首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine muscle capillary supply in harbor seals. Locomotory and nonlocomotory muscles of four harbor seals (mass = 17.5-41 kg) were glutaraldehyde-perfusion fixed and samples processed for electron microscopy and analyzed by morphometry. Capillary-to-fiber number and surface ratios were 0.81 +/- 0.05 and 0.16 +/- 0.01, respectively. Capillary length and surface area per volume of muscle fiber were 1,495 +/- 83 mm/mm(3) and 22.4 +/- 1.6 mm(2)/mm(3), respectively. In the locomotory muscles, we measured capillary length and surface area per volume mitochondria (20.1 +/- 1.7 km/ml and 2,531 +/- 440 cm(2)/ml). All these values are 1.5-3 times lower than in muscles with similar or lower volume densities of mitochondria in dogs of comparable size. Compared with terrestrial mammals, the skeletal muscles of harbor seals do not match their increased aerobic enzyme capacities and mitochondrial volume densities with greater muscle capillary supply. They have a smaller capillary-to-fiber interface and capillary supply per fiber mitochondrial volume than terrestrial mammals of comparable size.  相似文献   

2.
Rat soleus muscle ultrastructure after hindlimb suspension   总被引:1,自引:0,他引:1  
The aim of the present investigation was to determine, by quantitative electron microscopy, the effects of a 5-wk tail-suspension period on rat soleus muscle ultrastructure. A marked decline (-60%) in muscle mass occurred. The mean fiber cross-sectional area decreased to a greater extent (-75%) than the capillary-to-fiber ratio (-37%), leading to a higher capillary density (+148%) after hypokinesia. The total mitochondrial volume density remained unchanged, whereas the volume density of myofibrils was slightly but significantly reduced (-6%). A shift from subsarcolemmal to interfibrillar mitochondria occurred. Interfibrillar mitochondrial volume density was highest near the fiber border and decreased toward the fiber center. An increase in volume density of satellite cells suggested muscle regenerative events. Soleus atrophy with tail suspension greatly decreases the muscular volume but leaves the ultrastructural composition of muscle fibers relatively unaffected.  相似文献   

3.
The objective was to examine fiber capillarization in relation to fiber mitochondrial volume in the highly aerobic diaphragm of the shrew, the smallest mammal. The diaphragms of four common shrews [Sorex araneus; body mass, 8.2 +/- 1.3 (SE) g] and four lesser shrews (Sorex minutus, 2.6 +/- 0.1 g) were perfusion fixed in situ, processed for electron microscopy, and analyzed by morphometry. Capillary length per fiber volume was extremely high, at values of 8,008 +/- 1,054 and 12,332 +/- 625 mm(-2) in S. araneus and S. minutus, respectively (P = 0.012), with no difference in capillary geometry between the two species. Fiber mitochondrial volume density was 28.5 +/- 2.3% (S. araneus) and 36.5 +/- 1.4% (S. minutus; P = 0.025), yielding capillary length per milliliter mitochondria values (S. araneus, 27.8 +/- 1.5 km; S. minutus, 33.9 +/- 2.2 km; P = 0.06) as high as in the flight muscle of the hummingbird and small bats. The size of the capillary-fiber interface (i.e., capillary surface per fiber surface ratio) per fiber mitochondrial volume in shrew diaphragm was also as high as in bird and bat flight muscles, and it was about two times greater than in rat hindlimb muscle. Thus, whereas fiber capillary and mitochondrial volume densities decreased with increased body mass in S. araneus compared with S. minutus Soricinae shrews, fiber capillarization per milliliter mitochondria in both species was much higher than previously reported for shrew diaphragm, and it matched that of the intensely aerobic flight muscles of birds and mammals.  相似文献   

4.
The purpose of this work is to study the influence of aging, training, and food restriction on skeletal muscle mass and fiber number. Male Fischer 344 rats (n = 49) at 3 mo postpartum were assigned to three groups: 1) sedentary control (confined to cage), 2) exercise trained (18 m/min, 8 degrees grade, 20 min/day, 5 days/wk), or 3) food restricted (alternate days of free access and no access to food). At 12 and 27 mo postpartum the soleus and extensor digitorum longus (EDL) muscles were excised, weighed, and fiber number was quantified after HNO3 digestion. At 27 mo the masses of soleus and EDL muscles of sedentary control rats were 83 and 70%, respectively, of 12-mo values (138 +/- 5 and 151 +/- 4 mg). At 27 mo, soleus muscle mass of trained rats was 113% of sedentary control values, whereas EDL muscle mass was unaffected by training. At 27 mo, food restriction had no effect on the mass of both muscles compared with 27-mo sedentary control values. Fiber number was not affected by training or food restriction in both muscles. Fiber number for soleus and EDL muscles of combined groups declined with age by 5.6 and 4.2%, respectively. With aging, the small loss of muscle fibers can account at most for approximately 25% of the observed skeletal muscle atrophy.  相似文献   

