首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rush M  Zhao X  Schwartz S 《Journal of virology》2005,79(18):12002-12015
Successful inhibition of human papillomavirus type 16 (HPV-16) late gene expression early in the life cycle is essential for persistence of infection, the highest risk factor for cervical cancer. Our study aimed to locate regulatory RNA elements in the early region of HPV-16 that influence late gene expression. For this purpose, subgenomic HPV-16 expression plasmids under control of the strong human cytomegalovirus immediate early promoter were used. An exonic splicing enhancer that firmly supported the use of the E4 3' splice site at position 3358 in the early region of the HPV-16 genome was identified. The enhancer was mapped to a 65-nucleotide AC-rich sequence located approximately 100 nucleotides downstream of the position 3358 3' splice site. Deletion of the enhancer caused loss of both splicing at the upstream position 3358 3' splice site and polyadenylation at the early polyadenylation signal, pAE. Direct splicing occurred at the competing L1 3' splice site at position 5639 in the late region. Optimization of the position 3358 3' splice site restored splicing to that site and polyadenylation at pAE. Additionally, a sequence of 40 nucleotides with a negative effect on late mRNA production was located immediately downstream of the enhancer. As the E4 3' splice site is employed by both early and late mRNAs, the enhancer constitutes a key regulator of temporal HPV-16 gene expression, which is required for early mRNA production as well as for the inhibition of premature late gene expression.  相似文献   

2.
3.
Production of human papillomavirus type 16 (HPV-16) virus particles is totally dependent on the differentiation-dependent induction of viral L1 and L2 late gene expression. The early polyadenylation signal in HPV-16 plays a major role in the switch from the early to the late, productive stage of the viral life cycle. Here, we show that the L2 coding region of HPV-16 contains RNA elements that are necessary for polyadenylation at the early polyadenylation signal. Consecutive mutations in six GGG motifs located 174 nucleotides downstream of the polyadenylation signal resulted in a gradual decrease in polyadenylation at the early polyadenylation signal. This caused read-through into the late region, followed by production of the late mRNAs encoding L1 and L2. Binding of hnRNP H to the various triple-G mutants correlated with functional activity of the HPV-16 early polyadenylation signal. In addition, the polyadenylation factor CStF-64 was also found to interact specifically with the region in L2 located 174 nucleotides downstream of the early polyadenylation signal. Staining of cervix epithelium with anti-hnRNP H-specific antiserum revealed high expression levels of hnRNP H in the lower layers of cervical epithelium and a loss of hnRNP H production in the superficial layers, supporting a model in which a differentiation-dependent down regulation of hnRNP H causes a decrease in HPV-16 early polyadenylation and an induction of late gene expression.  相似文献   

4.
Zhao X  Rush M  Schwartz S 《Journal of virology》2004,78(20):10888-10905
We have previously identified cis-acting RNA sequences in the human papillomavirus type 16 (HPV-16) L1 coding region which inhibit expression of L1 from eukaryotic expression plasmids. Here we have determined the function of one of these RNA elements, and we provide evidence that this RNA element is a splicing silencer which suppresses the use of the 3' splice site located immediately upstream of the L1 AUG. We also show that this splice site is inefficiently utilized as a result of a suboptimal polypyrimidine tract. Introduction of point mutations in the L1 coding region that altered the RNA sequence without affecting the L1 protein sequence resulted in the inactivation of the splicing silencer and induced splicing to the L1 3' splice site. These mutations also prevented the interaction of the RNA silencer with a 35-kDa cellular protein identified here as hnRNP A1. The splicing silencer in L1 inhibits splicing in vitro, and splicing can be restored by the addition of RNAs containing an hnRNP A1 binding site to the reaction, demonstrating that hnRNP A1 inhibits splicing of the late HPV-16 mRNAs through the splicing silencer sequence. While we show that one role of the splicing silencer is to determine the ratio between partially spliced L2/L1 mRNAs and spliced L1 mRNAs, we also demonstrate that it inhibits splicing from the major 5' splice site in the early region to the L1 3' splice site, thereby playing an essential role in preventing late gene expression at an early stage of the viral life cycle. We speculate that the activity of the splicing silencer and possibly the concentration of hnRNP A1 in the HPV-16-infected cell determines the ability of the virus to establish a persistent infection which remains undetected by the host immune surveillance.  相似文献   

