首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence presented demonstrates a covalent attachment of a phospholipid to bovine myelin basic protein. Partial characterization of the phospholipid moiety was performed on myelin basic protein obtained from 32P-phosphorylated whole myelin that was first delipidated by two ether/ethanol (3:2 v/v) extractions, ether extraction, and acetone extraction and then purified by preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The myelin basic protein was precipitated with aqueous acetone and treated with proteases. Treatment with carboxypeptidase Y or trypsin for several hours released a lipophilic fragment, which was purified by reverse-phase high-performance liquid chromatography to yield two "lipopeptides". Such lipopeptides were obtained from both the major and minor myelin basic proteins of rat and bovine brain. Treatment with either mild base or phospholipase C removes the lipophilic character of the peptide fragment. The lipophilic fragment is a substrate for phospholipase D, but it does not comigrate on thin-layer chromatography with any 32P-labeled lipid obtained from myelin incubated with [gamma-32P]ATP. Polyphosphoinositides were shown to be released by mild acid treatment of myelin basic protein that had been extracted with organic solvent and then purified by SDS-polyacrylamide gel electrophoresis. Along with the fact that inositol monophosphate was identified in the partial acid hydrolysate of the lipopeptide, we have concluded that polyphosphoinositide (phosphatidylinositol 4-phosphate and/or phosphatidylinositol 4,5-bisphosphate) was the original phospholipid portion of the lipopeptide.  相似文献   

2.
The capacity of myelin basic protein or of poly-L-lysine to promote leakage of carboxyfluorescein from vesicles or the aggregation of vesicles was studied. The vesicles were composed of phosphatidylcholine as the sole or major lipid component. Addition of 10% sphingomyelin, 10% phosphatidylglycerol, 10% egg or bovine brain phosphatidylethanolamine, or 30% dodecanal had relatively little effect on the extent of carboxyfluorescein release in the presence of either myelin basic protein or poly-L-lysine. In contrast with these results, the extent of vesicle aggregation was very sensitive to lipid composition. Addition of 10% phosphatidylglycerol induced more aggregation than the other phospholipids tested. Admixing 10% of a partially degraded sample of bovine brain phosphatidylethanolamine also led to a large amount of aggregation induced by the myelin basic protein. This latter aggregation appeared more specific for the basic protein, as it occurred to a much smaller extent with poly-L-lysine. In general, the effects of the myelin basic protein on either carboxyfluorescein release or vesicle aggregation were similar to, although somewhat greater than, that of poly-L-lysine. The aggregation of vesicles containing degradation products of phosphatidylethanolamine can be ascribed largely to the presence of aliphatic aldehydes. The effect of aliphatic aldehydes was specific in that the aliphatic alcohol, hexadecanol, or the short-chain aldehydes, acetaldehyde or butyraldehyde, did not promote myelin basic protein-induced vesicle aggregation. In addition, poly-L-lysine was less effective than the basic protein in aggregating vesicles containing aliphatic aldehydes. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Myelin basic protein derived from bovine spinal cord has been interacted with liposomes of varying brain lipid compositions. The effects of salt and protein concentration on liposome cross linking has been investigated. It appears that myelin basic protein cannot link liposomes composed of brain-derived phosphatidyl choline. Myelin basic protein can link liposomes composed of phosphatidyl serine; phosphatidyl serine + cholesterol; phosphatidyl serine + cholesterol + cerebroside sulphate. Linking of liposomes occurs at protein concentrations lower than those required for myelin basic protein dimers to be formed. Therefore, it seems that the monomeric form of myelin basic protein links lipid bilayers. The presence of cholesterol in the bilayer increases the ability of myelin basic protein to aggregate such liposomes compared with the linking ability of the polycationic polypeptide, poly-l-lysine.  相似文献   