5.
To determine whether mitochondrial dysfunction is causally related to muscle atrophy with aging, we examined respiratory capacity, H(2) O(2) emission, and function of the mitochondrial permeability transition pore (mPTP) in permeabilized myofibers prepared from four rat muscles that span a range of fiber type and degree of age-related atrophy. Muscle atrophy with aging was greatest in fast-twitch gastrocnemius (Gas) muscle (-38%), intermediate in both the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (Sol) muscles (-21%), and non-existent in adductor longus (AL) muscle (+47%). In contrast, indices of mitochondrial dysfunction did not correspond to this differential degree of atrophy. Specifically, despite higher protein expression for oxidative phosphorylation (oxphos) system in fast Gas and EDL, state III respiratory capacity per myofiber wet weight was unchanged with aging, whereas the slow Sol showed proportional decreases in oxphos protein, citrate synthase activity, and state III respiration. Free radical leak (H(2) O(2) emission per O(2) flux) under state III respiration was higher with aging in the fast Gas, whereas state II free radical leak was higher in the slow AL. Only the fast muscles had impaired mPTP function with aging, with lower mitochondrial calcium retention capacity in EDL and shorter time to mPTP opening in Gas and EDL. Collectively, our results underscore that the age-related changes in muscle mitochondrial function depend largely upon fiber type and are unrelated to the severity of muscle atrophy, suggesting that intrinsic changes in mitochondrial function are unlikely to be causally involved in aging muscle atrophy.  相似文献   

6.
The anatomic size of the capillary-to-fiber (C/F) interface plays an important role in O(2) flux from blood to tissue by determining the surface area available for diffusion and is maintained in relative proportion to fiber mitochondrial volume across a wide range of muscle aerobic capacity. In the present study, we examined an estimate of the anatomic size of the C/F interface [the quotient of the individual C/F ratio and fiber perimeter, C/F perimeter exchange (CFPE) index] and fiber oxidative capacity in different skeletal muscles, or muscle regions, to test the hypothesis that capillarization would be maintained in relative excess of reduced fiber oxidative capacity in aged muscles. The right gastrocnemius, plantaris, and soleus muscles from young adult (8 mo old) and late middle-aged (28-30 mo old) Fischer 344 x Brown Norway F1 hybrid rats were excised for evaluation of flux through electron transport chain complexes I-III and/or morphometric estimation of capillarization. Muscle mass was lower in the gastrocnemius muscles of the older animals (2,076 +/- 32 vs. 1,825 +/- 47 mg in young adult vs. late middle-aged, respectively; mean +/- SE) but not the plantaris or soleus muscles. Fibers were smaller in the white region of gastrocnemius muscles but larger in the red region of gastrocnemius muscles of the older animals. There was no difference in the number of capillaries around a fiber, the individual C/F ratio, or the CFPE index between groups for any muscle/region, whereas flux through complexes I-III was reduced by 29-43% in late middle-aged animals. Thus the greater quotient of indexes of anatomic capillarity (individual C/F ratio or CFPE index) and fiber oxidative capacity in soleus and the white region of gastrocnemius muscles, but not in the red region of gastrocnemius muscles of the older animals, shows that anatomic capillarity is maintained in relative excess of oxidative capacity in some muscle regions in late middle-aged rats.  相似文献   