5.
We provide evidence that the human papillomavirus (HPV) E2 protein regulates HPV late gene expression. High levels of E2 caused a read-through at the early polyadenylation signal pAE into the late region of the HPV genome, thereby inducing expression of L1 and L2 mRNAs. This is a conserved property of E2 of both mucosal and cutaneous HPV types. Induction could be reversed by high levels of HPV-16 E1 protein, or by the polyadenylation factor CPSF30. HPV-16 E2 inhibited polyadenylation in vitro by preventing the assembly of the CPSF complex. Both the N-terminal and hinge domains of E2 were required for induction of HPV late gene expression in transfected cells as well as for inhibition of polyadenylation in vitro. Finally, overexpression of HPV-16 E2 induced late gene expression from a full-length genomic clone of HPV-16. We speculate that the accumulation of high levels of E2 during the viral life cycle, not only turns off the expression of the pro-mitotic viral E6 and E7 genes, but also induces the expression of the late HPV genes L1 and L2.  相似文献   

6.
Cytoplasmic polyadenylation is a key mechanism controlling maternal mRNA translation in early development. In most cases, mRNAs that undergo poly(A) elongation are translationally activated; those that undergo poly(A) shortening are deactivated. Poly(A) elongation is regulated by two cis-acting sequences in the 3'-untranslated region (UTR) of responding mRNAs, the polyadenylation hexanucleotide AAUAAA and the U-rich cytoplasmic polyadenylation element (CPE). Previously, we cloned and characterized the Xenopus oocyte CPE binding protein (CPEB), showing that it was essential for the cytoplasmic polyadenylation of B4 RNA. Here, we show that CPEB also binds the CPEs of G10, c-mos, cdk2, cyclins A1, B1 and B2 mRNAs. We find that CPEB is necessary for polyadenylation of these RNAs in egg extracts, suggesting that this protein is required for polyadenylation of most RNAs during oocyte maturation. Our data demonstrate that the complex timing and extent of polyadenylation are partially controlled by CPEB binding to multiple target sites in the 3' UTRs of responsive mRNAs. Finally, injection of CPEB antibody into oocytes not only inhibits polyadenylation in vivo, but also blocks progesterone-induced maturation. This is due to inhibition of polyadenylation and translation of c-mos mRNA, suggesting that CPEB is critical for early development.  相似文献   

7.
Cytoplasmic polyadenylation controls the translation of several maternal mRNAs during Xenopus oocyte maturation and requires two sequences in the 3' untranslated region (UTR), the U-rich cytoplasmic polyadenylation element (CPE), and the hexanucleotide AAUAAA. c-mos mRNA is polyadenylated and translated soon after the induction of maturation, and this protein kinase is necessary for a kinase cascade culminating in cdc2 kinase (MPF) activation. Other mRNAs are polyadenylated later, around the time of cdc2 kinase activation. To determine whether there is a hierarchy in the cytoplasmic polyadenylation of maternal mRNAs, we ablated c-mos mRNA with an antisense oligonucleotide. This prevented histone B4 and cyclin A1 and B1 mRNA polyadenylation, indicating that the polyadenylation of these mRNAs is Mos dependent. To investigate a possible role of cdc2 kinase in this process, cyclin B was injected into oocytes lacking c-mos mRNA. cdc2 kinase was activated, but mitogen-activated protein kinase was not. However, polyadenylation of cyclin B1 and histone B4 mRNA was still observed. This demonstrates that cdc2 kinase can induce cytoplasmic polyadenylation in the absence of Mos. Our data further indicate that although phosphorylation of the CPE binding protein may be involved in the induction of Mos-dependent polyadenylation, it is not required for Mos-independent polyadenylation. We characterized the elements conferring Mos dependence (Mos response elements) in the histone B4 and cyclin B1 mRNAs by mutational analysis. For histone B4 mRNA, the Mos response elements were in the coding region or 5' UTR. For cyclin B1 mRNA, the main Mos response element was a CPE that overlaps with the AAUAAA hexanucleotide. This indicates that the position of the CPE can have a profound influence on the timing of cytoplasmic polyadenylation.  相似文献   

