rapid impairment of spermatogenesis in abdominal testes. Leydig cells were not present in either scrotal or abdominal testes in the 1-week unilateral crytorchid group. A new generation of foetal-type Leydig cells was observed in scrotal testes of the 2-week unilateral crytorchid group although their total volume per testis estimated by morphometry, was small, being approximately 1 l. In contrast, the abdominal testis exhibited a remarkable proliferation of foetal-type Leydig cells (total volume per testis, 16 l) which predominantly surrounded the peritubular tissues of the seminiferous tubules. A similar morphology and pattern of Leydig cell development was observed in scrotal and abdominal testes of the 4-week unilateral cryptorchid group where total Leydig cell volume was 7 l vs 21 l, respectively. The results show that regeneration of a new population of Leydig cells occurs more rapidly in the abdominal testis than in the scrotal testis of the same animal. These observations suggest the possibility that augmentation of Leydig cell growth is mediated by local intratesticular stimulatory factors within the abdominal testis. Development of new Leydig cells from the peritubular tissue provides circumstantial evidence that the seminiferous tubules and in particular the Sertoli cells, are a likely source of agents that stimulate the growth of Leydig cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号