7.
Male Wistar rats were subjected to 12.5 days of weightlessness aboard Cosmos 1887. Histomorphometric and biochemical analyses were investigated in soleus (SOL), plantaris (PL) and extensor digitorum longus (EDL) muscles of flight rats (group F) and compared with data from two groups of terrestrial controls: one group living free in a vivarium (group V) and another subjected to a flight simulation except for the state of weightlessness (group S). Relative to groups V and S, no alteration in the percentage distribution of fibres had occurred in SOL, PL or EDL, after the flight. In SOL muscles from group F animals, cross-sectional areas of all fibre types were reduced to a greater extent (-40%) than capillary to fibre ratio (-24%) leading to a higher capillary density (+33%) than in V and S groups. In PL, type I, IIA and IIB fibre cross-sectional areas were less decreased (-25%). In EDL, only fast-twitch fibre cross-sectional areas showed an average decrease of 30%. Capillary per fibre ratio was reduced by 15% and 28% respectively in PT and EDL muscles from group F rats compared to control groups V and S. Citrate synthase and 3-hydroxyacyl-coenzyme A dehydrogenase activities remained unchanged in SOL, PL and EDL following spaceflight. These findings indicate greater atrophy and functional alterations (capillarity) compared to those observed after 7 days of microgravity on Cosmos 1667.  相似文献   

8.
The effects of aging on muscle microvascular structure and function may play a key role in performance deficits and impairment of O2 exchange within skeletal muscle of senescent individuals. To determine the effects of aging on capillary geometry, red blood cell (RBC) hemodynamics, and hematocrit in a muscle of mixed fiber type, spinotrapezius muscles from Fischer 344 x Brown Norway hybrid rats aged 6-8 mo [young (Y); body mass 421 +/- 10 g, n = 6] and 26-28 mo [old (O); 561 +/- 12 g, n = 6] were observed by high-resolution transmission light microscopy under resting conditions. The percentage of RBC-perfused capillaries (Y: 78 +/- 3%; O: 75 +/- 2%) and degree of tortuosity and branching (Y: 13 +/- 2%; O: 13 +/- 2%, additional capillary length) were not different in O vs. Y muscles. Lineal density of RBC-perfused capillaries in O was significantly reduced (Y: 30.7 +/- 1.8, O: 22.8 +/- 3.1 capillaries/mm; P < 0.05). However, RBC-perfused capillaries from O rats (n = 78) exhibited increased RBC velocity (VRBC) (Y: 219 +/- 12, O: 310 +/- 14 microm/s; P < 0.05) and RBC flux (FRBC) (Y: 27 +/- 2, O: 41 +/- 2 RBC/s; P < 0.05) vs. Y rats (n = 66). Thus O2 delivery per unit of muscle was not different between groups (Y: 894 +/- 111, O: 887 +/- 118 RBC. s-1. mm muscle-1). Capillary hematocrit was not different in Y vs. O rats (Y: 26 +/- 1%, O: 28 +/- 1%: P > 0.05). These data indicate that in resting spinotrapezius muscle, aging decreases the lineal density of RBC-perfused capillaries while increasing mean VRBC and FRBC within those capillaries. Whereas muscle conductive O2 delivery and capillary hematocrit were unchanged, elevated VRBC reduces capillary RBC transit time and may impair the diffusive transport of O2 from blood to myocyte particularly under exercise conditions.  相似文献   

9.
The aim of the study was to address discrepant findings in the literature regarding coupling between decreased functional demand during disuse and reduced capillarity. We previously reported [K. Tyml, O. Mathieu-Costello, and E. Noble. Microvasc. Res. 49: 17-32, 1995] that severe disuse of rat extensor digitorum longus (EDL) muscle caused by a 2-wk application of tetrodotoxin (TTX) on the sciatic nerve is not accompanied by capillary loss. Using the same animal model, the present study examined whether this absence of coupling could be explained in terms of 1) too short a duration of disuse and 2) muscle-specific response to disuse. Fischer 344 rats were exposed to either no treatment (control) or to 2- or 8-wk TTX applications. Fiber size, capillary density per fiber cross-sectional area, and capillary-to-fiber (C/F) ratio were determined by morphometry in the EDL muscle (control, 2- and 8-wk groups) and in the superficial portion of medial gastrocnemius (Gas) muscle (control, 2 wk). In both muscles, microvascular blood flow was evaluated by intravital microscopy [red blood cell velocity in capillaries (V(RBC))] and by laser Doppler flowmetry (LDF). Regardless of duration of TTX application or muscle type, TTX-induced disuse resulted in a significant reduction of fiber area (44-71%). However, capillary density increased in EDL muscle (both at 2 and 8 wk) but not in Gas muscle. C/F ratio decreased in EDL muscle at 8 wk (18%) and in Gas muscle (39%). This indicates that the effect on capillarity depended on duration of disuse and on muscle type. V(RBC) and LDF signal were significantly larger in EDL than in Gas muscle. Analysis of change in capillarity vs. V(RBC) suggested that the outcome of disuse may be modulated by blood flow. We conclude that the duration of skeletal muscle disuse per se does not dictate capillary loss, and we hypothesize that discrepant findings of coupling between functional demand and capillarity could be due to the presence/absence of flow-related angiogenesis superimposed on the capillary removal process during disuse.  相似文献   