4.
In aqueous solution bovine myelin basic protein exhibits no significant alpha-helical or beta-pleated sheet structure. However, in vivo this protein is associated largely with the myelin membrane: experiments have therefore been performed to determine the structure of the protein when bound to lipid bilayers. Circular dichroism spectra show that this protein undergoes a major conformational change on binding to lipid bilayer vesicles formed from diacylphosphatidylserine or diacylphosphatidic acid, and on binding to micelles of several detergents. Association with diacylphosphatidylcholine failed to induce a structural change: this observation is interpreted in terms of an earlier report that lysophosphatidylcholine does increase the alpha-helical content of basic protein. These circular dichroism measurements and studies of the binding to the bilayer-forming lipids appear to provide support for significant hydrophobic lipid-protein interactions. Similar studies using two peptides produced by cleavf basic protein indicate that a major structure-forming region in the middle of the protein has been disrupted by this scission.  相似文献   

5.
The peptide portion of the lipopeptide isolated from bovine myelin basic protein contained glycine, lysine, and serine in a 2:1:1 molar ratio as determined by amino acid analysis. The N-terminus of the peptide was determined to be glycine. The tetrapeptide Gly53-Ser-Gly-Lys56 was the only segment of myelin basic protein that matched the above two characteristics. This tetrapeptide is highly conserved among the myelin basic proteins sequenced so far. After the selective degradation of the lipopeptide, phosphoserine was identified in the acid hydrolysate, thus indicating that Ser-54 of myelin basic protein in bovine brain is the site of attachment of polyphosphoinositide. Interestingly, serine-54 of myelin basic protein can be phosphorylated by the endogenous protein kinase myelin. However, myelin basic protein phosphorylated by the catalytic subunit of an exogenous soluble protein kinase failed to produce radioactively labeled lipopeptide. Hence the endogenous enzymes of myelin are thought to be involved in the formation of the covalent linkage between polyphosphoinositide and myelin basic protein. The conservation in sequence suggests a possible important structural role for the "phospholipidation" of myelin basic protein.  相似文献   

6.
Myelin basic protein (MBP) is considered to have a primary role in the formation and maintenance of the myelin sheath. Many studies using artificial vesicle systems of simple lipid composition, and generally small size, have shown that MBP can elicit vesicle fusion, aggregation, or even fragmentation under different conditions. Here, we have studied the effects of increasing concentrations of bovine MBP charge isomer C1 (MBP/C1) on large unilamellar vesicles (LUVs) composed of phosphatidylcholine and phosphatidylserine (92:8 molar ratio), or with a lipid composition similar to that of the myelin membrane in vivo (Cyt-LUVs). Using absorbance spectrophotometry, fluorescence resonance energy transfer, dynamic light scattering and transmission electron microscopy, we have shown that vesicle aggregation and some vesicle fusion occurred upon addition of MBP/C1, and as the molar protein-lipid ratio increased. Fragmentation of Cyt-LUVs was observed at very high protein concentrations. These results showed that the phenomena of vesicle fusion, aggregation, and fragmentation can all be observed in one in vitro system, but were dependent on lipid composition and on the relative proportions of protein and lipid.  相似文献   

7.
Although dispersions containing lipid and protein are widely used as model systems to explore the properties of biomembranes, the extent of mixing of the two components has generally not been determined. Here, the distribution of bovine myelin basic protein in dispersions with bovine brain L-alpha-diacylphosphatidylserine (PS) has been examined electronmicroscopically. Dispersions of PS were prepared by hydrating a known amount of dried lipid with buffer or with buffer containing an equal weight of myelin basic protein or lysozyme. The lipid-protein complexes were separated from unbound protein by centrifugation in 0-60% sucrose density gradients. In both systems only a few percent of the protein was unbound and the resultant recombinants, which gave single bands on the gradients, contained about 50% protein by weight. After removal of the sucrose by dialysis the dispersions were fixed in 2.5% glutaraldehyde and 1% osmium tetroxide, dehydrated and embedded in epoxy resin. Thin sections cut from these blocks were incubated, after removal of osmium tetroxide, with antiserum raised in rabbits against human myelin basic protein. Excess antiserum was removed and the antigen-antibody complexes on the thin sections were labelled with 13 nm diameter colloidal gold particles stabilized with protein A. The distributions of these gold particles were examined under an electronmicroscope. Comparison of the labelling patterns for PS, PS-lysozyme and PS-basic protein demonstrated specific labelling in the last, and showed the gold particles to be uniformly dispersed. It was concluded that in these dispersions the protein and lipid were intimately mixed at the molecular level.  相似文献   