8.
The early cell divisions of Xenopus laevis and other metazoan embryos occur in the presence of constitutively high levels of the cell cycle regulator cyclin E1. Upon completion of the 12th cell division, a time at which many maternal proteins are downregulated by deadenylation and destabilization of their encoding mRNAs, maternal cyclin E1 protein is downregulated while its mRNA is polyadenylated and stable. We report here that stable polyadenylation of cyclin E1 mRNA requires three cis-acting elements in the 3′ untranslated region; the nuclear polyadenylation sequence, a contiguous cytoplasmic polyadenylation element and an upstream AU-rich element. ElrA, the Xenopus homolog of HuR and a member of the ELAV gene family binds the cyclin E1 3′UTR with high affinity. Deletion of these elements dramatically reduces the affinity of ElrA for the cyclin E1 3′UTR, abolishes polyadenylation and destabilizes the mRNA. Together, these findings provide compelling evidence that ElrA functions in polyadenylation and stabilization of cyclin E1 mRNA via binding these elements.  相似文献   

9.
The structure of the highly efficient simian virus 40 late polyadenylation signal (LPA signal) is more complex than those of most known mammalian polyadenylation signals. It contains efficiency elements both upstream and downstream of the AAUAAA region, and the downstream region contains three defined elements (two U-rich elements and one G-rich element) instead of the single U- or GU-rich element found in most polyadenylation signals. Since many reports have indicated that the secondary structure in RNA may play a significant role in RNA processing, we have used nuclease structure analysis techniques to determine the secondary structure of the LPA signal. We find that the LPA signal has a functionally significant secondary structure. Much of the region upstream of AAUAAA is sensitive to single-strand-specific nucleases. The region downstream of AAUAAA has both double- and single-stranded characteristics. Both U-rich elements are predominately sensitive to the double-strand-specific nuclease RNase V(1), while the G-rich element is primarily single stranded. The U-rich element closest to AAUAAA contains four distinct RNase V(1)-sensitive regions, which we have designated structural region 1 (SR1), SR2, SR3, and SR4. Linker scanning mutants in the downstream region were analyzed both for structure and for function by in vitro cleavage analyses. These data show that the ability of the downstream region, particularly SR3, to form double-stranded structures correlates with efficient in vitro cleavage. We discuss the possibility that secondary structure downstream of the AAUAAA may be important for the functions of polyadenylation signals in general.  相似文献   

10.
The great majority of viral mRNAs in mouse C127 cells transformed by bovine papillomavirus type 1 (BPV) have a common 3' end at the early polyadenylation site which is 23 nucleotides (nt) downstream of a canonical poly(A) consensus signal. Twenty percent of BPV mRNA from productively infected cells bypasses the early polyadenylation site and uses the late polyadenylation site approximately 3,000 nt downstream. To inactivate the BPV early polyadenylation site, the early poly(A) consensus signal was mutated from AAUAAA to UGUAAA. Surprisingly, this mutation did not result in significant read-through expression of downstream RNA. Rather, RNA mapping and cDNA cloning experiments demonstrate that virtually all of the mutant RNA is cleaved and polyadenylated at heterogeneous sites approximately 100 nt upstream of the wild-type early polyadenylation site. In addition, cells transformed by wild-type BPV harbor a small population of mRNAs with 3' ends located in this upstream region. These experiments demonstrate that inactivation of the major poly(A) signal induces preferential use of otherwise very minor upstream poly(A) sites. Mutational analysis suggests that polyadenylation at the minor sites is controlled, at least in part, by UAUAUA, an unusual variant of the poly(A) consensus signal approximately 25 nt upstream of the minor polyadenylation sites. These experiments indicate that inactivation of the major early polyadenylation signal is not sufficient to induce expression of the BPV late genes in transformed mouse cells.  相似文献   