10.
The concentration of NADH was determined a high-oxidative muscle (soleus) and a high-glycolytic muscle (extensor digitorum longus, EDL) from resting rats. The NADH content of freeze-clamped control muscles was 0.35 +/- 0.04 (mean +/- S.D.) and 0.31 +/- 0.04 mmol/kg dry wt. in EDL and soleus respectively, and increased to peak values of 0.58 +/- 0.05 (EDL) and 0.87 +/- 0.10 (soleus) after 10 min of NaCN treatment. The [lactate]/[pyruvate] ratio, which was not significantly changed in soleus and increased only slightly in EDL after NaCN incubation, shows that only minor changes occurred in the cytosolic NADH concentration. Provided that the major part of muscle NADH is located in the mitochondria it can be calculated that the mitochondrial NADH content in skeletal muscle at rest is about 36 (soleus) and 60% (EDL) of the anoxic value, respectively. These results are in contrast with previous studies with the surface-fluorescence technique, where mitochondrial NAD appeared to be almost completely reduced in resting skeletal muscle.  相似文献   

11.
Previous studies of endurance exercise training in older men and women generally have found only minimal skeletal muscle adaptations to training. To evaluate the possibility that this may have been due to an inadequate training stimulus, we studied 23 healthy older (64 +/- 3 yr) men and women before and after they had trained by walking/jogging at 80% of maximal heart rate for 45 min/day 4 days/wk for 9-12 mo. This training program resulted in a 23% increase in maximal O2 consumption. Needle biopsy samples of the lateral gastrocnemius muscle were obtained before and after training and analyzed for selected histochemical and enzymatic characteristics. The percentage of type I muscle fibers did not change with training. The percentage of type IIb fibers, however, decreased from 19.1 +/- 9.1 to 15.1 +/- 8.1% (P less than 0.001), whereas the percentage of type IIa fibers increased from 22.1 +/- 7.7 to 29.6 +/- 9.1% (P less than 0.05). Training also induced increases in the cross-sectional area of both type I (12%; P less than 0.001) and type IIa fibers (10%; P less than 0.05). Capillary density increased from 257 +/- 43 capillaries/mm2 before training to 310 +/- 48 capillaries/mm2 after training (P less than 0.001) because of increases in the capillary-to-fiber ratio and in the number of capillaries in contact with each fiber. Lactate dehydrogenase activity decreased by 21% (P less than 0.001), whereas the activities of the mitochondrial enzymes succinate dehydrogenase, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase increased by 24-55% in response to training (P less than 0.001-0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The increase of wall shear stress in capillaries by oral administration of the alpha1-adrenergic receptor antagonist prazosin induces angiogenesis in skeletal muscles. Because endothelial nitric oxide synthase (eNOS) is upregulated in response to elevated wall shear stress, we investigated the relevance of eNOS for prazosin-induced angiogenesis in skeletal muscles. Prazosin and/or the NOS inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME) were given to C57BL/6 wild-type mice and eNOS-knockout mice for 14 days. The capillary-to-fiber (C/F) ratio and capillary density (CD; no. of capillaries/mm2) were determined in frozen sections from extensor digitorum longus (EDL) muscles of these mice. Immunoblotting was performed to quantify eNOS expression in endothelial cells isolated from skeletal muscles, whereas VEGF (after precipitation with heparin-agarose) and neuronal NOS (nNOS) concentrations were determined in EDL solubilizates. In EDL muscles of C57BL/6 mice treated for 14 days, the C/F ratio was 28% higher after prazosin administration and 11% higher after prazosin and L-NAME feeding, whereas the CD increased by 21 and 13%, respectively. The C/F ratio was highest after day 4 of prazosin treatment and decreased gradually to almost constant values after day 8. Prazosin administration led to elevation of eNOS expression. VEGF levels were lowest at day 4, whereas nNOS values decreased after day 8. In EDL muscles of eNOS-knockout mice, no significant changes in C/F ratio, CD, or VEGF and nNOS expression were observed in response to prazosin administration. Our data suggest that the presence of eNOS is essential for prazosin-induced angiogenesis in skeletal muscle, albeit other signaling molecules might partially compensate for or contribute to this angiogenic activity. Furthermore, subsequent remodeling of the capillary system accompanied by sequential downregulation of VEGF and nNOS in skeletal muscle fibers characterizes shear stress-dependent angiogenesis.  相似文献   