8.
A Gow  D J Winzor  R Smith 《Biochemistry》1987,26(4):982-987
The interaction of myristoyllysophosphatidylcholine with bovine myelin basic protein at pH 7.4 and 4.5, I = 0.48, has been investigated by a recycling partition equilibrium technique with Bio-Gel P-2 as the gel phase. Important points to emerge from this direct binding study are that it is a monomeric (not micellar) amphiphile that binds to myelin basic protein, that the amphiphile binds preferentially to the monomeric form of myelin basic protein, that this binding to monomer is highly cooperative, that the similarity of binding behavior in the two environments tested is consistent with the dominance of a hydrophobic contribution to the protein-amphiphile interaction, and that the self-association of myelin basic protein in the presence of phospholipid [Smith, R. (1982) Biochemistry 21, 2697-2701] must reflect the aggregation of a protein-amphiphile complex(es) coupled with concomitant release of some lipid. These findings are then related to earlier nuclear magnetic resonance and circular dichroism studies in which the results were interpreted on the basis that myelin basic protein bound preferentially to micellar phospholipid.  相似文献   

9.
Basic (encephalitogenic) protein and water-soluble proteolipid apoprotein isolated from bovine brain myelin bind 8-anilino-1-naphthalenesulfonate and 2-p-toluidinylnaphthalene-6-sulfonate with resulting enhancement of dye fluorescence and a blue-shift of the emission spectrum. The dyes had a higher affinity and quantum yield, when bound to the proteolipid (Kans=2.3x10--6,=0.67) than to the basic protein (Kans=3.3x10--5,=0.40). From the efficiency of radiationless energy transfer from trytophan to bound ANS the intramolecular distances were calculated to be 17 and 27 A for the proteolipid and basic protein, respectively. Unlike myelin, incubation with proteolytic enzymes (e.g., Pronase and trypsin) abolished fluorescence enhancement of ANS or TNS by the extracted proteins. In contrast to myelin, the fluorescence of solutions of fluorescent probes plus proteolipid was reduced by Ca-2+,not affected by La-3+, local anesthetics, or polymyxin B, and only slightly increased by low pH or blockade of free carboxyl groups. The reactions of the basic protein were similar under these conditions except for a two- to threefold increase in dye binding in the presence of La-3+, or after blockade of carboxyl groups. N-Bromosuccinimide oxidation of tryptophan groups nearly abolished native protein fluorescence, but did not affect dye binding. However, alkylation of tryptophan groups of both proteins by 2-hydroxy (or methoxy)-5-nitrobenzyl bromide reduced the of bound ANS (excited at 380 nm) to 0.15 normal. The same effect was observed with human serum albumin. The fluorescence emission of ANS bound to myelin was not affected by alkylation of membrane tryptophan groups with the Koshland reagents, except for abolition of energy transfer from tryptophan to bound dye molecules. This suggests that dye binding to protein is negligible in the intact membrane. Proteolipid incorporated into lipid vesicles containing phosphatidylserine did not bind ANS or TNS unless Ca-2+, La-3+, polymyxin B, or local anesthetics were added to reduce the net negative surface potential of the lipid membranes. However, binding to protein in the lipid-protein vesicles remained less than for soluble protein. Basic protein or bovine serum albumin dye binding sites remained accessible after equilibration of these proteins with the same lipid vesicles. It is proposed that in the intact myelin membrane the proteolipid is probably strongly associated with specific anionic membrane lipids (i.e., phosphatidylserine), and most likely deeply embedded within the lipid hydrocarbon matrix of the myelin membrane. Also, in the intact myelin membrane the fluorescent probes are associated primarily, if not solely with the membrane lipids as indicated by the binding data. This is particularly the case for TNS where the total number of myelin binding sites is three to four times the potential protein binding sites.  相似文献   

