首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 71 lactating and nonlactating buffalo-cows of the Murrah breed and F(1)-F(3) crossbreds of Murrah x Bulgarian buffalo were used for a year as donors of embryos after a preliminary treatment for superovulation induction with pregnant mare serum gonadotrophin (PMSG) or follicle stimulating hormone (FSH) in combination with prostaglandin F-2 alpha analog (PGF-2 alpha) according to general application procedures in cows. From 36 to 72 h following prostaglandin injection, the buffalo-cows were checked with the help of a teaser bull for detection of estrus. The animals in estrus were inseminated twice either naturally or artificially with frozen semen. Nonsurgical flushing of the uterine horns was done in 45 of the buffalo-cows between 108 and 162 h after the onset of estrus. After slaughter the uterine horns and oviducts of the other 26 animals were flushed separately between 74 and 108 h after the beginning of estrus. Seven late morulae and eight hatched blastocysts were recovered between 114 and 116 h from the onset of estrus as a result of nonsurgical flushing. All of the 40 embryos recovered after 117 h were in the hatched blastocyst stage. As a result of flushing the oviducts and the uterine horns of slaughtered donors between 74 and 100 h, eggs were obtained only from the oviducts, while flushing conducted between 102 and 108 yielded eggs from both the oviducts and the uterine horns.  相似文献   

2.
Early embryonic development and in vitro culture of in vivo produced embryos in the farmed European polecat (Mustela putorius) was investigated as a part of an ex situ conservation program of the endangered European mink (Mustela lutreola), using the European polecat as a model species. The oestrus cycles of 34 yearling polecat females were monitored by visual examination of the vulval swelling and, to induce ovulation, the females were mated once daily on two consecutive days. Sixteen yearling males were used for mating. The females were humanely killed 3-14 days after the first mating and the uteri and oviducts were collected for embryo recovery. Uterine and oviductal flushings yielded a total number of 295 embryos, representing developmental stages from the 1-cell stage to large expanded and hatched blastocysts. On Day 3 after the first mating, only 1-16-cell stage embryos were recovered. Between Days 4 and 6 after the first mating, 1-16-cell stage embryos and morulae were found. The first blastocysts were recovered on Day 7 after the first mating. The first implanted blastocysts were detected on Day 11 after the first mating. A total number of 85 embryos were in vitro cultured after recovery. Blastocyst production rates for in vitro cultured 1-16-cell stage embryos and for morulae/compact morulae were 68 and 84%, respectively. For all cultured embryos, the hatching rate was 15%. The in vitro culture requirements for the preimplantation embryos of the farmed European polecat remain to be determined before further utilization of the technique.  相似文献   

3.
This study was designed to ascertain the rate of transport and development of preimplantation embryo in the superovulated buffalo in order to determine the optimum time for their nonsurgical collection. Eighteen Murrah-type buffalo were superovulated with 600 mg NIH-FSH-P1. Luteolysis was induced by administration of PGF2 alpha at 72 (PG + 72) and 84 h (PG + 84) after initiating gonadotrophin treatment and fixed-time AI was done beginning at 36 h post PG + 72 administration and at 12-h intervals thereafter, upto 72 h. Six control buffalo received treatment similar to experimental group except that in place of FSH they received normal saline. For embryo collection, experimental animals were humanely killed at 6-h intervals corresponding to 156 (n = 2), 162 (n = 2), 168 (n = 2), 174 (n = 3), 180 (n = 3), 186 (n = 3) and 192 h(n = 3) after PG + 72 treatment, whereas the control animals were humanely killed at 156 (n = 2), 174 (n = 2) and 192 h (n = 2). Superovulated buffalo had higher number of ovulations than untreated controls (8.78 +/- 5.00 vs 0.67 +/- 0.51) and total ova/embryos recovered was 4.11 +/- 2.46 and 0.67 +/- 0.51, respectively. The high estradiol-17 beta (E2) levels with its prolonged rise may, by leading to reverse peristalsis in the oviduct with a consequent loss of some embryos in the peritoneal cavity, be one of the reasons for our inability to recover nearly 84/158 ova/embryos in the superovulated buffalo. In superovulated animals, nearly all the ova/embryos reached the uterus between 168 and 174 h post PG + 72 treatment or about 134 h (circa 5.5 d) after the onset of superovulatory estrus, suggesting that the ideal time for non-surgical embryo collection in the buffalo is between Days 7 to 8 after PG + 72 treatment or Days 5.5 to 6.0 of the superovulated cycle (estrus = Day 0). Embryo development of superovulated buffalo showed considerable variation as various stages of embryos (8 cell to expanded blastocyst) were recovered from the same donor buffalo, and the rate of development appeared to be 24 to 36 h faster than in cattle.  相似文献   