13.
Although evidence for muscle O(2) diffusion limitation of maximal O(2) uptake has been found in the intact organism and isolated muscle, its relationship to diffusion distance has not been examined. Thus we studied six sets of three purpose-bred littermate dogs (aged 10-12 mo), with 1 dog per litter allocated to each of three groups: control (C), exercise trained for 8 wk (T), or left leg immobilized for 3 wk (I). The left gastrocnemius muscle from each animal was surgically isolated, pump-perfused, and electrically stimulated to peak O(2) uptake at three randomly applied levels of arterial oxygenation [normoxia, arterial PO(2) (Pa(O(2))) 77 +/- 2 (SE) Torr; moderate hypoxia, Pa(O(2)): 33 +/- 1 Torr; and severe hypoxia, Pa(O(2)): 22 +/- 1 Torr]. O(2) delivery (ml. min(-1). 100 g(-1)) was kept constant among groups for each level of oxygenation, with O(2) delivery decreasing with decreasing Pa(O(2)). O(2) extraction (%) was lower in I than T or C for each condition, but calculated muscle O(2) diffusing capacity (Dmus(O(2))) per 100 grams of muscle was not different among groups. After the experiment, the muscle was perfusion fixed in situ, and a sample from the midbelly was processed for microscopy. Immobilized muscle showed a 45% reduction of muscle fiber cross-sectional area (P < 0.05), and a resulting 59% increase in capillary density (P < 0.05) but minimal reduction in capillary-to-fiber ratio (not significant). In contrast, capillarity was not significantly different in T vs. C muscle. The results show that a dramatically increased capillary density (and reduced diffusion distance) after short-term immobilization does not improve Dmus(O(2)) in heavily working skeletal muscle.  相似文献   

14.
The ubiquitin-proteasome system is the primary proteolytic pathway implicated in skeletal muscle atrophy under catabolic conditions. Although several studies showed that proteasome inhibitors reduced proteolysis under catabolic conditions, few studies have demonstrated the ability of these inhibitors to preserve skeletal muscle mass and architecture in vivo. To explore this, we studied the effect of the proteasome inhibitor Velcade (also known as PS-341 and bortezomib) in denervated skeletal muscle in rats. Rats were given vehicle or Velcade (3 mg/kg po) daily for 7 days beginning immediately after induction of muscle atrophy by crushing the sciatic nerve. At the end of the study, the rats were euthanized and the soleus and extensor digitorum longus (EDL) muscles were harvested. In vehicle-treated rats, denervation caused a 33.5 +/- 2.8% and 16.2 +/- 2.7% decrease in the soleus and EDL muscle wet weights (% atrophy), respectively, compared to muscles from the contralateral (innervated) limb. Velcade significantly reduced denervation-induced atrophy to 17.1 +/- 3.3% in the soleus (P < 0.01), a 51.6% reduction in atrophy associated with denervation, with little effect on the EDL (9.8 +/- 3.2% atrophy). Histology showed a preservation of muscle mass and preservation of normal cellular architecture after Velcade treatment. Ubiquitin mRNA levels in denervated soleus muscle at the end of the study were significantly elevated 120 +/- 25% above sham control levels and were reduced to control levels by Velcade. In contrast, testosterone proprionate (3 mg/kg sc) did not alleviate denervation-induced skeletal muscle atrophy but did prevent castration-induced levator ani atrophy, while Velcade was without effect. These results show that proteasome inhibition attenuates denervation-induced muscle atrophy in vivo in soleus muscles. However, this mechanism may not be operative in all types of atrophy.  相似文献   