11.
During oocyte maturation, cyclin B1 mRNA is translationally activated by cytoplasmic polyadenylation. This process is dependent on cytoplasmic polyadenylation elements (CPEs) in the 3' untranslated region (UTR) of the mRNA. To determine whether a titratable factor might be involved in the initial translational repression (masking) of this mRNA, high levels of cyclin B1 3' UTR were injected into oocytes. While this treatment had no effect on the poly(A) tail length of endogenous cyclin B1 mRNA, it induced cyclin B1 synthesis. A mutational analysis revealed that the most efficient unmasking element in the cyclin 3' UTR was the CPE. However, other U-rich sequences that resemble the CPE in structure, but which do not bind the CPE-binding polyadenylation factor CPEB, failed to induce unmasking. When fused to the chloramphenical acetyl transferase (CAT) coding region, the cyclin B1 3' UTR inhibited CAT translation in injected oocytes. In addition, a synthetic 3' UTR containing multiple copies of the CPE also inhibited translation, and did so in a dose-dependent manner. Furthermore, efficient CPE-mediated masking required cap-dependent translation. During the normal course of progesterone-induced maturation, cytoplasmic polyadenylation was necessary for mRNA unmasking. A model to explain how cyclin B1 mRNA masking and unmasking could be regulated by the CPE is presented.  相似文献   

12.
Progression through vertebrate oocyte maturation requires that pre-existing, maternally derived mRNAs be translated in a strict temporal order. The mechanism that controls the timing of oocyte mRNA translation is unknown. In this study we show that the early translational induction of the mRNA encoding the Mos proto-oncogene is mediated through a novel regulatory element within the 3' untranslated region of the Mos mRNA. This novel element is responsive to the MAP kinase signaling pathway and is distinct from the late acting, cdc2-responsive, cytoplasmic polyadenylation element. Our findings suggest that the timing of maternal mRNA translation is controlled through signal transduction pathways targeting distinct 3' UTR mRNA elements.  相似文献   

13.
14.
F Gebauer  W Xu  G M Cooper    J D Richter 《The EMBO journal》1994,13(23):5712-5720
The c-mos proto-oncogene product is a key element in the cascade of events leading to meiotic maturation of vertebrate oocytes. We have investigated the role of cytoplasmic polyadenylation in the translational control of mouse c-mos mRNA and its contribution to meiosis. Using an RNase protection assay we show that optimal cytoplasmic polyadenylation of c-mos mRNA requires three cis elements in the 3' UTR: the polyadenylation hexanucleotide AAUAAA and two U-rich cytoplasmic polyadenylation elements (CPEs) located 4 and 51 nucleotides upstream of the hexanucleotide. When fused to CAT coding sequences, the wild-type 3' UTR of c-mos mRNA, but not a 3' UTR containing mutations in both CPEs, confers translational recruitment during maturation. This recruitment coincides with maximum polyadenylation. To assess whether c-mos mRNA polyadenylation is necessary for maturation of mouse oocytes, we have ablated endogenous c-mos mRNA by injecting an antisense oligonucleotide, which results in a failure to progress to meiosis II after emission of the first polar body. Such antisense oligonucleotide-injected oocytes could be efficiently rescued by co-injection of a c-mos mRNA carrying a wild-type 3' UTR. However, co-injection of a c-mos mRNA lacking functional CPEs substantially lowered the rescue activity. These results demonstrate that translational control of c-mos mRNA by cytoplasmic polyadenylation is necessary for normal development.  相似文献   

15.
Xenopus laevis Vgl mRNA undergoes both localization and translational control during oogenesis. Vg1 protein does not appear until late stage IV, after localization is complete. To determine whether Vg1 translation is regulated by cytoplasmic polyadenylation, the RACE-PAT method was used. Vg1 mRNA has a constant poly(A) tail throughout oogenesis, precluding a role for cytoplasmic polyadenylation. To identify cis-acting elements involved in Vg1 translational control, the Vg1 3' UTR was inserted downstream of the luciferase ORF and in vitro transcribed, adenylated mRNA injected into stage III or stage VI oocytes. The Vg1 3' UTR repressed luciferase translation in both stages. Deletion analysis of the Vg1 3' UTR revealed that a 250-nt UA-rich fragment, the Vg1 translational element or VTE, which lies 118 nt downstream of the Vg1 localization element, could repress translation as well as the full-length Vg1 3' UTR. Poly(A)-dependent translation is not necessary for repression as nonadenylated mRNAs are also repressed, but cap-dependent translation is required as introduction of the classical swine fever virus IRES upstream of the luciferase coding region prevents repression by the VTE. Repression by the Vg1 3' UTR has been reproduced in Xenopus oocyte in vitro translation extracts, which show a 10-25-fold synergy between the cap and poly(A) tail. A number of proteins UV crosslink to the VTE including FRGY2 and proteins of 36, 42, 45, and 60 kDa. The abundance of p42, p45, and p60 is strikingly higher in stages I-III than in later stages, consistent with a possible role for these proteins in Vg1 translational control.  相似文献   