4.
Early embryonic development in Thai swamp buffalo (Bubalus bubalis )   总被引:2,自引:0,他引:2  
A total of 33 nonsurgical embryo collections was carried out to investigate early embryo development in Thai swamp buffalo. Collections were performed on Days 5.5, 6.0, 6.5, 7.0 and 7.5. The different stages of embryo development on these days were the 16-cell stage, compact morula, blastocyst, hatched blastocyst and hatched expanding blastocyst, respectively. In addition, some degenerating embryos and unfertilized ova were also recovered. A higher recovery rate was obtained with single embryo collection after natural estrus than after induced estrus or superovulation, 78% (7 9 ) vs 46% (6 13 ) vs 54.5% (6 11 ), respectively. A higher percentage of normal embryos was also obtained with single embryo collection after either natural or induced estrus than after superovulation, 71% (5 7 ), 83% (5 6 ) and 38% (6 16 ), respectively.  相似文献   

5.
The objective of this study was to evaluate the utilization of gonadotropin releasing hormone (GnRH) as part of a superovulatory regimen for Zebu cattle. Forty Zebu cows were superovulated with 40 mg of follicle stimulating hormone-pituitary (FSH-P) divided in eight fractions of 5 mg injected at 12-h intervals. Luteolysis was induced with 15 mg of luprostiol injected at 48 h after the first injection of FSH-P. Half of the animals were injected with 200 ug of GnRH 3 h after the onset of standing estrus. The other 20 animals were not injected with GnRH. All the cows were inseminated three times at 12-h intervals, starting at the time of standing estrus. Embryos were recovered nonsurgically 7 d after the last insemination. Palpation per rectum performed immediately after collection of the embryos did not show differences in the number of corpora lutea between groups (P > 0.05). Likewise, there were no significant differences between treatments with respect to the total number of embryos plus ova, total number of embryos, or the number of transferable embryos recovered (P>0.05). The number of blastocysts, morulae, degenerated morulae and unfertilized ova was similar for the two groups. It is concluded that the incorporation of GnRH into a part of the superovulatory treatment for Zebu cattle does not improve the results of such treatment.  相似文献   

6.
Milk progesterone profiles were used to assess superovulatory responses in cyclic lactating buffalo (n = 9) in terms of the number of ovulations and the number of embryos recovered. All of the buffalo received a total of 30 ml of folltropin divided into morning and evening doses and spread over 5 days, beginning on Day 10 of the estrous cycle (day of expected estrus = Day 0). Milk samples for progesterone determination were collected on alternate days from all nine animals from Day 1 prior to the expected synchronized estrus to 5 days after flushing for embryo recovery. All animals were palpated per rectum 1 day prior to flushing in order to record the number of corpora lutea. Of an estimated 23 ovulations from the nine buffalo, only 12 embryos were recovered, of which one was an unfertilized oocyte. Milk progesterone profiles from individual buffalo suggested that a poor superovulatory response in terms of embryo recovery in some buffalo was caused by a failure to respond optimally to lutalyse treatment for the induction of estrus. It was hypothesized that ova trapping by the fimbriae of the fallopian tubes may not be efficent in this species especially in the superovulated ovaries.  相似文献   

7.
Immature female rats (60-65 g) were injected with 4 i.u. PMSG on Day -2 and allocated to 3 groups. On the evening of Day 0, rats in Groups I and II were allowed to mate. Embryos were collected on Day 4 (Group I, control morulae) or Day 5 (Group II, control blastocysts) and were transferred into the oviduct or uterine horn of Day-4 pregnant recipient rats. On the transfer side of the recipients, the bursa had been peeled from around the ovary to prevent endogenous oocytes from entering the oviduct. For Group III, unmated donors were killed 65-67 h after PMSG injection. Ovulated oocytes recovered from the oviducts were fertilized in vitro and transferred 16-18 h later. Embryos developing from in-vitro fertilized (IVF) oocytes were recovered on Day 5, separated into morulae (Group IIIm) and blastocysts (Group IIIb) and transferred into Day-4 pregnant recipients similar to control embryos. Some embryos from each group were used to determine the mean number of cells/embryo. Embryo recipients were killed on Day 20. After transfer, the development of IVF oocytes was retarded compared to control embryos. IVF morulae contained significantly fewer cells/embryo than did control morulae but were able to implant and grow to fetuses, in proportions similar to controls, if transferred into the oviduct of the recipients. These results suggest that the developmental potential of rat oocytes fertilized in vitro is limited due to asynchrony between the embryo and the uterine environment at the time of implantation, rather than possible defects incurred by the oocyte during the fertilization procedure.  相似文献   