15.
Pleiotrophin (PTN) is a widespread cytokine involved in bone formation, neurite outgrowth, and angiogenesis. In skeletal muscle, PTN is upregulated during myogenesis, post-synaptic induction, and regeneration after crushing, but little is known regarding its effects on muscle function. Here, we describe the effects of PTN on the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles in mice over-expressing PTN under the control of a bone promoter. The mice were maintained in normal loading or disuse condition, induced by hindlimb unloading (HU) for 14 days. Effects of exposition to near-zero gravity during a 3-months spaceflight (SF) into the Mice Drawer System are also reported. In normal loading, PTN overexpression had no effect on muscle fiber cross-sectional area, but shifted soleus muscle toward a slower phenotype, as shown by an increased number of oxidative type 1 fibers, and increased gene expression of cytochrome c oxidase subunit IV and citrate synthase. The cytokine increased soleus and EDL capillary-to-fiber ratio. PTN overexpression did not prevent soleus muscle atrophy, slow-to-fast transition, and capillary regression induced by SF and HU. Nevertheless, PTN exerted various effects on sarcolemma ion channel expression/function and resting cytosolic Ca2+ concentration in soleus and EDL muscles, in normal loading and after HU. In conclusion, the results show very similar effects of HU and SF on mouse soleus muscle, including activation of specific gene programs. The EDL muscle is able to counterbalance this latter, probably by activating compensatory mechanisms. The numerous effects of PTN on muscle gene expression and functional parameters demonstrate the sensitivity of muscle fibers to the cytokine. Although little benefit was found in HU muscle disuse, PTN may emerge useful in various muscle diseases, because it exerts synergetic actions on muscle fibers and vessels, which could enforce oxidative metabolism and ameliorate muscle performance.  相似文献   

16.
Potential treatments for skeletal muscle wasting and weakness ideally possess both anabolic and ergogenic properties. Although the beta(2)-adrenoceptor agonist clenbuterol has well-characterized effects on skeletal muscle, less is known about the therapeutic potential of the related beta(2)-adrenoceptor agonist fenoterol. We administered an equimolar dose of either clenbuterol or fenoterol to rats for 4 wk to compare their effects on skeletal muscle and tested the hypothesis that fenoterol would produce more powerful anabolic and ergogenic effects. Clenbuterol treatment increased fiber cross-sectional area (CSA) by 6% and maximal isometric force (P(o)) by 20% in extensor digitorum longus (EDL) muscles, whereas fiber CSA in soleus muscles decreased by 3% and P(o) was unchanged, compared with untreated controls. In the EDL muscles, fenoterol treatment increased fiber CSA by 20% and increased P(o) by 12% above values achieved after clenbuterol treatment. Soleus muscles of fenoterol-treated rats exhibited a 13% increase in fiber CSA and a 17% increase in P(o) above that of clenbuterol-treated rats. These data indicate that fenoterol has greater effects on the functional properties of rat skeletal muscles than clenbuterol.  相似文献   

17.
The length-force relations of nine different skeletal muscles in the hindlimb of the cat were determined experimentally, with electrical stimulation of the sciatic nerve as the activation mode. It was shown that the active-, passive-, and total-force patterns varied widely among the muscles. The tibialis posterior (TP), medial and lateral gastrocnemius (MG, LG) and flexor digitorum longus (FDL) had a symmetric active-force curve, whereas the tibialis anterior (TA), peroneus brevis (PB), peroneus longus (PL), extensor digitorum longus (EDL), and soleus (SOL) had an asymmetric curve which exhibits about 25% of the maximal isometric force at extreme lengths. The SOL, EDL, and LG had a low-level passive force which appeared at short muscle length, whereas all other muscles exhibited initial passive force just before the optimal length. The total force was rising quasi-linearly for the SOL, whereas the other muscles exhibited an intermediate plateau about the optimal length. The LG and FDL had a substantial but temporary intermediate dip in the total force as the muscle was elongated past the optimal length. The elongation range of the various muscles also varied, ranging from +/- 15 to +/- 30% of the optimal length. The elongation range was symmetric for the FDL, LG, MG, TP, SOL, and EDL, and asymmetric for the PL, PB, and TA, being -12 to + 17%, -12 to + 17%, and -35 to + 12%, respectively. Two different models which incorporate muscle architecture were successfully fitted to the experimental data of the muscles except for the MG and TA. The architecture of these two muscles is highly nonhomogeneous and contains compartments with two pennation patterns or two different optimal lengths. New models, which add spatially and temporally the individual characteristics of each compartment of the muscles, were constructed for these two muscles. The new models demonstrated high correlation to the experimental data obtained from the MG and TA. It was concluded that the length-force relation varies widely among various skeletal muscles and is probably dependent on the primary function of the muscle in the context of integrated movement; this is a manifestation of architectural factors such as fiber pennation pattern and angle, cross-sectional area, ratio of muscle to tendon length, distribution of the fiber length within the muscle and compartmental pennation.  相似文献   