16.
Human papillomaviruses (HPV) are unique in that they generate mRNAs that apparently can express multiple proteins from tandemly arranged open reading frames. The mechanisms by which this is achieved are uncertain and are at odds with the basic predictions of the scanning model for translation initiation. We investigated the unorthodox mechanism by which the E6 and E7 oncoproteins from human papillomavirus type 16 (HPV-16) can be translated from a single, bicistronic mRNA. The short E6 5' untranslated region (UTR) was shown to promote translation as efficiently as a UTR from Xenopus beta-globin. Insertion of a secondary structural element into the UTR inhibited both E6 and E7 expression, suggesting that E7 expression depends on ribosomal scanning from the 5' end of the mRNA. E7 translation was found to be cap dependent, but E6 was more dependent on capping and eIF4F activity than E7. Insertion of secondary structural elements at various points in the region upstream of E7 profoundly inhibited translation, indicating that scanning was probably continuous. Insertion of the E6 region between Renilla and firefly luciferase genes revealed little or no internal ribosomal entry site activity. However when E6 was located at the 5' end of the mRNA, it permitted over 100-fold-higher levels of downstream cistron translation than did the Renilla open reading frame. Internal AUGs in the E6 region with strong or intermediate Kozak sequence contexts were unable to inhibit E7 translation, but initiation at the E7 AUG was efficient and accurate. These data support a model in which E7 translation is facilitated by an extreme degree of leaky scanning, requiring the negotiation of 13 upstream AUGs. Ribosomal initiation complexes which fail to initiate at the E6 start codon can scan through to the E7 AUG without initiating translation, but competence to initiate is achieved once the E7 AUG is reached. These findings suggest that the E6 region of HPV-16 comprises features that sponsor both translation of the E6 protein and enhancement of translation at a downstream site.  相似文献   

17.
Z F Chou  F Chen    J Wilusz 《Nucleic acids research》1994,22(13):2525-2531
We have defined the positional and sequence requirements of U-rich downstream elements using a simian virus 40 late polyadenylation signal containing a substituted downstream region. A UUUUU element will significantly increase the efficiency of 3' end processing when placed between 6 and 25 bases downstream from the cleavage site. Positions in this interval closer than 15 bases from the cleavage site, however, were noticeably less efficient. Placement of the UUUUU element between +20 and +25 caused a partial shift in cleavage site usage to a CA motif at +4. Mutational analysis indicated that the sequence requirements at individual positions of the UUUUU element were somewhat flexible. Changing more than one base of the UUUUU sequence, however, severely diminished the ability of the element to mediate efficient 3' end processing. Finally, although hnRNP C proteins specifically interact with U-rich sequences, this protein--RNA interaction is not required for efficient in vitro polyadenylation.  相似文献   

18.
A 3'' co-terminus of two early herpes simplex virus type 1 mRNAs.   总被引:12,自引:3,他引:9       下载免费PDF全文
A 3' co-terminus of two early herpes simplex virus type 1 mRNAs has been identified using the nuclease -S1 mapping procedure with cloned virus DNA probes. These mRNAs (5.0 kb and 1.2 kb), located within the genome region 0.56-0.60, are unspliced and are transcribed rightwards on the prototype genome orientation. The position of their 3' ends has been located on the virus DNA sequence and lies downstream from the polyadenylation signal 5'-AATAAA-3'. This hexanucleotide sequence also was present in the complementary DNA strand and was shown to be the polyadenylation signal for a leftwards-transcribed late mRNA. The abundance within the cytoplasm of the 5.0 kb and 1.2 kb mRNAs was investigated. Results indicated that these mRNAs were regulated in concert. It is suggested that sequences at the 3' co-terminus may be involved in their regulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号