8.
The objectives of this study were: (1) to evaluate the influence of porcine embryo developmental stage on in vitro embryo development after vitrification, (2) to study the efficiency of the one-step dilution procedure, compared with conventional warming, for vitrified embryos at different stages of development, and (3) to determine the influence of the embryo donor on the in vitro survival of vitrified embryos at morulae and blastocyst stages. Two to four cell embryos, morulae and blastocysts were collected by laparotomy from weaned crossbred sows (n=55). Vitrification and conventional warming were performed using the OPS procedure with Superfine Open Pulled Straws (SOPS). For one-step dilution, embryos were placed in 800 microl TCM199-HEPES containing 20% of new born calf serum and 0.13 M sucrose for 5 min. To evaluate development, two to four cell embryos, morulae and blastocysts were cultured in vitro for 120, 48 and 24h, respectively. Some fresh embryos from each developmental stage were not vitrified and cultured as controls. Embryos were morphologically evaluated for their developmental capacity during the in vitro culture by stereomicroscopy. The total cell number of embryos was assessed by Hoechst-33342 staining and fluorescence microscope observation. There was a significant effect of the stage of development on the in vitro survival, perihatching rate and the number of cells of embryos after vitrification and warming (Experiment 1; p<0.001). The survival and perihatching rates of two to four cell embryos were lower than those obtained for morulae and blastocysts (p<0.001). No differences (p>0.05) in survival rates were found between vitrified and fresh blastocysts. The warming procedure did not affect the development and total cell number of vitrified two to four cell embryos, morulae or blastocysts (Experiment 2). However, donor had a significant effect (p<0.001) on the in vitro development and the number of cells of morulae and blastocysts after vitrification and warming (Experiment 3). In conclusion, the embryo developmental stage and the embryo donor were important factors that affected the development of porcine embryos after OPS-vitrification and warming. OPS-vitrification and the one-step dilution are efficient procedures to be used with intact porcine morulae and blastocysts.  相似文献   

9.
Twenty-five surgical embryo recoveries were made from 17 postpuberal gilts 3 to 6 days after mating. A total of 242 eggs was recovered. Recovery rate was 87.5%, fertilization rate was 97.5%, and 98.7% of the fertilized eggs were morphologically intact. The embryos were cultured in vitro in Krebs-Ringer-Bicarbonate (KRB) with 10% heat inactivated lamb serum for 72 or 96 h at +37°C in a humidified 5% CO2 atmosphere. Of the cultured four-cell embryos 26.6% developed to expanded blastocysts, 16.7% to hatching blastocysts and 5.0% to hatched blastocysts. Of the eight-cell embryos 52.6% developed to hatching blastocysts, 10.5% to hatched blastocysts. When recovered as morulae, the percentage of hatching blastocysts subsequently obtained was 25.8% and 33.9% hatched. A total of 75.0% of the cultured early blastocysts were in the process of hatching (30.6%) or had hatched (44.4%). Significant differences in overall embryo diameter were determined between morulae (156.5 ± 3.94 μm) and early blastocysts (156.9 ± 3.72 μm) versus expanded (197.6 ± 12.57 μm), hatching (207.4 ± 15.86 μm) or hatched (270.0 ± 36.67 μm) blastocysts. The zona pellucida of expanded blastocysts was significantly thinner (5.5 ± 1.59 μm) than that of morulae (12.0 ± 1.01 μm). The number of nuclei was significantly higher for hatching (151 ± 49.8) and hatched (130 ± 17.9) blastocysts cultured as early blastocysts as compared to those cultured from the four-cell stage (88 ± 12.7 and 69 ± 3.6 respectively). Hatching blastocysts that had developed from early blastocysts also had significantly more nuclei than those cultured as eight-cell embryos (99 ± 32.5) or morulae (91 ± 21.2).By the culture method used in this study, a high percentage of pig embryos was capable of developing.  相似文献   