10.
Myelin basic protein was isolated from both cat and bovine central nervous system. Cat and bovine myelin basic protein, which are shown to be similar by tryptic mapping, exhibit identical behavior when cross-linked with the bifunctional reagent difluorodinitrobenzene. Myelin basic protein is cross-linked into only a dimer under certain conditions in the presence of sodium dodecyl sulfate. In contrast, many oligomers are formed when myelin basic protein is cross-linked in the absence of detergent. The formation of cross-linked dimers in the absence of other oligomer formation suggests that the protein is at least partly dimeric in the presence of sodium dodecyl sulfate. The conformation of them myelin basic protein monomer in sodium dodecyl sulfate was also studied. N-Bromosuccinimide and cyanogen bromide cleavage reactions were used to demonstrate that difluorodinitrobenzene had introduced intramolecular cross-links between the two peptides resulting from each of the cleavage ractions. However, these types of intramolecular cross-links cannot be detected under conditions in which only dimers have formed. Some of the lysine residues which are modified by difluorodinitrobenzene were identified by tryptic mapping. In several respects, the conformation of myelin basic protein in a sodium dodecyl sulfate solution appears to be similar to the conformation of the protein in the membrane.  相似文献   

11.
The addition of solutions of bovine myelin basic protein to suspensions of unilamellar vesicles prepared from whole myelin suspensions results in the rapid equilibrium association of the vesicles into dimers, followed by time-dependent aggregation reactions. Other cationic proteins also induce the dimerization of the vesicles and equilibrium constants for dimer formation are obtained for bovine myelin basic protein, lysozyme, polyhistidine and myelin basic protein from carp, which differs from the bovine protein in that it contains no methylarginine residues. The bovine protein is more efficient at inducing dimer formation than the carp protein by approximately 0.93 kcal/mole; the carp protein is approximately as effective as the other cationic proteins examined. Complete methylation of the bovine MBP by AdoMet:MBP methyltransferase increases the interaction between MBP and the membrane by approximately 0.13 kcal/mole, consistent with the suggestion that a large portion of the free energy difference between the carp and bovine proteins arises from favorable interactions involving the methylarginine residues.  相似文献   

12.
Abstract: Myelin isolated from the central nervous system of Xenopus tadpoles was characterized biochemically and compared with Xenopus frog and mammalian myelins. Xenopus tadpole myelin contains the characteristic protein and lipid components of mammalian myelin, although quantitative differences exist. The biochemical composition of Xenopus tadpole myelin suggests that it is an immature form of XePnopus frog myelin. Basic protein and proteolipid protein are prominent components of Xenopus myelin, but isolated tadpole myelin contains a greater proportion of higher molecular weight proteins than Xenopus frog or mature mammalian myelin. The basic protein has a higher apparent molecular weight than mammalian myelin basic protein. The levels of 2',3'-cyclic nucleotide 3'-phosphodiesterase are significantly higher in whole tadpole brain homogenate and purified myelin than in similar mammalian preparations. Tadpole myelin lipids contain a higher proportion of phospholipids and less galactolipid than mammalian myelin. Tadpole myelin galactolipids include a high (16%) percentage of monogalactosyl diglyceride, a component found in only trace quantities (0.9%) in bovine myelin.  相似文献   

13.
A multilayered complex forms when a solution of myelin basic protein is added to single-bilayer vesicles formed by sonicating myelin lipids. Vesicles and multilayers have been studied by electron microscopy, biochemical analysis, and X-ray diffraction. Freeze-fracture electron microscopy shows well-separated vesicles before myelin basic protein is added, but afterward there are aggregated, possibly multilayered, vesicles and extensive planar multilayers. The vesicles aggregate and fuse within seconds after the protein is added, and the multilayers form within minutes. No intra-bilayer particles are seen, with or without the protein. Some myelin basic protein, but no lipid, remains in the supernatant after the protein is added and the complex sedimented for X-ray diffraction. A rather variable proportion of the protein is bound. X-ray diffraction patterns show that the vesicles are stable in the absence of myelin basic protein, even under high g-forces. After the protein is added, however, lipid/myelin basic protein multilayers predominate over single-bilayer vesicles. The protein is in every space between lipid bilayers. Thus the vesicles are torn open by strong interaction with myelin basic protein. The inter-bilayer spaces in the multilayers are comparable to the cytoplasmic spaces in central nervous system myelins . The diffraction indicates the same lipid bilayer thickness in vesicles and multilayers, to within 1 A. By comparing electron-density profiles of vesicles and multilayers, most of the myelin basic protein is located in the inter-bilayer space while up to one-third may be inserted between lipid headgroups. When cytochrome c is added in place of myelin basic protein, multilayers also form. In this case the protein is located entirely outside the unchanged bilayer. Comparison of the various profiles emphasizes the close and extensive apposition of myelin basic protein to the lipid bilayer. Numerous bonds may form between myelin basic protein and lipids. Cholesterol may enhance binding by opening gaps between diacyl-lipid headgroups.  相似文献   