18.
This study was designed to determine the histological and metabolic effects of the administration of 5'-AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) for 14 successive days. AICAR treatment caused a significant decrease in the percentage of type IIB fibers and the concomitant increase in the percentage of type IIX fibers in extensor digitorum longus (EDL) muscle. The capillary density and the capillary-to-fiber ratio were not altered by AICAR. AICAR treatment increased the glycolytic and oxidative enzyme activities but not the antioxidant enzyme activities. The AICAR treatment increased the uncoupling protein 3 (UCP3) level in EDL and the peroxisome proliferator-activated receptor-gamma coactivator-1alpha protein level in the soleus and EDL muscles, whereas the myogenin level was not altered by AICAR. These results seem to imply that the chronic activation of AMPK alters such muscle histochemical and metabolic characteristics.  相似文献   

19.
To study functional, structural, and biochemical adaptations to electrical stimulation of striated muscle in a large animal, the canine latissimus dorsi (LD) muscle was conditioned continuously for 24 wk with an increasing number of pulse bursts (burst duration 250 ms, burst frequency 30 Hz). Force measurements in vivo after 12 wk showed a significant decrease in the ripple, the ratio of interstimulus to peak force amplitude, from 0.94 +/- 0.03 to 0.13 +/- 0.08 (SE; n = 8, P less than 0.05), indicating reduction in contractile speed. Also the steep part of the force-frequency relation shifted to lower frequencies. A significant change in fiber-type composition was seen with both enzyme- and immunohistochemistry, manifested by an increase of type I fibers from 29.5 +/- 2.9 to 83 +/- 8% (SE; n = 8, P less than 0.05). During this period a transient rise in the number of type IIc/Ic fibers (from 3 to 10%) was seen. In the stimulated muscle, capillary-to-fiber ratio increased from 1.9 +/- 0.4 to 2.7 +/- 0.1 (P less than 0.05). A significant increase in mitochondrial volume was also seen, especially in the peripheral part of the fiber. Both creatine kinase and lactate dehydrogenase revealed a significant decline in activity within 12 wk. At the same time a shift in lactate dehydrogenase-isozyme pattern was observed toward the cardiac composition. No additional changes occurred after 12 wk of stimulation, indicating that conversion of the canine LD muscle was complete within this period.  相似文献   

20.
We have recently published a new technique for visualizing nuclei in living muscle fibers of intact animals, based on microinjection of labeled DNA into single myofibers, excluding satellite cells (Bruusgaard JC, Liestol K, Ekmark M, Kollstad K, and Gundersen K. J Physiol 551: 467-478, 2003). In the present study, we use this technique to study fiber segments of soleus and extensor digitorum longus (EDL) muscles from mice aged 2, 14, and 23 mo. As the animals maturing from 2 to 14 mo, they displayed an increase in size and number of nuclei. Soleus showed little change in nuclear domain size, whereas this increased by 88% in the EDL. For 14-mo-old animals, no significant correlation between fiber size and nuclear number was observed (R2=0.18, P=0.51) despite a fourfold variation in cytoplasmic volume. This suggests that size and nuclear number is uncoupled in middle-aged mice. When animals aged from 14 to 23 mo, EDL IIb, but not soleus, fibers atrophied by 41%. Both EDL and soleus displayed a reduction in number of nuclei: 20 and 16%, respectively. A positive correlation between number of nuclei and size was observed at 2 mo, and this reappeared in old mice. The atrophy in IIb fibers at old age was accompanied by a disturbance in the orderly positioning of nuclei that is so prominent in glycolytic fibers at younger age. In old animals, changes in nuclear shape and in the peri- and internuclear microtubule network were also observed. Thus changes in myonuclear number and distribution, perhaps related to alterations in the microtubular network, may underlie some of the adverse consequences of aging on skeletal muscle size and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号