10.
The objective of this experiment was to determine the optimal developmental stage to vitrify in vitro cultured porcine parthenogenetically activated (PA) embryos. Embryos were vitrified by Cryotop on Day 4, 5 or 6 after oocyte activation (Day 0), and immediately after warming they were either time-lapse monitored for 24h or analyzed by differential staining. After warming, the embryos had to be cultured for at least 8h before their survival rates were stabilized. Both the survival rate at 8h and the hatching rate at 24h of Day 4 embryos were significant higher than those vitrified on Day 5 or 6 (P<0.05), no matter if they were morulae or blastocysts. These results demonstrate that porcine PA embryos can survive successfully after vitrification/warming, that the optimal time for vitrification was Day 4 for both morulae and blastocysts, and that 8h after warming was the time needed to make an early evaluation of porcine PA embryo survival.  相似文献   

11.
This study evaluated the effect of freezing-thawing procedures on the viability of sheep embryos cryopreserved at various developmental stages. The survival rates of frozen-thawed embryos were compared with non-frozen counterparts. Embryos were recovered from the oviduct and uterus, at different days of the early luteal phase, and were classified at six different developmental stages: 2- to 4-cell (n = 72), 5- to 8-cell (n = 73), 9- to 12-cell (n = 70), early morulae (n = 42), morulae (n = 41), and blastocyst (n = 70). For each early cleavage stage and blastocysts, approximately half of the embryos, were frozen immediately by slow freezing with an ethylene glycol-based solution. The remaining embryos were cultured to the hatched blastocyst stage. All morulae and compact morulae were frozen after recovery with the same protocol. Cryoprotectants were removed using 1M sucrose solution, and then warmed the embryos were cultured to the hatched stage in a standardized in vitro culture. Embryo developmental stage had a significant effect on the ability to hatch following freezing (P<0.0001). The cryotolerance of the embryos fitted a regression (r2 = 0.908), increasing linearly from 2- to 4-cell embryos (17.1%) to morula stage (46.3%) and in a quadratic regression from the morula to the blastocyst stage (83.7%). Frozen early cleavage stage embryos had a significantly lower viability than their fresh counterparts (23.1 vs 83.1%; P<0.0001), with a similar rate of viability between fresh or frozen blastocysts (92.5 vs 83.7%). In conclusion, early sheep embryos are very sensitive to freezing per se and the survival rates following conventional freezing improve as embryo developmental stage progresses.  相似文献   

12.
Exposure to acidified PBS (pH 3) for 60 sec removed swine zonae pellucidae from 70.4% of 27 swine morulae, and 73.7% of these formed blastocysts in culture. Further investigations revealed that treating embryos with 0.5% pronase and acidified PBS (pH 3) for 30 sec each was more effective. Zonae were removed in 90.6% of 85 embryos (four-cell to morulae) treated. A total of 76.9% of 65 zona-free embryos and 81.6% of 38 untreated embryos formed blastocysts (P > 0.05). An additional 57 untreated and 49 zona-free embryos (morulae to blastocysts) were transferred to seven recipient sows. Four sows returned to estrus (18 to 27 days), but three others were pregnant when slaughtered at 38 to 42 days. One pregnant sow had received a combination of five zona-free and six untreated embryos and demonstrated the potential for further development of treated embryos in vivo.  相似文献   

13.
Follicular oocytes collected from prepubertal gilts at a local slaughter house were matured (36 h), fertilized and developed in vitro. Of 785 embryos, 190 (24%) embryos cleaved to the 2-4 cell stages with blastomeres of regular size by 33 h after insemination. These cleaved embryos were surgically transferred into the oviducts of 4 synchronized recipient gilts and recovered from the uterine horns 4 or 7 days later: 13 morulae, 2 blastocysts and 1 expanded blastocyst were recovered after 4 days and 3 hatched blastocysts were recovered 7 days after transfer. Re-culture in vitro sustained further development of morulae recovered 4 days after transfer: 11 of 13 morulae had developed to the blastocyst/hatched blastocyst stages. Overall, 17 of 190 (9%) embryos developed to the blastocyst stage. The results indicate that pig oocytes can be matured and fertilized in vitro, and subsequently develop to the blastocyst stage.  相似文献   