14.
—Three fractions, each containing markedly different proteins, was obtained from myelin: (1) The first fraction was obtained as an insoluble residue when myelin was extracted with neutral chloroform-methanol (CM, 2:1, v/v). It was digestible with trypsin and had an amino acid composition similar to that of the acidic proteolipid protein of Wolfgkam (1966). (2) The second fraction was obtained as a precipitate by the addition of various electrolytes (KCl, NaCl, CaCl2, MgCl2 or HCl) to the CM (2:1 v/v) extract. This fraction consisted mainly of a basic protein which exhibited an electrophoretic mobility and amino acid composition indistinguishable from those of the basic protein obtained from white matter (Martensson and LeBaron, 1966). This procedure provided for a simple and rapid isolation of the basic protein from myelin. Depending on the conditions of precipitation, this fraction was either free of lipid or contained tri- and diphosphoinositide. The effects of different ions at differing concentrations and the yield and nature of the precipitate have been studied. (3) A third fraction remained in solution in CM (2:1, v/v) after the addition of the electrolyte. It comprised the bulk of the myelin lipids and a protein fraction which was resistant to digestion with trypsin and had an amino acid composition similar to the classical proteolipid protein of Folch-Pi and Lees (1951). The possibility of a salt-type bonding between the basic protein and the polyphosphoinositides is discussed, and values for tri- and diphosphoinositide in bovine myelin are given.  相似文献   

15.
Abstract— In cerebral myelin from man, ox, rabbit, guinea pig and chicken, the amounts of proteolipid protein, basic protein and the fraction of further protein components were found to be present in a fixed ratio of 5·0: 3·5: 2·0 by weight. The molecular weights of 25,000 and 35,000 as obtained for the basic protein and proteolipid protein might indicate that cerebral myelin contains one molecule of basic protein per molecule of proteolipid protein. This fixed ratio of protein components was found to be changed in myelin from the PNS and in cerebral myelin from rat and carp, with their exceptional basic proteins. Using the polyacrylamide-gel electrophoresis it was possible to demonstrate that a homogeneous structural protein (the Folch-Lees proteolipid protein) constitutes about 50 percent of the total amount of myelin proteins in all species studied. An attempt was made to correlate myelin protein and lipid patterns from various species.  相似文献   

16.
We have correlated membrane structure and interactions in shiverer sciatic nerve myelin with its biochemical composition. Analysis of x-ray diffraction data from shiverer myelin swollen in water substantiates our previous localization of an electron density deficit in the cytoplasmic half of the membrane. The density loss correlates with the absence of the major myelin basic proteins and indicates that in normal myelin, the basic protein is localized to the cytoplasmic apposition. As in normal peripheral myelin, hypotonic swelling in the shiverer membrane arrays occurs in the extracellular space between membranes; the cytoplasmic surfaces remain closely apposed notwithstanding the absence of basic protein from this region. Surprisingly, we found that the interaction at the extracellular apposition of shiverer membranes is altered. The extracellular space swells to a greater extent than normal when nerves are incubated in distilled water, treated at a reduced ionic strength of 0.06 in the range of pH 4-9, or treated at constant pH (4 or 7) in the range of ionic strengths 0.02-0.20. To examine the biochemical basis of this difference in swelling, we compared the lipid composition of shiverer and normal myelin. We find that sulfatides, hydroxycerebroside, and phosphatidylcholine are 20-30% higher than normal; nonhydroxycerebroside and sphingomyelin are 15-20% lower than normal; and ethanolamine phosphatides, phosphatidylserine, and cholesterol show little or no change. A higher concentration of negatively charged sulfatides at the extracellular surface likely contributes to an increased electrostatic repulsion and greater swelling in shiverer. The cytoplasmic surfaces of the apposed membranes of normal and shiverer myelins did not swell apart appreciably in the pH and ionic strength ranges expected to produce electrostatic repulsion. This stability, then, clearly does not depend on basic protein. We propose that P0 glycoprotein molecules form the stable link between apposed cytoplasmic membrane surfaces in peripheral myelin.  相似文献   