14.
Bovine morulae and blastocysts were either produced in vitro through maturation, fertilization and culture of immature oocytes recovered from slaughterhouse-derived ovaries, collected in vivo or obtained after 24 h in vitro culture of in vivo collected embryos. The morulae and blastocysts were classified into four categories of embryo quality and two stages of embryonic development. Embryos were frozen by a controlled freezing method using 10% glycerol as a cryoprotectant. The ability of individual embryos to withstand freeze/thawing was measured immediately before and after cryopreservation by changes in CO2 production from (U-14C)glucose during a 2 h incubation period in a non-invasive closed system immediately before and after cryopreservation. Post-thaw survival was assessed by development in vitro during a 48 h culture period. Survival rates and oxidative metabolism after freeze/thawing were similar in embryos of the two developmental stages. However, after freeze/thawing, the rate of CO2 production of in vitro produced embryos was reduced to one half of their pre-freeze levels and was associated with poor survival rates. In vivo collected embryos had a significantly better tolerance to freezing and higher survival rates. However, when in vivo embryos were exposed to in vitro culture conditions, the rates of CO2 production and survival were significantly reduced. Pre-freeze embryo quality affected post-thaw in vitro development and metabolic activity markedly in embryos produced in vitro or pre-exposed to in vitro culture conditions. While there was no relationship between pre-freeze levels of CO2 production and post-thaw in vitro embryo development, all embryos which developed in vitro after freezing/thawing retained at least 58% of the pre-freeze levels of CO2 production regardless of their origin. Results of the present study indicate that embryos produced in vitro or pre-exposed to in vitro culture conditions are more sensitive to cryo-injury. This sensitivity is affected by embryo quality and is similarly reflected at the biochemical level. Determination of oxidative metabolism offers a feasibility for selection of viable morulae/blastocysts after freezing/thawing.  相似文献   

15.
To determine the best developmental stage of donor embryos for yielding the highest number of clones per embryo, we compared the efficiencies of nuclear transfer when using blastomeres from morulae or morulae at cavitation, or when using inner-cell-mass cells of blastocysts as nuclear donors. This comparison was done both on in vivo-derived and in vitro-produced donor embryos. In experiment 1, with in vivo-derived donor embryos, nuclei from morulae at cavitation supported the development of nuclear transfer embryos to the blastocyst stage (36%) at a rate similar to that of nuclei from morulae (27%), blastomeres from morulae at cavitation being superior (P < 0.05) to inner-cell-mass cells from blastocysts (21%). The number of blastocysts per donor embryo was significantly (P < 0.05) higher when using nuclei from morulae at cavitation (15.7 ± 4.1) rather than nuclei from morulae (9.8 ± 5.5) or blastocysts (6.3 ± 3.3). With in vitro-produced donor embryos (experiment 2), nuclei from morulae yielded slightly more blastocysts (32%) than nuclei from morulae at cavitation (29%), both stages being superior to nuclei from blastocysts (15% development to the blastocyst stage). Morulae at cavitation yielded a higher number of cloned blastocysts per donor embryo (11.5 ± 5.9) than did morulae (9.3 ± 3.2) and blastocysts (3.3 ± 1.4). Transfer of cloned embryos originating from in vivo-derived morulae, morulae at cavitation, and blastocysts resulted in four pregnancies (10%), three pregnancies (7%), and one (17%) pregnancy on day 45. The corresponding numbers of calves born were 3 (4%), 3 (7%), and 0, respectively. After transfer of blastocysts derived from in vitro nuclear donor morulae (n = 16) and morulae at cavitation (n = 7), two (20%) and two (50%) recipients, respectively, were pregnant on day 45. However, transfer of seven cloned embryos from in vitro donor blastocysts to three recipients did not result in a pregnancy. Using in vitro-produced donor embryos, calves were only obtained from morula-stage donors (13%). Our results indicate that the developmental stage of donor embryos affects the efficiency of nuclear transfer, with morulae at cavitation yielding a high number of cloned blastocysts. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Preimplantation embryos from matings between yellow heterozygous (Ay/a) mice were recovered at 56 hours post coitum, cultured for five days, and compared with the development of embryos from three control matings (Ay/a female X a/a male, a/a female X Ay/a male, a/a female X a/a male). Most embryos were at the 8-cell stage at recovery; however fewer embryos from the experimental cross had developed to the 8-cell stage than embryos of control matings, indicating a developmental lag of experimental embryos (P less than 0.01). The yellow (Ay/a) uterus did not contribute (P = 0.05) to delayed development. Experimental and control embryos were equally capable of successful development in culture to the morula stage with no distinct morphological characteristics identifying the class of Ay/Ay mutants. However, significant differences were observed in the development from morulae to blastocysts; 9.4% (10/106) of the morulae in experimental crosses failed to undergo blastocyst formation as compared with 2.5% (10/398) of morulae in pooled control crosses (P = 0.010-0.025). In the experimental cross 25.0% (24/96) of embryos that developed successfully to the blastocyst stage failed to hatch from the zona pellucida; these are presumed to include the class of lethal yellow homozygotes. Abnormalities seen in cultured embryos consisted primarily of blastomere disintegration, blastomere arrest and exclusion, and embryo fragmentation.  相似文献   

17.
Almost 30 years after the first successful in vitro fertilization (IVF) in golden hamsters (Mesocricetus auratus), we report that IVF hamster embryos can develop in a chemically defined, protein-free culture medium into morulae and blastocysts, and produce normal offspring after transfer to recipients. When examined 96 h post-insemination, 82% (160/200) of IVF ova had cleaved to at least 2 cells, 55% (97/200) had developed beyond the 4-cell stage, and 22% (38/200) had developed into morulae/blastocysts. In vitro development of IVF embryos to greater than or equal to 8 cells was absolutely dependent on hypotaurine. Twenty living offspring were produced from transfer of IVF embryos to recipients, with an overall success rate of 5% and 17% for oviductal (2-cell) and uterine (8-cell/morulae) transfers, respectively. In vivo-fertilized pronucleate embryos collected 3 h after egg activation were less able to develop in vitro than embryos collected only 6 h later, revealing a critical influence of the oviduct within the first hours of embryo development. Hypotaurine partly compensated for the decreased oviductal exposure of early 1-cell embryos. Establishment of a key role for hypotaurine in hamster embryo development, support of IVF embryos to morula/blastocyst stages in vitro, and production of living offspring after IVF embryo transfer are significant steps towards the goal of obtaining comparative data on preimplantation embryogenesis.  相似文献   

18.
Cryopreservation of zona-intact porcine embryos has been relatively unsuccessful to date, although some success has been obtained with lipid reduced morulae and early blastocysts. This study adapted some vitrification protocols used successfully with late blastocysts for use with early zona-intact blastocysts, using actin depolymerization, centrifugation, and open-pulled (OPS) straws. Initially, Day 6 peri-hatching blastocysts were collected, cultured for 40 min in 7.5 microg/ml cytochalasin B and vitrified in 6.5 M glycerol and 6% BSA (VS1) in either heat-sealed (HS) or open straws (OS). The post-thaw survival of those stored in HS was 15.4% after 24 and 48 h in vitro; storage in OS significantly improved survival (58.8% for both 24 and 48 h). When similar stage blastocysts were cultured in cytochalasin B and vitrified with 8 M ethylene glycol and 7% polyvinylpyrrolidone (PVP; VS2) in OS, survival was 44.4 and 33.3% for 24 and 48 h, respectively. Day 5 late morulae and early blastocysts were collected, cultured with cytochalasin B, and centrifuged or left intact (control), then vitrified with VS1 in HS or OS, or vitrified in VS2 in OS only. None of the intact control embryos survived thawing and 48 h culture in vitro. Centrifuged early blastocysts vitrified with VS1 showed good post-thaw survival in culture when stored in HS (62.8 and 60.5% for 24 and 48 h, respectively), or OS (75 and 63.6%). When vitrified with VS2 in OS, survival improved (80 and 76.7%). Peri-hatching blastocysts were vitrified in VS1, and early blastocysts were vitrified with VS1 and VS2. All blastocysts were stored in OS. The embryos were recovered and transferred to Day 4 and 5 pseudopregnant recipients (for Day 5 and 6 blastocysts, respectively). Of the five recipients receiving peri-hatching blastocysts, two became pregnant and delivered a total of eight piglets. All three recipients of early blastocysts vitrified in VS1 had a delayed return to estrus; while of the four receiving embryos vitrified with VS2, two were delayed in returning to estrus, and one was confirmed pregnant after 45 days. A litter of five piglets, one male and four female, was produced at 116 days of gestation. To our knowledge, this is the first litter of piglets produced from early blastocysts vitrified without micromanipulation to remove polarized lipid droplets.  相似文献   

19.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure-that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method-that is, embryos were first pretreated in 10%E + 10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E + 10%D for 0.5 min, exposed to EDFS30for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

20.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure—that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method—that is, embryos were first pretreated in 10%E+10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E+10%D for 0.5 min, exposed to EDFS30 for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号