17.
The myelin basic protein from bovine brain tissue was purified and the two peptides obtained by cleavage of the polypeptide chain at the single tryptophan residue were isolated. The interaction of these peptides and the intact basic protein with complex lipids was investigated by following the solubilization of lipid-protein complexes into chloroform in a biphasic solvent system. The C-terminal peptide fragment (residues 117-170) and the intact basic protein both formed chloroform-soluble complexes with acidic lipids, but not with neutral complex lipids. The N-terminal fragment (residues 1-115) did not form chloroform-soluble complexes with either acidic or neutral complex lipids. The molar ratio of lipid to protein that caused a 50% loss of protein from the upper phase to the lower chloroform phase was the same for the intact basic protein as for the smaller C-terminal peptide fragment. Phosphatidylserine and phosphatidylinositol were approximately twice as efficient as sulphatide at causing protein redistribution to the chloroform phase. The results are interpreted as indicating that the sites for ionic interactions between lipid and charged groups on the basic protein of myelin are located in the C-terminal region of the protein molecule.  相似文献   

18.
Natural abundance 13C nuclear magnetic spin-lattice relaxation times have been measured for bovine brain phosphatidylserine vesicles with and without bound proteins. The relaxation times were lower than published values for the corresponding nuclei in egg phosphatidylcholine, but showed the same trend, with relaxation times increasing along the acyl chains away from the polar headgroup. These times were inversely related to the degree of saturation of the lipid. Cytochrome c caused insignificant changes in the lipid acyl chain relaxation rates but reduced the resonance intensities, in agreement with Brown and Wüthrich (Biochem. Biophys. Acta 468 (1977) 389). In contrast, the basic protein from bovine myelin did not affect the intensities but reduced the relaxation times for 13C nuclei near the bilayer centre, and for nuclei near carbon-carbon double bonds. These proteins also dramatically broadened the serine headgroup carboxyl resonance. It appears, in accord with other recent evidence, that the basic protein does penetrate the hydrophobic region of the bilayer (possibly to the centre), producing quantitatively similar changes in the relaxation rates to proteolipid protein, an integral membrane protein.  相似文献   

19.
Abstract: A basic protein has been purified from the CNS myelin of the gummy shark (Mustelus antarticus). Electroblotting was used to examine the capacity of rabbit antisera raised against this electrophoretically pure protein to recognize myelin basic protein from higher vertebrates. The antisera bound to two shark proteins including the original polypeptide antigen and to chicken, bovine, and human myelin basic proteins. Thus, the shark protein appeared to possess antigenic determinants that have been retained through evolutionary divergence of these proteins. Whereas bovine basic protein caused experimental allergic encephalomyelitis in guinea pigs, animals that received injections of the shark protein showed neither clinical nor histological signs of this disease. However, tests for delayed-type hypersensitivity and for Arthus reaction following injection with the shark protein revealed a T-cell-mediated response to this antigen and substantial cross-reactivity with higher vertebrate basic proteins. Analysis of the amino acid composition of the shark protein, and comparison of its tryptic peptide map with that of the bovine protein, revealed substantial changes in the amino acid sequence. Although the shark protein has some antigenic determinants in common with the proteins from higher vertebrates, it appears that much of the structure differs.  相似文献   

20.
The basic protein of myelin can spontaneously associate with the synthetic phospholipid N-palmitoyl-sphingosinephosphatidylcholine. The protein alters the phase transition properties of the lipid from a single transition at 41.5 degrees C to two overlapping transitions, one being slightly above and the other slightly below the transition temperature of the pure lipid. The effect was not seen upon the addition of poly(L-lysine) to this lipid nor does the myelin basic protein alter the phase transition properties of dimyristoylphosphatidylcholine. The results thus demonstrate that the myelin basic protein can interact with a major zwitterionic lipid component of myelin in addition to acidic phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号